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Summary. Concepts of the inner product and conjugate of matrix of com-

plex numbers are defined here. Operations such as addition, subtraction, scalar

multiplication and inner product are introduced using correspondent definitions

of the conjugate of a matrix of a complex field. Many equations for such opera-

tions consist like a case of the conjugate of matrix of a field and some operations

on the set of sum of complex numbers are introduced.
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The papers [20], [24], [18], [25], [7], [8], [9], [3], [19], [2], [4], [11], [5], [10], [6],

[17], [1], [13], [14], [23], [12], [15], [16], [22], and [21] provide the notation and

terminology for this paper.

We follow the rules: i, j denote natural numbers, a denotes an element of

C, and R1, R2 denote elements of C
i.

Let M be a matrix over C. The functor M yields a matrix over C and is

defined by:

(Def. 1) len M = lenM and width M = widthM and for all natural numbers i,

j such that 〈〈i, j〉〉 ∈ the indices of M holds M ◦ (i, j) = M ◦ (i, j) .

One can prove the following propositions:

(1) For every matrix M over C holds 〈〈i, j〉〉 ∈ the indices of M iff 1 ≤ i and

i ≤ len M and 1 ≤ j and j ≤ widthM.

(2) For every matrix M over C holds M = M.

(3) For every complex number a and for every matrix M over C holds len(a ·

M) = len M and width(a · M) = widthM.
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(4) Let i, j be natural numbers, a be a complex number, and M be a matrix

over C. Suppose len(a · M) = len M and width(a · M) = widthM and 〈〈i,

j〉〉 ∈ the indices of M . Then (a · M) ◦ (i, j) = a · (M ◦ (i, j)).

(5) For every complex number a and for every matrix M over C holds

a · M = a · M .

(6) For all matrices M1, M2 over C holds len(M1 + M2) = lenM1 and

width(M1 + M2) = widthM1.

(7) Let i, j be natural numbers and M1, M2 be matrices over C. Suppose

len M1 = lenM2 and widthM1 = widthM2 and 〈〈i, j〉〉 ∈ the indices of M1.

Then (M1 + M2) ◦ (i, j) = (M1 ◦ (i, j)) + (M2 ◦ (i, j)).

(8) For all matrices M1, M2 over C such that lenM1 = lenM2 and

widthM1 = widthM2 holds M1 + M2 = M1 + M2 .

(9) For every matrix M over C holds len(−M) = lenM and width(−M) =

widthM.

(10) Let i, j be natural numbers and M be a matrix over C. If len(−M) =

len M and width(−M) = widthM and 〈〈i, j〉〉 ∈ the indices of M , then

(−M) ◦ (i, j) = −(M ◦ (i, j)).

(11) For every matrix M over C holds (−1) · M = −M.

(12) For every matrix M over C holds −M = −M .

(13) For all matrices M1, M2 over C holds len(M1 − M2) = lenM1 and

width(M1 − M2) = widthM1.

(14) Let i, j be natural numbers and M1, M2 be matrices over C. Suppose

len M1 = lenM2 and widthM1 = widthM2 and 〈〈i, j〉〉 ∈ the indices of M1.

Then (M1 − M2) ◦ (i, j) = (M1 ◦ (i, j)) − (M2 ◦ (i, j)).

(15) For all matrices M1, M2 over C such that lenM1 = lenM2 and

widthM1 = widthM2 holds M1 − M2 = M1 − M2 .

Let M be a matrix over C. The functor M∗ yields a matrix over C and is

defined by:

(Def. 2) M∗ = MT .

Let x be a finite sequence of elements of C. Let us assume that len x > 0.

The functor FinSeq2Matrixx yielding a matrix over C is defined as follows:

(Def. 3) lenFinSeq2Matrixx = lenx and widthFinSeq2Matrixx = 1 and for

every j such that j ∈ Seg lenx holds (FinSeq2Matrixx)(j) = 〈x(j)〉.

Let M be a matrix over C. The functor Matrix2FinSeqM yields a finite

sequence of elements of C and is defined as follows:

(Def. 4) Matrix2FinSeqM = M�,1.

Let F1, F2 be finite sequences of elements of C. The functor F1 •F2 yielding

a finite sequence of elements of C is defined as follows:

(Def. 5) F1 • F2 = (·C)◦(F1, F2).
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Let us observe that the functor F1 • F2 is commutative.

Let F be a finite sequence of elements of C. The functor
∑

F yields an

element of C and is defined as follows:

(Def. 6)
∑

F = +C ⊛ F.

