FORMALIZED MATHEMATICS Volume 13, Number 4, Pages 541–547 University of Białystok, 2005

Some Properties of Some Special Matrices

Xiaopeng Yue Qingdao University of Science and Technology China

Xiquan Liang Qingdao University of Science and Technology China

Zhongpin Sun Qingdao University of Science and Technology China

Summary. This article describes definitions of reversible matrix, symmetrical matrix, antisymmetric matrix, orthogonal matrix and their main properties.

MML identifier: MATRIX_6, version: 7.6.01 4.50.934

The terminology and notation used in this paper have been introduced in the following articles: [8], [3], [11], [12], [1], [10], [9], [6], [2], [4], [5], [13], and [7].

For simplicity, we adopt the following convention: n denotes a natural number, K denotes a field, a denotes an element of K, and M, M_1 , M_2 , M_3 , M_4 denote matrices over K of dimension n.

Let n be a natural number, let K be a field, and let M_1 , M_2 be matrices over K of dimension n. We say that M_1 is permutable with M_2 if and only if: (Def. 1) $M_1 \cdot M_2 = M_2 \cdot M_1$.

Let us note that the predicate M_1 is permutable with M_2 is symmetric.

Let n be a natural number, let K be a field, and let M_1 , M_2 be matrices over K of dimension n. We say that M_1 is reverse of M_2 if and only if:

(Def. 2)
$$M_1 \cdot M_2 = M_2 \cdot M_1$$
 and $M_1 \cdot M_2 = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times n}$.
541 $\begin{pmatrix} 0 & 2005 \text{ University of Bialystok} \\ ISSN 1426-2630 \end{pmatrix}$

Let us note that the predicate M_1 is reverse of M_2 is symmetric.

Let n be a natural number, let K be a field, and let M_1 be a matrix over K of dimension n. We say that M_1 is reversible if and only if:

(Def. 3) There exists a matrix M_2 over K of dimension n such that M_1 is reverse of M_2 .

Let us consider n, K and let M_1 be a matrix over K of dimension n. Then $-M_1$ is a matrix over K of dimension n.

Let us consider n, K and let M_1 , M_2 be matrices over K of dimension n. Then $M_1 + M_2$ is a matrix over K of dimension n.

Let us consider n, K and let M_1 , M_2 be matrices over K of dimension n. Then $M_1 - M_2$ is a matrix over K of dimension n.

Let us consider n, K and let M_1 , M_2 be matrices over K of dimension n. Then $M_1 \cdot M_2$ is a matrix over K of dimension n.

The following propositions are true:

(1) For every field K and for every matrix A over K such that $\ln A > 0 \text{ and width } A > 0 \text{ holds } \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(\ln A) \times (\operatorname{width} A)} \cdot A = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(\ln A) \times (\operatorname{width} A)}$

$$\left(\begin{array}{ccc} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{array}\right)_{K}^{(\operatorname{len} A) \times (\operatorname{width} A)}.$$

(3) If n > 0, then M_1 is permutable with $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times n}$.

- (4) If M_1 is permutable with M_2 and M_2 is permutable with M_3 and M_1 is permutable with M_3 , then M_1 is permutable with $M_2 \cdot M_3$.
- (5) If M_1 is permutable with M_2 and permutable with M_3 and n > 0, then M_1 is permutable with $M_2 + M_3$.

(6)
$$M_1$$
 is permutable with $\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}_K^{n \times n}$.

(7) If M_2 is reverse of M_3 and M_1 is reverse of M_3 , then $M_1 = M_2$.

Let n be a natural number, let K be a field, and let M_1 be a matrix over K of dimension n. Let us assume that M_1 is reversible. The functor $M_1 \stackrel{\sim}{}$ yields a matrix over K of dimension n and is defined by:

(Def. 4) $M_1 \stackrel{\checkmark}{}$ is reverse of M_1 .

