Some Properties of Some Special Matrices

Xiaopeng Yue
Qingdao University of Science and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Zhongpin Sun
Qingdao University of Science
and Technology
China

Summary. This article describes definitions of reversible matrix, symmetrical matrix, antisymmetric matrix, orthogonal matrix and their main properties.

MML identifier: MATRIX_6, version: 7.6.01 4.50.934

The terminology and notation used in this paper have been introduced in the following articles: [8], [3], [11], [12], [1], [10], [9], [6], [2], [4], [5], [13], and [7].

For simplicity, we adopt the following convention: n denotes a natural number, K denotes a field, a denotes an element of K, and $M, M_{1}, M_{2}, M_{3}, M_{4}$ denote matrices over K of dimension n.

Let n be a natural number, let K be a field, and let M_{1}, M_{2} be matrices over K of dimension n. We say that M_{1} is permutable with M_{2} if and only if:
(Def. 1) $\quad M_{1} \cdot M_{2}=M_{2} \cdot M_{1}$.
Let us note that the predicate M_{1} is permutable with M_{2} is symmetric.
Let n be a natural number, let K be a field, and let M_{1}, M_{2} be matrices over K of dimension n. We say that M_{1} is reverse of M_{2} if and only if:
(Def. 2) $\quad M_{1} \cdot M_{2}=M_{2} \cdot M_{1}$ and $M_{1} \cdot M_{2}=\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.

Let us note that the predicate M_{1} is reverse of M_{2} is symmetric.
Let n be a natural number, let K be a field, and let M_{1} be a matrix over K of dimension n. We say that M_{1} is reversible if and only if:
(Def. 3) There exists a matrix M_{2} over K of dimension n such that M_{1} is reverse of M_{2}.
Let us consider n, K and let M_{1} be a matrix over K of dimension n. Then $-M_{1}$ is a matrix over K of dimension n.

Let us consider n, K and let M_{1}, M_{2} be matrices over K of dimension n. Then $M_{1}+M_{2}$ is a matrix over K of dimension n.

Let us consider n, K and let M_{1}, M_{2} be matrices over K of dimension n. Then $M_{1}-M_{2}$ is a matrix over K of dimension n.

Let us consider n, K and let M_{1}, M_{2} be matrices over K of dimension n. Then $M_{1} \cdot M_{2}$ is a matrix over K of dimension n.

The following propositions are true:
(1) For every field K and for every matrix A over K such that $\operatorname{len} A>0$ and width $A>0$ holds $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{(\operatorname{len} A) \times(\operatorname{len} A)}$
$\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{(\operatorname{len} A) \times(\operatorname{width} A)}$
(2) For every field K and for every matrix A over K such that len $A>0$ and width $A>0$ holds $A \cdot\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{\text {(width } A) \times(\text { width } A)}=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{(\operatorname{len} A) \times(\operatorname{width} A)}$
(3) If $n>0$, then M_{1} is permutable with $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$.
(4) If M_{1} is permutable with M_{2} and M_{2} is permutable with M_{3} and M_{1} is permutable with M_{3}, then M_{1} is permutable with $M_{2} \cdot M_{3}$.
(5) If M_{1} is permutable with M_{2} and permutable with M_{3} and $n>0$, then M_{1} is permutable with $M_{2}+M_{3}$.
(6) $\quad M_{1}$ is permutable with $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(7) If M_{2} is reverse of M_{3} and M_{1} is reverse of M_{3}, then $M_{1}=M_{2}$.