Let M be a matrix over C and let F be a finite sequence of elements of

C. The functor M · F yielding a finite sequence of elements of C is defined as

follows:

(Def. 7) len(M · F ) = lenM and for every i such that i ∈ Seg lenM holds (M ·

F )(i) =
∑

(Line(M, i) • F ).

We now state the proposition

(16) a · (R1 • R2) = a · R1 • R2.

Let M be a matrix over C and let a be a complex number. The functor M ·a

yielding a matrix over C is defined by:

(Def. 8) M · a = a · M.

We now state three propositions:

(17) For every element a of C and for every matrix M over C holds M · a =

a · M .

(18) For all finite sequences x, y of elements of C such that lenx = len y holds

len(x • y) = len x and len(x • y) = len y.

(19) Let F1, F2 be finite sequences of elements of C and i be a natural number.

If i ∈ dom(F1 • F2), then (F1 • F2)(i) = F1(i) · F2(i).

Let us consider i, R1, R2. Then R1 • R2 is an element of C
i.

We now state a number of propositions:

(20) (R1 • R2)(j) = R1(j) · R2(j).

(21) For all elements a, b of C holds +C(a, b) = +C(a, b).

(22) Let F be a finite sequence of elements of C. Then there exists a function

G from N into C such that for every natural number n if 1 ≤ n and

n ≤ len F, then G(n) = F (n).

(23) For every finite sequence F of elements of C such that len F ≥ 1 holds

+C ⊛ F = +C ⊛ F .

(24) For every finite sequence F of elements of C such that lenF ≥ 1 holds
∑

F =
∑

F .

(25) For all finite sequences x, y of elements of C such that lenx = len y holds

x • y = y • x.

(26) For all finite sequences x, y of elements of C and for every element a of

C such that lenx = len y holds x • a · y = a · (x • y).

(27) For all finite sequences x, y of elements of C and for every element a of

C such that lenx = len y holds a · x • y = a · (x • y).
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(28) For all finite sequences x, y of elements of C such that lenx = len y holds

x • y = x • y .

(29) For every finite sequence F of elements of C and for every element a of

C holds
∑

(a · F ) = a ·
∑

F.

Let x be a finite sequence of elements of R. The functor FR2FCx yielding

a finite sequence of elements of C is defined as follows:

(Def. 9) FR2FCx = x.

Next we state a number of propositions:

(30) Let R be a finite sequence of elements of R and F be a finite sequence

of elements of C. If R = F and lenR ≥ 1, then +R ⊛ R = +C ⊛ F.

(31) Let x be a finite sequence of elements of R and y be a finite sequence of

elements of C. If x = y and lenx ≥ 1, then
∑

x =
∑

y.

(32) For all finite sequences F1, F2 of elements of C such that lenF1 = lenF2

holds
∑

(F1 − F2) =
∑

F1 −
∑

F2.

(33) Let F1, F2 be finite sequences of elements of C and i be a natural number.

If i ∈ dom(F1 + F2), then (F1 + F2)(i) = F1(i) + F2(i).

(34) Let F1, F2 be finite sequences of elements of C and i be a natural number.

If i ∈ dom(F1 − F2), then (F1 − F2)(i) = F1(i) − F2(i).

(35) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds (x − y) • z = x • z − y • z.

(36) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds x • (y − z) = x • y − x • z.

(37) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds x • (y + z) = x • y + x • z.

(38) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds (x + y) • z = x • z + y • z.

(39) For all finite sequences F1, F2 of elements of C such that lenF1 = lenF2

holds
∑

(F1 + F2) =
∑

F1 +
∑

F2.

(40) Let x1, y1 be finite sequences of elements of C and x2, y2 be finite

sequences of elements of R. If x1 = x2 and y1 = y2 and lenx1 = len y2,

then (·C)◦(x1, y1) = (·R)◦(x2, y2).

(41) For all finite sequences x, y of elements of R such that lenx = len y holds

FR2FC(x • y) = FR2FCx • FR2FC y.

(42) For all finite sequences x, y of elements of C such that lenx = len y and

len x > 0 holds |(x, y)| =
∑

(x • y ).

(43) For all matrices A, B over C such that lenA = lenB and widthA =

widthB holds the indices of A = the indices of B.

(44) Let i, j be natural numbers and M1, M2 be matrices over C. If lenM1 =

len M2 and widthM1 = widthM2 and j ∈ Seg lenM1, then Line(M1 +
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M2, j) = Line(M1, j) + Line(M2, j).