We now state a number of propositions:

$$(8) \quad \left(\begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}\right)^{\sim} = \begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n} \text{ and } \begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n} \text{ is reversible.}$$

$$(9) \quad \left(\left(\begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}\right)^{\sim}\right)^{\sim} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n} \cdot \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}\right)^{m \times n} \cdot \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}\right)^{m \times n} \cdot \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}\right)^{T} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n} \cdot \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}\right)^{T} \text{ or } K$$

$$(10) \quad \text{If } n > 0, \text{ then } \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}\right)^{T} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n} \cdot \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}\right)^{T} \text{ or } K$$

(11) Let K be a field, n be a natural number, and M be a matrix over K of dimension n. If
$$M = \begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$$
 and $n > 0$, then $M^{\sim} = \begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}$

$$\left(\begin{array}{ccc} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{array}\right)_{K}^{n \times n}$$

- (12) If $M_1^{\mathrm{T}} = M_2$ and M_3 is reverse of M_1 and $M = M_3^{\mathrm{T}}$ and n > 0, then M_2 is reverse of M.
- (13) If M is reversible and n > 0 and $M_1 = M^T$ and $M_2 = (M^{\sim})^T$, then $M_1^{\sim} = M_2$.
- (14) Let K be a field, n be a natural number, and M_1 , M_2 , M_3 , M_4 be matrices over K of dimension n. If M_3 is reverse of M_1 and M_4 is reverse of M_2 , then $M_3 \cdot M_4$ is reverse of $M_2 \cdot M_1$.
- (15) Let K be a field, n be a natural number, and M_1 , M_2 be matrices over K of dimension n. If M_2 is reverse of M_1 , then M_1 is permutable with M_2 .
- (16) If M is reversible, then M^{\sim} is reversible and $(M^{\sim})^{\sim} = M$.

(17) If n > 0 and $M_1 \cdot M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times n}$ and M_1 is reversible, then M_1 is permutable with M_2 .

- (18) If n > 0 and $M_1 = M_1 \cdot M_2$ and M_1 is reversible, then M_1 is permutable with M_2 .
- (19) If n > 0 and $M_1 = M_2 \cdot M_1$ and M_1 is reversible, then M_1 is permutable with M_2 .

Let n be a natural number, let K be a field, and let M_1 be a matrix over K of dimension n. We say that M_1 is symmetrical if and only if:

(Def. 5)
$$M_1^{\mathrm{T}} = M_1$$
.

The following propositions are true:

(20) If
$$n > 0$$
, then $\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$ is symmetrical.
(21) If $n > 0$, then $\begin{pmatrix} a & \dots & a \\ \vdots & \ddots & \vdots \\ a & \dots & a \end{pmatrix}^{n \times n}$ $)^{\mathbf{T}} = \begin{pmatrix} a & \dots & a \\ \vdots & \ddots & \vdots \\ a & \dots & a \end{pmatrix}^{n \times n}$
(22) If $n > 0$, then $\begin{pmatrix} a & \dots & a \\ \vdots & \ddots & \vdots \\ a & \dots & a \end{pmatrix}^{n \times n}$ is symmetrical.

- (23) If n > 0 and M_1 is symmetrical and M_2 is symmetrical, then M_1 is permutable with M_2 iff $M_1 \cdot M_2$ is symmetrical.
- (24) If n > 0, then $(M_1 + M_2)^{\mathrm{T}} = M_1^{\mathrm{T}} + M_2^{\mathrm{T}}$.
- (25) If n > 0 and M_1 is symmetrical and M_2 is symmetrical, then $M_1 + M_2$ is symmetrical.
- (26) Suppose that
 - M_1 is an upper triangular matrix over K of dimension n and a lower (i) triangular matrix over K of dimension n, and
 - n > 0.(ii)

Then M_1 is symmetrical.

- (27) Let K be a field, n be a natural number, and M_1 , M_2 be matrices over K of dimension n. If n > 0, then $(-M_1)^{\mathrm{T}} = -M_1^{\mathrm{T}}$.
- (28) Let K be a field, n be a natural number, and M_1, M_2 be matrices over K of dimension n. If M_1 is symmetrical and n > 0, then $-M_1$ is symmetrical.
- (29) Let K be a field, n be a natural number, and M_1 , M_2 be matrices over K of dimension n. Suppose n > 0 and M_1 is symmetrical and M_2 is symmetrical. Then $M_1 - M_2$ is symmetrical.

544

Let n be a natural number, let K be a field, and let M_1 be a matrix over K of dimension n. We say that M_1 is antisymmetric if and only if:

(Def. 6)
$$M_1^{\mathrm{T}} = -M_1$$
.