Let n be a natural number, let K be a field, and let M_{1} be a matrix over K of dimension n. Let us assume that M_{1} is reversible. The functor $M_{1} \smile$ yields a matrix over K of dimension n and is defined by:
(Def. 4) $\quad M_{1} \smile$ is reverse of M_{1}.
We now state a number of propositions:
(8) $\left(\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)^{\smile}=\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ and $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ is reversible.
(9) $\quad\left(\left(\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)^{\smile}\right)^{\smile}=\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(10) If $n>0$, then $\left(\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)^{\mathrm{T}}=\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(11) Let K be a field, n be a natural number, and M be a matrix over K of dimension n. If $M=\left(\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)^{\mathrm{T}}$ and $n>0$, then $M^{\smile}=$ $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(12) If $M_{1}^{\mathrm{T}}=M_{2}$ and M_{3} is reverse of M_{1} and $M=M_{3}^{\mathrm{T}}$ and $n>0$, then M_{2} is reverse of M.
(13) If M is reversible and $n>0$ and $M_{1}=M^{\mathrm{T}}$ and $M_{2}=\left(M^{\smile}\right)^{\mathrm{T}}$, then $M_{1}{ }^{\smile}=M_{2}$.
(14) Let K be a field, n be a natural number, and $M_{1}, M_{2}, M_{3}, M_{4}$ be matrices over K of dimension n. If M_{3} is reverse of M_{1} and M_{4} is reverse of M_{2}, then $M_{3} \cdot M_{4}$ is reverse of $M_{2} \cdot M_{1}$.
(15) Let K be a field, n be a natural number, and M_{1}, M_{2} be matrices over K of dimension n. If M_{2} is reverse of M_{1}, then M_{1} is permutable with M_{2}.
(16) If M is reversible, then M^{\smile} is reversible and $\left(M^{\smile}\right)^{\smile}=M$.
(17) If $n>0$ and $M_{1} \cdot M_{2}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$ and M_{1} is reversible, then M_{1} is permutable with M_{2}.
(18) If $n>0$ and $M_{1}=M_{1} \cdot M_{2}$ and M_{1} is reversible, then M_{1} is permutable with M_{2}.
(19) If $n>0$ and $M_{1}=M_{2} \cdot M_{1}$ and M_{1} is reversible, then M_{1} is permutable with M_{2}.
Let n be a natural number, let K be a field, and let M_{1} be a matrix over K of dimension n. We say that M_{1} is symmetrical if and only if:
(Def. 5) $\quad M_{1}^{\mathrm{T}}=M_{1}$.
The following propositions are true:
(20) If $n>0$, then $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ is symmetrical.
(21) If $n>0$, then $\left(\left(\begin{array}{ccc}a & \ldots & a \\ \vdots & \ddots & \vdots \\ a & \ldots & a\end{array}\right)^{n \times n}\right)^{\mathrm{T}}=\left(\begin{array}{ccc}a & \ldots & a \\ \vdots & \ddots & \vdots \\ a & \ldots & a\end{array}\right)^{n \times n}$.
(22) If $n>0$, then $\left(\begin{array}{ccc}a & \ldots & a \\ \vdots & \ddots & \vdots \\ a & \ldots & a\end{array}\right)^{n \times n}$ is symmetrical.
(23) If $n>0$ and M_{1} is symmetrical and M_{2} is symmetrical, then M_{1} is permutable with M_{2} iff $M_{1} \cdot M_{2}$ is symmetrical.
(24) If $n>0$, then $\left(M_{1}+M_{2}\right)^{\mathrm{T}}=M_{1}^{\mathrm{T}}+M_{2}{ }^{\mathrm{T}}$.
(25) If $n>0$ and M_{1} is symmetrical and M_{2} is symmetrical, then $M_{1}+M_{2}$ is symmetrical.
(26) Suppose that
(i) $\quad M_{1}$ is an upper triangular matrix over K of dimension n and a lower triangular matrix over K of dimension n, and
(ii) $n>0$.

Then M_{1} is symmetrical.
(27) Let K be a field, n be a natural number, and M_{1}, M_{2} be matrices over K of dimension n. If $n>0$, then $\left(-M_{1}\right)^{\mathrm{T}}=-M_{1}{ }^{\mathrm{T}}$.
(28) Let K be a field, n be a natural number, and M_{1}, M_{2} be matrices over K of dimension n. If M_{1} is symmetrical and $n>0$, then $-M_{1}$ is symmetrical.
(29) Let K be a field, n be a natural number, and M_{1}, M_{2} be matrices over K of dimension n. Suppose $n>0$ and M_{1} is symmetrical and M_{2} is symmetrical. Then $M_{1}-M_{2}$ is symmetrical.

Let n be a natural number, let K be a field, and let M_{1} be a matrix over K of dimension n. We say that M_{1} is antisymmetric if and only if:
(Def. 6) $\quad M_{1}{ }^{\mathrm{T}}=-M_{1}$.
We now state a number of propositions:
(30) Let K be a Fanoian field, n be a natural number, and M_{1} be a matrix over K of dimension n. If M_{1} is symmetrical and antisymmetric and $n>0$, then $M_{1}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$.
(31) Let K be a Fanoian field, n, i be natural numbers, and M_{1} be a matrix over K of dimension n. If M_{1} is antisymmetric and $n>0$ and $i \in \operatorname{Seg} n$, then $M_{1} \circ(i, i)=0_{K}$.
(32) Let K be a field, n be a natural number, and M_{1}, M_{2} be matrices over K of dimension n. Suppose $n>0$ and M_{1} is antisymmetric and M_{2} is antisymmetric. Then $M_{1}+M_{2}$ is antisymmetric.
(33) Let K be a field, n be a natural number, and M_{1}, M_{2} be matrices over K of dimension n. If M_{1} is antisymmetric and $n>0$, then $-M_{1}$ is antisymmetric.
(34) Let K be a field, n be a natural number, and M_{1}, M_{2} be matrices over K of dimension n. Suppose $n>0$ and M_{1} is antisymmetric and M_{2} is antisymmetric. Then $M_{1}-M_{2}$ is antisymmetric.
(35) If $M_{2}=M_{1}-M_{1}^{\mathrm{T}}$ and $n>0$, then M_{2} is antisymmetric.
(36) If $n>0$, then M_{1} is permutable with M_{2} iff $\left(M_{1}+M_{2}\right) \cdot\left(M_{1}+M_{2}\right)=$ $M_{1} \cdot M_{1}+M_{1} \cdot M_{2}+M_{1} \cdot M_{2}+M_{2} \cdot M_{2}$.
(37) If $n>0$ and M_{1} is reversible and M_{2} is reversible, then $M_{1} \cdot M_{2}$ is reversible and $\left(M_{1} \cdot M_{2}\right)^{\smile}=M_{2}{ }^{\smile} \cdot M_{1} \smile$.
(38) If $n>0$ and M_{1} is reversible and M_{2} is reversible and M_{1} is permutable with M_{2}, then $M_{1} \cdot M_{2}$ is reversible and $\left(M_{1} \cdot M_{2}\right)^{\smile}=M_{1} \smile \cdot M_{2} \leftrightharpoons$.
(39) If $n>0$ and M_{1} is reversible and M_{2} is reversible and $M_{1} \cdot M_{2}=$ $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$, then M_{1} is reverse of M_{2}.
(40) If $n>0$ and M_{1} is reversible and M_{2} is reversible and $M_{2} \cdot M_{1}=$ $\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$, then M_{1} is reverse of M_{2}.
(41) If $n>0$ and M_{1} is reversible and permutable with M_{2}, then $M_{1}{ }^{\smile}$ is permutable with M_{2}.

