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Summary. This article describes definitions of reversible matrix, symmet-

rical matrix, antisymmetric matrix, orthogonal matrix and their main properties.

MML identifier: MATRIX 6, version: 7.6.01 4.50.934

The terminology and notation used in this paper have been introduced in the

following articles: [8], [3], [11], [12], [1], [10], [9], [6], [2], [4], [5], [13], and [7].

For simplicity, we adopt the following convention: n denotes a natural num-

ber, K denotes a field, a denotes an element of K, and M , M1, M2, M3, M4

denote matrices over K of dimension n.

Let n be a natural number, let K be a field, and let M1, M2 be matrices

over K of dimension n. We say that M1 is permutable with M2 if and only if:

(Def. 1) M1 · M2 = M2 · M1.

Let us note that the predicate M1 is permutable with M2 is symmetric.

Let n be a natural number, let K be a field, and let M1, M2 be matrices

over K of dimension n. We say that M1 is reverse of M2 if and only if:

(Def. 2) M1 · M2 = M2 · M1 and M1 · M2 =







1 0
. . .

0 1







n×n

K

.
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Let us note that the predicate M1 is reverse of M2 is symmetric.

Let n be a natural number, let K be a field, and let M1 be a matrix over K

of dimension n. We say that M1 is reversible if and only if:

(Def. 3) There exists a matrix M2 over K of dimension n such that M1 is reverse

of M2.

Let us consider n, K and let M1 be a matrix over K of dimension n. Then

−M1 is a matrix over K of dimension n.

Let us consider n, K and let M1, M2 be matrices over K of dimension n.

Then M1 + M2 is a matrix over K of dimension n.

Let us consider n, K and let M1, M2 be matrices over K of dimension n.

Then M1 − M2 is a matrix over K of dimension n.

Let us consider n, K and let M1, M2 be matrices over K of dimension n.

Then M1 · M2 is a matrix over K of dimension n.

The following propositions are true:

(1) For every field K and for every matrix A over K such that

len A > 0 and widthA > 0 holds







0 . . . 0
...

. . .
...

0 . . . 0







(len A)×(len A)

K

· A =







0 . . . 0
...

. . .
...

0 . . . 0







(len A)×(width A)

K

.

(2) For every field K and for every matrix A over K such that

len A > 0 and widthA > 0 holds A ·







0 . . . 0
...

. . .
...

0 . . . 0







(width A)×(width A)

K

=







0 . . . 0
...

. . .
...

0 . . . 0







(len A)×(width A)

K

.

(3) If n > 0, then M1 is permutable with







0 . . . 0
...

. . .
...

0 . . . 0







n×n

K

.

(4) If M1 is permutable with M2 and M2 is permutable with M3 and M1 is

permutable with M3, then M1 is permutable with M2 · M3.

(5) If M1 is permutable with M2 and permutable with M3 and n > 0, then

M1 is permutable with M2 + M3.
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(6) M1 is permutable with







1 0
. . .

0 1







n×n

K

.

(7) If M2 is reverse of M3 and M1 is reverse of M3, then M1 = M2.

Let n be a natural number, let K be a field, and let M1 be a matrix over K

of dimension n. Let us assume that M1 is reversible. The functor M1
` yields a

matrix over K of dimension n and is defined by:

(Def. 4) M1
` is reverse of M1.

We now state a number of propositions:

(8) (







1 0
. . .

0 1







n×n

K

)` =







1 0
. . .

0 1







n×n

K

and







1 0
. . .

0 1







n×n

K

is

reversible.

(9) ((







1 0
. . .

0 1







n×n

K

)`)` =







1 0
. . .

0 1







n×n

K

.

(10) If n > 0, then (







1 0
. . .

0 1







n×n

K

)T =







1 0
. . .

0 1







n×n

K

.

(11) Let K be a field, n be a natural number, and M be a matrix over K

of dimension n. If M = (







1 0
. . .

0 1







n×n

K

)T and n > 0, then M` =







1 0
. . .

