The Inner Product and Conjugate of Matrix of Complex Numbers

Wenpai Chang
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Summary. Concepts of the inner product and conjugate of matrix of complex numbers are defined here. Operations such as addition, subtraction, scalar multiplication and inner product are introduced using correspondent definitions of the conjugate of a matrix of a complex field. Many equations for such operations consist like a case of the conjugate of matrix of a field and some operations on the set of sum of complex numbers are introduced.

MML identifier: MATRIXC1, version: 7.5.01 4.39.921

The papers [20], [24], [18], [25], [7], [8], [9], [3], [19], [2], [4], [11], [5], [10], [6], [17], [1], [13], [14], [23], [12], [15], [16], [22], and [21] provide the notation and terminology for this paper.

We follow the rules: i, j denote natural numbers, a denotes an element of \mathbb{C}, and R_{1}, R_{2} denote elements of \mathbb{C}^{i}.

Let M be a matrix over \mathbb{C}. The functor \bar{M} yields a matrix over \mathbb{C} and is defined by:
(Def. 1) len $\bar{M}=$ len M and width $\bar{M}=$ width M and for all natural numbers i, j such that $\langle i, j\rangle \in$ the indices of M holds $\bar{M} \circ(i, j)=\overline{M \circ(i, j)}$.
One can prove the following propositions:
(1) For every matrix M over \mathbb{C} holds $\langle i, j\rangle \in$ the indices of M iff $1 \leq i$ and $i \leq \operatorname{len} M$ and $1 \leq j$ and $j \leq$ width M.
(2) For every matrix M over \mathbb{C} holds $\overline{\bar{M}}=M$.
(3) For every complex number a and for every matrix M over \mathbb{C} holds len $(a$. $M)=\operatorname{len} M$ and $\operatorname{width}(a \cdot M)=\operatorname{width} M$.
(4) Let i, j be natural numbers, a be a complex number, and M be a matrix over \mathbb{C}. Suppose len $(a \cdot M)=\operatorname{len} M$ and $\operatorname{width}(a \cdot M)=$ width M and $\langle i$, $j\rangle \in$ the indices of M. Then $(a \cdot M) \circ(i, j)=a \cdot(M \circ(i, j))$.
(5) For every complex number a and for every matrix M over \mathbb{C} holds $\overline{a \cdot M}=\bar{a} \cdot \bar{M}$.
(6) For all matrices M_{1}, M_{2} over \mathbb{C} holds len $\left(M_{1}+M_{2}\right)=\operatorname{len} M_{1}$ and $\operatorname{width}\left(M_{1}+M_{2}\right)=$ width M_{1}.
(7) Let i, j be natural numbers and M_{1}, M_{2} be matrices over \mathbb{C}. Suppose len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} and $\langle i, j\rangle \in$ the indices of M_{1}. Then $\left(M_{1}+M_{2}\right) \circ(i, j)=\left(M_{1} \circ(i, j)\right)+\left(M_{2} \circ(i, j)\right)$.
(8) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{1}=$ len M_{2} and width $M_{1}=$ width M_{2} holds $\overline{M_{1}+M_{2}}=\overline{M_{1}}+\overline{M_{2}}$.
(9) For every matrix M over \mathbb{C} holds len $(-M)=$ len M and width $(-M)=$ width M.
(10) Let i, j be natural numbers and M be a matrix over \mathbb{C}. If len $(-M)=$ len M and width $(-M)=$ width M and $\langle i, j\rangle \in$ the indices of M, then $(-M) \circ(i, j)=-(M \circ(i, j))$.
(11) For every matrix M over \mathbb{C} holds $(-1) \cdot M=-M$.
(12) For every matrix M over \mathbb{C} holds $\overline{-M}=-\bar{M}$.
(13) For all matrices M_{1}, M_{2} over \mathbb{C} holds len $\left(M_{1}-M_{2}\right)=\operatorname{len} M_{1}$ and width $\left(M_{1}-M_{2}\right)=$ width M_{1}.
(14) Let i, j be natural numbers and M_{1}, M_{2} be matrices over \mathbb{C}. Suppose len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} and $\langle i, j\rangle \in$ the indices of M_{1}. Then $\left(M_{1}-M_{2}\right) \circ(i, j)=\left(M_{1} \circ(i, j)\right)-\left(M_{2} \circ(i, j)\right)$.
(15) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} holds $\overline{M_{1}-M_{2}}=\overline{M_{1}}-\overline{M_{2}}$.
Let M be a matrix over \mathbb{C}. The functor M^{*} yields a matrix over \mathbb{C} and is defined by:
(Def. 2) $\quad M^{*}=\overline{M^{\mathrm{T}}}$.
Let x be a finite sequence of elements of \mathbb{C}. Let us assume that len $x>0$. The functor FinSeq2Matrix x yielding a matrix over \mathbb{C} is defined as follows:
(Def. 3) len FinSeq2Matrix $x=\operatorname{len} x$ and width FinSeq2Matrix $x=1$ and for every j such that $j \in \operatorname{Seg}$ len x holds (FinSeq2Matrix $x)(j)=\langle x(j)\rangle$.
Let M be a matrix over \mathbb{C}. The functor Matrix2FinSeq M yields a finite sequence of elements of \mathbb{C} and is defined as follows:
(Def. 4) Matrix2FinSeq $M=M_{\square, 1}$.
Let F_{1}, F_{2} be finite sequences of elements of \mathbb{C}. The functor $F_{1} \bullet F_{2}$ yielding a finite sequence of elements of \mathbb{C} is defined as follows:
(Def. 5) $\quad F_{1} \bullet F_{2}=(\cdot \mathbb{C})^{\circ}\left(F_{1}, F_{2}\right)$.