Let n be a natural number, let K be a field, and let M_{1} be a matrix over K of dimension n. We say that M_{1} is orthogonal if and only if:
(Def. 7) $\quad M_{1}$ is reversible and $M_{1}^{\mathrm{T}}=M_{1}{ }^{\smile}$.
The following propositions are true:
(42) If $n>0$, then $M_{1} \cdot M_{1}^{\mathrm{T}}=\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ and M_{1} is reversible iff M_{1} is orthogonal.
(43) If $n>0$, then M_{1} is reversible and $M_{1}^{\mathrm{T}} \cdot M_{1}=\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ iff
M_{1} is orthogonal.
(44) If $n>0$ and M_{1} is orthogonal, then $M_{1}^{\mathrm{T}} \cdot M_{1}=M_{1} \cdot M_{1}^{\mathrm{T}}$.
(45) If $n>0$ and M_{1} is orthogonal and permutable with M_{2} and $M_{3}=M_{1}{ }^{\mathrm{T}}$, then M_{3} is permutable with M_{2}.
(46) If $n>0$ and M_{1} is reversible and M_{2} is reversible, then $M_{1} \cdot M_{2}$ is reversible and $\left(M_{1} \cdot M_{2}\right)^{\smile}=M_{2}{ }^{\smile} \cdot M_{1} \smile$.
(47) If $n>0$ and M_{1} is orthogonal and M_{2} is orthogonal, then $M_{1} \cdot M_{2}$ is orthogonal.
(48) If $n>0$ and M_{1} is orthogonal and permutable with M_{2} and $M_{3}=M_{1}{ }^{\mathrm{T}}$, then M_{3} is permutable with M_{2}.
(49) If $n>0$ and M_{1} is permutable with M_{2}, then $M_{1}+M_{1}$ is permutable with M_{2}.
(50) If $n>0$ and M_{1} is permutable with M_{2}, then $M_{1}+M_{2}$ is permutable with M_{2}.
(51) If $n>0$ and M_{1} is permutable with M_{2}, then $M_{1}+M_{1}$ is permutable with $M_{2}+M_{2}$.
(52) If $n>0$ and M_{1} is permutable with M_{2}, then $M_{1}+M_{2}$ is permutable with $M_{2}+M_{2}$.
(53) If $n>0$ and M_{1} is permutable with M_{2}, then $M_{1}+M_{2}$ is permutable with $M_{1}+M_{2}$.
(54) If $n>0$ and M_{1} is permutable with M_{2}, then $M_{1} \cdot M_{2}$ is permutable with M_{2}.
(55) If $n>0$ and M_{1} is permutable with M_{2}, then $M_{1} \cdot M_{1}$ is permutable with M_{2}.
(56) If $n>0$ and M_{1} is permutable with M_{2}, then $M_{1} \cdot M_{1}$ is permutable with $M_{2} \cdot M_{2}$.
(57) If $n>0$ and M_{1} is permutable with M_{2} and $M_{3}=M_{1}^{\mathrm{T}}$ and $M_{4}=M_{2}^{\mathrm{T}}$,
then M_{3} is permutable with M_{4}.
(58) Suppose $n>0$ and M_{1} is reversible and M_{2} is reversible and M_{3} is reversible. Then $M_{1} \cdot M_{2} \cdot M_{3}$ is reversible and $\left(M_{1} \cdot M_{2} \cdot M_{3}\right)^{\smile}=M_{3}{ }^{\smile}$. $M_{2}{ }^{\smile} \cdot M_{1}{ }^{\smile}$.
(59) If $n>0$ and M_{1} is orthogonal and M_{2} is orthogonal and M_{3} is orthogonal, then $M_{1} \cdot M_{2} \cdot M_{3}$ is orthogonal.
(60) If $n>0$, then $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ is orthogonal.
(61) If $n>0$ and M_{1} is orthogonal and M_{2} is orthogonal, then $M_{1} \smile \cdot M_{2}$ is orthogonal.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[3] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[4] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[5] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Yatsuka Nakamura and Hiroshi Yamazaki. Calculation of matrices of field elements. Part I. Formalized Mathematics, 11(4):385-391, 2003.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[10] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[13] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Received December 7, 2005