0 1







n×n

K

.

(12) If M1
T = M2 and M3 is reverse of M1 and M = M3

T and n > 0, then

M2 is reverse of M .

(13) If M is reversible and n > 0 and M1 = MT and M2 = (M`)T, then

M1
` = M2.

(14) Let K be a field, n be a natural number, and M1, M2, M3, M4 be

matrices over K of dimension n. If M3 is reverse of M1 and M4 is reverse

of M2, then M3 · M4 is reverse of M2 · M1.

(15) Let K be a field, n be a natural number, and M1, M2 be matrices over

K of dimension n. If M2 is reverse of M1, then M1 is permutable with

M2.

(16) If M is reversible, then M` is reversible and (M`)` = M.
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(17) If n > 0 and M1 · M2 =







0 . . . 0
...

. . .
...

0 . . . 0







n×n

K

and M1 is reversible, then

M1 is permutable with M2.

(18) If n > 0 and M1 = M1 ·M2 and M1 is reversible, then M1 is permutable

with M2.

(19) If n > 0 and M1 = M2 ·M1 and M1 is reversible, then M1 is permutable

with M2.

Let n be a natural number, let K be a field, and let M1 be a matrix over K

of dimension n. We say that M1 is symmetrical if and only if:

(Def. 5) M1
T = M1.

The following propositions are true:

(20) If n > 0, then







1 0
. . .

0 1







n×n

K

is symmetrical.

(21) If n > 0, then (







a . . . a
...

. . .
...

a . . . a







n×n

)T =







a . . . a
...

. . .
...

a . . . a







n×n

.

(22) If n > 0, then







a . . . a
...

. . .
...

a . . . a







n×n

is symmetrical.

(23) If n > 0 and M1 is symmetrical and M2 is symmetrical, then M1 is

permutable with M2 iff M1 · M2 is symmetrical.

(24) If n > 0, then (M1 + M2)
T = M1

T + M2
T.

(25) If n > 0 and M1 is symmetrical and M2 is symmetrical, then M1 + M2

is symmetrical.

(26) Suppose that

(i) M1 is an upper triangular matrix over K of dimension n and a lower

triangular matrix over K of dimension n, and

(ii) n > 0.

Then M1 is symmetrical.

(27) Let K be a field, n be a natural number, and M1, M2 be matrices over

K of dimension n. If n > 0, then (−M1)
T = −M1

T.

(28) Let K be a field, n be a natural number, and M1, M2 be matrices over K

of dimension n. If M1 is symmetrical and n > 0, then −M1 is symmetrical.

(29) Let K be a field, n be a natural number, and M1, M2 be matrices over

K of dimension n. Suppose n > 0 and M1 is symmetrical and M2 is

symmetrical. Then M1 − M2 is symmetrical.
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Let n be a natural number, let K be a field, and let M1 be a matrix over K

of dimension n. We say that M1 is antisymmetric if and only if:

(Def. 6) M1
T = −M1.

We now state a number of propositions:

(30) Let K be a Fanoian field, n be a natural number, and M1 be a matrix

over K of dimension n. If M1 is symmetrical and antisymmetric and n > 0,

then M1 =







0 . . . 0
...

. . .
...

0 . . . 0







n×n

K

.

(31) Let K be a Fanoian field, n, i be natural numbers, and M1 be a matrix

over K of dimension n. If M1 is antisymmetric and n > 0 and i ∈ Seg n,

then M1 ◦ (i, i) = 0K .

(32) Let K be a field, n be a natural number, and M1, M2 be matrices over

K of dimension n. Suppose n > 0 and M1 is antisymmetric and M2 is

antisymmetric. Then M1 + M2 is antisymmetric.

(33) Let K be a field, n be a natural number, and M1, M2 be matrices

over K of dimension n. If M1 is antisymmetric and n > 0, then −M1 is

antisymmetric.