(45) For every matrix M over C such that i ∈ Seg lenM holds Line(M, i) =

Line(M , i) .

(46) Let F be a finite sequence of elements of C and M be a matrix over C.

If lenF = widthM, then F • Line(M , i) = Line(M , i) • F .

(47) Let F be a finite sequence of elements of C and M be a matrix over C.

If lenF = widthM and lenF ≥ 1, then M · F = M · F .

(48) For all finite sequences F1, F2, F3 of elements of C such that lenF1 =

len F2 and lenF2 = lenF3 holds F1 • (F2 • F3) = (F1 • F2) • F3.

(49) For every finite sequence F of elements of C holds
∑

(−F ) = −
∑

F .

(50) For every element z of C holds
∑

〈z〉 = z.

(51) For all finite sequences F1, F2 of elements of C holds
∑

(F1
a F2) =

∑
F1 +

∑
F2.

Let M be a matrix over C. The functor LineSumM yielding a finite sequence

of elements of C is defined as follows:

(Def. 10) len LineSumM = len M and for every natural number i such that i ∈

Seg lenM holds (LineSumM)(i) =
∑

Line(M, i).

Let M be a matrix over C. The functor ColSumM yielding a finite sequence

of elements of C is defined by:

(Def. 11) lenColSumM = widthM and for every natural number j such that

j ∈ Seg widthM holds (ColSumM)(j) =
∑

(M�,j).

Next we state three propositions:

(52) For every finite sequence F of elements of C such that lenF = 1 holds
∑

F = F (1).

(53) Let f , g be finite sequences of elements of C and n be a natural number.

If len f = n + 1 and g = f↾n, then
∑

f =
∑

g + flen f .

(54) For every matrix M over C such that lenM > 0 holds
∑

LineSumM =
∑

ColSumM.

Let M be a matrix over C. The functor SumAllM yielding an element of C

is defined by:

(Def. 12) SumAllM =
∑

LineSumM.

Next we state two propositions:

(55) For every matrix M over C holds ColSumM = LineSum(MT).

(56) For every matrix M over C such that lenM > 0 holds SumAllM =

SumAll(MT).

Let x, y be finite sequences of elements of C and let M be a matrix over

C. Let us assume that len x = lenM and len y = widthM. The functor

QuadraticForm(x, M, y) yielding a matrix over C is defined by the conditions

(Def. 13).



498 wenpai chang et al.

(Def. 13)(i) lenQuadraticForm(x, M, y) = len x,

(ii) widthQuadraticForm(x,M, y) = len y, and

(iii) for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M holds

QuadraticForm(x,M, y) ◦ (i, j) = x(i) · (M ◦ (i, j)) · y(j) .

The following propositions are true:

(57) Let x, y be finite sequences of elements of C and M be a matrix over C.

If lenx = len M and len y = widthM and lenx > 0 and len y > 0, then

(QuadraticForm(x,M, y))T = QuadraticForm(y, M∗, x) .

(58) Let x, y be finite sequences of elements of C and M be a matrix over

C. If lenx = lenM and len y = widthM, then QuadraticForm(x,M, y) =

QuadraticForm(x, M , y ).

(59) For all finite sequences x, y of elements of C such that lenx = len y and

0 < len y holds |(x, y)| = |(y, x)| .

(60) For all finite sequences x, y of elements of C such that lenx = len y and

0 < len y holds |(x, y)| = |(x, y )|.

(61) For every matrix M over C such that widthM > 0 holds MT = M
T
.

(62) Let x, y be finite sequences of elements of C and M be a matrix over C.

If lenx = widthM and len y = lenM and lenx > 0 and len y > 0, then

|(x,M∗ · y)| = SumAllQuadraticForm(x, MT, y).

(63) Let x, y be finite sequences of elements of C and M be a matrix over

C. If len y = lenM and lenx = widthM and lenx > 0 and len y > 0 and

len M > 0, then |(M · x, y)| = SumAllQuadraticForm(x, MT, y).

(64) Let x, y be finite sequences of elements of C and M be a matrix over C.

If lenx = widthM and len y = lenM and widthM > 0 and lenM > 0,

then |(M · x, y)| = |(x,M∗ · y)|.

(65) Let x, y be finite sequences of elements of C and M be a matrix over

C. If lenx = lenM and len y = widthM and widthM > 0 and lenM > 0

and lenx > 0, then |(x,M · y)| = |(M∗ · x, y)|.
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[3] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
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