Let us observe that the functor $F_{1} \bullet F_{2}$ is commutative.
Let F be a finite sequence of elements of \mathbb{C}. The functor $\sum F$ yields an element of \mathbb{C} and is defined as follows:
(Def. 6) $\quad \sum F=+\mathbb{C} \circledast F$.
Let M be a matrix over \mathbb{C} and let F be a finite sequence of elements of \mathbb{C}. The functor $M \cdot F$ yielding a finite sequence of elements of \mathbb{C} is defined as follows:
(Def. 7) $\operatorname{len}(M \cdot F)=\operatorname{len} M$ and for every i such that $i \in \operatorname{Seg} \operatorname{len} M$ holds (M. $F)(i)=\sum(\operatorname{Line}(M, i) \bullet F)$.
We now state the proposition
(16) $a \cdot\left(R_{1} \bullet R_{2}\right)=a \cdot R_{1} \bullet R_{2}$.

Let M be a matrix over \mathbb{C} and let a be a complex number. The functor $M \cdot a$ yielding a matrix over \mathbb{C} is defined by:
(Def. 8) $M \cdot a=a \cdot M$.
We now state three propositions:
(17) For every element a of \mathbb{C} and for every matrix M over \mathbb{C} holds $\overline{M \cdot a}=$ $\bar{a} \cdot \bar{M}$.
(18) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $\operatorname{len}(x \bullet y)=\operatorname{len} x$ and len $(x \bullet y)=\operatorname{len} y$.
(19) Let F_{1}, F_{2} be finite sequences of elements of \mathbb{C} and i be a natural number. If $i \in \operatorname{dom}\left(F_{1} \bullet F_{2}\right)$, then $\left(F_{1} \bullet F_{2}\right)(i)=F_{1}(i) \cdot F_{2}(i)$.
Let us consider i, R_{1}, R_{2}. Then $R_{1} \bullet R_{2}$ is an element of \mathbb{C}^{i}.
We now state a number of propositions:
(20) $\quad\left(R_{1} \bullet R_{2}\right)(j)=R_{1}(j) \cdot R_{2}(j)$.
(21) For all elements a, b of \mathbb{C} holds $\overline{+_{\mathbb{C}}(a, \bar{b})}=+_{\mathbb{C}}(\bar{a}, b)$.
(22) Let F be a finite sequence of elements of \mathbb{C}. Then there exists a function G from \mathbb{N} into \mathbb{C} such that for every natural number n if $1 \leq n$ and $n \leq$ len F, then $G(n)=F(n)$.
(23) For every finite sequence F of elements of \mathbb{C} such that len $\bar{F} \geq 1$ holds $+\mathbb{C} \circledast \bar{F}=\overline{+_{\mathbb{C}} \circledast F}$.
(24) For every finite sequence F of elements of \mathbb{C} such that len $F \geq 1$ holds $\sum \bar{F}=\overline{\sum F}$.
(25) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $\overline{x \bullet \bar{y}}=y \bullet \bar{x}$.
(26) For all finite sequences x, y of elements of \mathbb{C} and for every element a of \mathbb{C} such that len $x=\operatorname{len} y$ holds $x \bullet a \cdot y=a \cdot(x \bullet y)$.
(27) For all finite sequences x, y of elements of \mathbb{C} and for every element a of \mathbb{C} such that len $x=\operatorname{len} y$ holds $a \cdot x \bullet y=a \cdot(x \bullet y)$.
(28) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $\overline{x \bullet y}=\bar{x} \bullet \bar{y}$.
(29) For every finite sequence F of elements of \mathbb{C} and for every element a of \mathbb{C} holds $\sum(a \cdot F)=a \cdot \sum F$.