(34) Let K be a field, n be a natural number, and M1, M2 be matrices over

K of dimension n. Suppose n > 0 and M1 is antisymmetric and M2 is

antisymmetric. Then M1 − M2 is antisymmetric.

(35) If M2 = M1 − M1
T and n > 0, then M2 is antisymmetric.

(36) If n > 0, then M1 is permutable with M2 iff (M1 + M2) · (M1 + M2) =

M1 · M1 + M1 · M2 + M1 · M2 + M2 · M2.

(37) If n > 0 and M1 is reversible and M2 is reversible, then M1 · M2 is

reversible and (M1 · M2)
` = M2

`

· M1
`.

(38) If n > 0 and M1 is reversible and M2 is reversible and M1 is permutable

with M2, then M1 · M2 is reversible and (M1 · M2)
` = M1

`

· M2
`.

(39) If n > 0 and M1 is reversible and M2 is reversible and M1 · M2 =






1 0
. . .

0 1







n×n

K

, then M1 is reverse of M2.

(40) If n > 0 and M1 is reversible and M2 is reversible and M2 · M1 =






1 0
. . .

0 1







n×n

K

, then M1 is reverse of M2.

(41) If n > 0 and M1 is reversible and permutable with M2, then M1
` is

permutable with M2.



546 xiaopeng yue et al.

Let n be a natural number, let K be a field, and let M1 be a matrix over K

of dimension n. We say that M1 is orthogonal if and only if:

(Def. 7) M1 is reversible and M1
T = M1

`.

The following propositions are true:

(42) If n > 0, then M1 · M1
T =







1 0
. . .

0 1







n×n

K

and M1 is reversible iff

M1 is orthogonal.

(43) If n > 0, then M1 is reversible and M1
T
· M1 =







1 0
. . .

0 1







n×n

K

iff

M1 is orthogonal.

(44) If n > 0 and M1 is orthogonal, then M1
T
· M1 = M1 · M1

T.

(45) If n > 0 and M1 is orthogonal and permutable with M2 and M3 = M1
T,

then M3 is permutable with M2.

(46) If n > 0 and M1 is reversible and M2 is reversible, then M1 · M2 is

reversible and (M1 · M2)
` = M2

`

· M1
`.

(47) If n > 0 and M1 is orthogonal and M2 is orthogonal, then M1 · M2 is

orthogonal.

(48) If n > 0 and M1 is orthogonal and permutable with M2 and M3 = M1
T,

then M3 is permutable with M2.

(49) If n > 0 and M1 is permutable with M2, then M1 + M1 is permutable

with M2.

(50) If n > 0 and M1 is permutable with M2, then M1 + M2 is permutable

with M2.

(51) If n > 0 and M1 is permutable with M2, then M1 + M1 is permutable

with M2 + M2.

(52) If n > 0 and M1 is permutable with M2, then M1 + M2 is permutable

with M2 + M2.

(53) If n > 0 and M1 is permutable with M2, then M1 + M2 is permutable

with M1 + M2.

(54) If n > 0 and M1 is permutable with M2, then M1 · M2 is permutable

with M2.

(55) If n > 0 and M1 is permutable with M2, then M1 · M1 is permutable

with M2.

(56) If n > 0 and M1 is permutable with M2, then M1 · M1 is permutable

with M2 · M2.

(57) If n > 0 and M1 is permutable with M2 and M3 = M1
T and M4 = M2

T,
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then M3 is permutable with M4.

(58) Suppose n > 0 and M1 is reversible and M2 is reversible and M3 is

reversible. Then M1 · M2 · M3 is reversible and (M1 · M2 · M3)
` = M3

`

·

M2
`

· M1
`.

(59) If n > 0 and M1 is orthogonal and M2 is orthogonal and M3 is orthogo-

nal, then M1 · M2 · M3 is orthogonal.

(60) If n > 0, then







1 0
. . .

0 1







n×n

K

is orthogonal.

(61) If n > 0 and M1 is orthogonal and M2 is orthogonal, then M1
`

· M2 is

orthogonal.
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