Let x be a finite sequence of elements of \mathbb{R}. The functor FR2FC x yielding a finite sequence of elements of \mathbb{C} is defined as follows:
(Def. 9) FR2FC $x=x$.
Next we state a number of propositions:
(30) Let R be a finite sequence of elements of \mathbb{R} and F be a finite sequence of elements of \mathbb{C}. If $R=F$ and len $R \geq 1$, then $+_{\mathbb{R}} \circledast R=+_{\mathbb{C}} \circledast F$.
(31) Let x be a finite sequence of elements of \mathbb{R} and y be a finite sequence of elements of \mathbb{C}. If $x=y$ and len $x \geq 1$, then $\sum x=\sum y$.
(32) For all finite sequences F_{1}, F_{2} of elements of \mathbb{C} such that len $F_{1}=\operatorname{len} F_{2}$ holds $\sum\left(F_{1}-F_{2}\right)=\sum F_{1}-\sum F_{2}$.
(33) Let F_{1}, F_{2} be finite sequences of elements of \mathbb{C} and i be a natural number. If $i \in \operatorname{dom}\left(F_{1}+F_{2}\right)$, then $\left(F_{1}+F_{2}\right)(i)=F_{1}(i)+F_{2}(i)$.
(34) Let F_{1}, F_{2} be finite sequences of elements of \mathbb{C} and i be a natural number. If $i \in \operatorname{dom}\left(F_{1}-F_{2}\right)$, then $\left(F_{1}-F_{2}\right)(i)=F_{1}(i)-F_{2}(i)$.
(35) For all finite sequences x, y, z of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and len $y=$ len z holds $(x-y) \bullet z=x \bullet z-y \bullet z$.
(36) For all finite sequences x, y, z of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and len $y=$ len z holds $x \bullet(y-z)=x \bullet y-x \bullet z$.
(37) For all finite sequences x, y, z of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and len $y=$ len z holds $x \bullet(y+z)=x \bullet y+x \bullet z$.
(38) For all finite sequences x, y, z of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and len $y=\operatorname{len} z$ holds $(x+y) \bullet z=x \bullet z+y \bullet z$.
(39) For all finite sequences F_{1}, F_{2} of elements of \mathbb{C} such that len $F_{1}=\operatorname{len} F_{2}$ holds $\sum\left(F_{1}+F_{2}\right)=\sum F_{1}+\sum F_{2}$.
(40) Let x_{1}, y_{1} be finite sequences of elements of \mathbb{C} and x_{2}, y_{2} be finite sequences of elements of \mathbb{R}. If $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and len $x_{1}=\operatorname{len} y_{2}$, then $(\cdot \mathbb{C})^{\circ}\left(x_{1}, y_{1}\right)=(\cdot \mathbb{R})^{\circ}\left(x_{2}, y_{2}\right)$.
(41) For all finite sequences x, y of elements of \mathbb{R} such that len $x=\operatorname{len} y$ holds $\operatorname{FR} 2 \mathrm{FC}(x \bullet y)=\operatorname{FR} 2 \mathrm{FC} x \bullet \mathrm{FR} 2 \mathrm{FC} y$.
(42) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and len $x>0$ holds $|(x, y)|=\sum(x \bullet \bar{y})$.
(43) For all matrices A, B over \mathbb{C} such that len $A=\operatorname{len} B$ and width $A=$ width B holds the indices of $A=$ the indices of B.
(44) Let i, j be natural numbers and M_{1}, M_{2} be matrices over \mathbb{C}. If len $M_{1}=$ len M_{2} and width $M_{1}=$ width M_{2} and $j \in \operatorname{Seg} \operatorname{len} M_{1}$, then $\operatorname{Line}\left(M_{1}+\right.$

$$
\left.M_{2}, j\right)=\operatorname{Line}\left(M_{1}, j\right)+\operatorname{Line}\left(M_{2}, j\right)
$$

(45) For every matrix M over \mathbb{C} such that $i \in \operatorname{Seg}$ len M holds Line $(M, i)=$ $\overline{\operatorname{Line}(\bar{M}, i)}$.
(46) Let F be a finite sequence of elements of \mathbb{C} and M be a matrix over \mathbb{C}. If len $F=$ width M, then $F \bullet \overline{\operatorname{Line}(\bar{M}, i)}=\overline{\operatorname{Line}(\bar{M}, i) \bullet \bar{F}}$.
(47) Let F be a finite sequence of elements of \mathbb{C} and M be a matrix over \mathbb{C}. If len $F=$ width M and len $F \geq 1$, then $\overline{M \cdot F}=\bar{M} \cdot \bar{F}$.
(48) For all finite sequences F_{1}, F_{2}, F_{3} of elements of \mathbb{C} such that len $F_{1}=$ len F_{2} and len $F_{2}=$ len F_{3} holds $F_{1} \bullet\left(F_{2} \bullet F_{3}\right)=\left(F_{1} \bullet F_{2}\right) \bullet F_{3}$.
(49) For every finite sequence F of elements of \mathbb{C} holds $\sum(-F)=-\sum F$.
(50) For every element z of \mathbb{C} holds $\sum\langle z\rangle=z$.
(51) For all finite sequences F_{1}, F_{2} of elements of \mathbb{C} holds $\sum\left(F_{1} \frown F_{2}\right)=$ $\sum F_{1}+\sum F_{2}$
Let M be a matrix over \mathbb{C}. The functor LineSum M yielding a finite sequence of elements of \mathbb{C} is defined as follows:
(Def. 10) len LineSum $M=$ len M and for every natural number i such that $i \in$ Seg len M holds $(\operatorname{LineSum~} M)(i)=\sum \operatorname{Line}(M, i)$.
Let M be a matrix over \mathbb{C}. The functor ColSum M yielding a finite sequence of elements of \mathbb{C} is defined by:
(Def. 11) len ColSum $M=$ width M and for every natural number j such that $j \in \operatorname{Seg}$ width M holds $(\operatorname{ColSum} M)(j)=\sum\left(M_{\square, j}\right)$.
Next we state three propositions:
(52) For every finite sequence F of elements of \mathbb{C} such that len $F=1$ holds $\sum F=F(1)$.
(53) Let f, g be finite sequences of elements of \mathbb{C} and n be a natural number. If len $f=n+1$ and $g=f \upharpoonright n$, then $\sum f=\sum g+f_{\operatorname{len} f}$.
(54) For every matrix M over \mathbb{C} such that len $M>0$ holds \sum LineSum $M=$ \sum ColSum M.
Let M be a matrix over \mathbb{C}. The functor SumAll M yielding an element of \mathbb{C} is defined by:
(Def. 12) SumAll $M=\sum$ LineSum M.
Next we state two propositions:
(55) For every matrix M over \mathbb{C} holds ColSum $M=\operatorname{LineSum}\left(M^{\mathrm{T}}\right)$.
(56) For every matrix M over \mathbb{C} such that len $M>0$ holds SumAll $M=$ $\operatorname{SumAll}\left(M^{\mathrm{T}}\right)$.
Let x, y be finite sequences of elements of \mathbb{C} and let M be a matrix over \mathbb{C}. Let us assume that len $x=\operatorname{len} M$ and len $y=$ width M. The functor QuadraticForm (x, M, y) yielding a matrix over \mathbb{C} is defined by the conditions (Def. 13).
(Def. 13)(i) len QuadraticForm $(x, M, y)=\operatorname{len} x$,
(ii) width QuadraticForm $(x, M, y)=\operatorname{len} y$, and
(iii) for all natural numbers i, j such that $\langle i, j\rangle \in$ the indices of M holds QuadraticForm $(x, M, y) \circ(i, j)=x(i) \cdot(M \circ(i, j)) \cdot \overline{y(j)}$.
The following propositions are true:
(57) Let x, y be finite sequences of elements of \mathbb{C} and M be a matrix over \mathbb{C}. If len $x=$ len M and len $y=$ width M and len $x>0$ and len $y>0$, then $(\text { QuadraticForm }(x, M, y))^{\mathrm{T}}=\overline{\text { QuadraticForm }\left(y, M^{*}, x\right)}$.
(58) Let x, y be finite sequences of elements of \mathbb{C} and M be a matrix over \mathbb{C}. If len $x=$ len M and len $y=$ width M, then $\overline{\text { QuadraticForm }(x, M, y)}=$ QuadraticForm $(\bar{x}, \bar{M}, \bar{y})$.
(59) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and $0<$ len y holds $|(x, y)|=\overline{|(y, x)|}$.
(60) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and $0<$ len y holds $\overline{|(x, y)|}=|(\bar{x}, \bar{y})|$.
(61) For every matrix M over \mathbb{C} such that width $M>0$ holds $\overline{M^{\mathrm{T}}}=\bar{M}^{\mathrm{T}}$.
(62) Let x, y be finite sequences of elements of \mathbb{C} and M be a matrix over \mathbb{C}. If len $x=$ width M and len $y=\operatorname{len} M$ and len $x>0$ and len $y>0$, then $\left|\left(x, M^{*} \cdot y\right)\right|=\operatorname{SumAll}$ QuadraticForm $\left(x, M^{\mathrm{T}}, y\right)$.
(63) Let x, y be finite sequences of elements of \mathbb{C} and M be a matrix over \mathbb{C}. If len $y=\operatorname{len} M$ and len $x=$ width M and len $x>0$ and len $y>0$ and len $M>0$, then $|(M \cdot x, y)|=\operatorname{SumAll}$ QuadraticForm $\left(x, M^{\mathrm{T}}, y\right)$.
(64) Let x, y be finite sequences of elements of \mathbb{C} and M be a matrix over \mathbb{C}. If len $x=$ width M and len $y=\operatorname{len} M$ and width $M>0$ and len $M>0$, then $|(M \cdot x, y)|=\left|\left(x, M^{*} \cdot y\right)\right|$.
(65) Let x, y be finite sequences of elements of \mathbb{C} and M be a matrix over \mathbb{C}. If len $x=\operatorname{len} M$ and len $y=$ width M and width $M>0$ and len $M>0$ and len $x>0$, then $|(x, M \cdot y)|=\left|\left(M^{*} \cdot x, y\right)\right|$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[11] Czesław Byliński and Andrzej Trybulec. Complex spaces. Formalized Mathematics, 2(1):151-158, 1991
[12] Wenpai Chang, Hiroshi Yamazaki, and Yatsuka Nakamura. The inner product and conjugate of finite sequences of complex numbers. Formalized Mathematics, 13(3):367-373, 2005.
[13] Wenpai Chang, Hiroshi Yamazaki, and Yatsuka Nakamura. A theory of matrices of complex elements. Formalized Mathematics, 13(1):157-162, 2005.
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[15] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265-269, 2001.
[16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[17] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[22] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received October 10, 2005