We now state a number of propositions:

- (30) Let K be a Fanoian field, n be a natural number, and M_1 be a matrix over K of dimension n. If M_1 is symmetrical and antisymmetric and n > 0, then $M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times n}$.
- (31) Let K be a Fanoian field, n, i be natural numbers, and M_1 be a matrix over K of dimension n. If M_1 is antisymmetric and n > 0 and $i \in \text{Seg } n$, then $M_1 \circ (i, i) = 0_K$.
- (32) Let K be a field, n be a natural number, and M_1 , M_2 be matrices over K of dimension n. Suppose n > 0 and M_1 is antisymmetric and M_2 is antisymmetric. Then $M_1 + M_2$ is antisymmetric.
- (33) Let K be a field, n be a natural number, and M_1 , M_2 be matrices over K of dimension n. If M_1 is antisymmetric and n > 0, then $-M_1$ is antisymmetric.
- (34) Let K be a field, n be a natural number, and M_1 , M_2 be matrices over K of dimension n. Suppose n > 0 and M_1 is antisymmetric and M_2 is antisymmetric. Then $M_1 M_2$ is antisymmetric.
- (35) If $M_2 = M_1 M_1^{\mathrm{T}}$ and n > 0, then M_2 is antisymmetric.
- (36) If n > 0, then M_1 is permutable with M_2 iff $(M_1 + M_2) \cdot (M_1 + M_2) = M_1 \cdot M_1 + M_1 \cdot M_2 + M_1 \cdot M_2 + M_2 \cdot M_2$.
- (37) If n > 0 and M_1 is reversible and M_2 is reversible, then $M_1 \cdot M_2$ is reversible and $(M_1 \cdot M_2)^{\sim} = M_2^{\sim} \cdot M_1^{\sim}$.
- (38) If n > 0 and M_1 is reversible and M_2 is reversible and M_1 is permutable with M_2 , then $M_1 \cdot M_2$ is reversible and $(M_1 \cdot M_2)^{\sim} = M_1^{\sim} \cdot M_2^{\sim}$.
- (39) If n > 0 and M_1 is reversible and M_2 is reversible and $M_1 \cdot M_2 = \begin{pmatrix} 1 & 0 \\ & \ddots & \end{pmatrix}^{n \times n}$, then M_1 is reverse of M_2 .

(40) If
$$n > 0$$
 and M_1 is reversible and M_2 is reversible and $M_2 \cdot M_1 = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}_{n \times n}^{n \times n}$, then M_1 is reverse of M_2 .

(41) If n > 0 and M_1 is reversible and permutable with M_2 , then $M_1 \\ightarrow$ is permutable with M_2 .

Let n be a natural number, let K be a field, and let M_1 be a matrix over K of dimension n. We say that M_1 is orthogonal if and only if:

(Def. 7) M_1 is reversible and $M_1^{\mathrm{T}} = M_1^{\smile}$.

The following propositions are true:

(42) If
$$n > 0$$
, then $M_1 \cdot M_1^{\mathrm{T}} = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times n}$ and M_1 is reversible iff

 M_1 is orthogonal.

(43) If n > 0, then M_1 is reversible and $M_1^{\mathrm{T}} \cdot M_1 = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times n}$ iff M_1 is orthogonal

 M_1 is orthogonal.

- (44) If n > 0 and M_1 is orthogonal, then $M_1^{\mathrm{T}} \cdot M_1 = M_1 \cdot M_1^{\mathrm{T}}$.
- (45) If n > 0 and M_1 is orthogonal and permutable with M_2 and $M_3 = M_1^{\mathrm{T}}$, then M_3 is permutable with M_2 .
- (46) If n > 0 and M_1 is reversible and M_2 is reversible, then $M_1 \cdot M_2$ is reversible and $(M_1 \cdot M_2)^{\smile} = M_2^{\smile} \cdot M_1^{\smile}$.
- (47) If n > 0 and M_1 is orthogonal and M_2 is orthogonal, then $M_1 \cdot M_2$ is orthogonal.
- (48) If n > 0 and M_1 is orthogonal and permutable with M_2 and $M_3 = M_1^{\mathrm{T}}$, then M_3 is permutable with M_2 .
- (49) If n > 0 and M_1 is permutable with M_2 , then $M_1 + M_1$ is permutable with M_2 .
- (50) If n > 0 and M_1 is permutable with M_2 , then $M_1 + M_2$ is permutable with M_2 .
- (51) If n > 0 and M_1 is permutable with M_2 , then $M_1 + M_1$ is permutable with $M_2 + M_2$.
- (52) If n > 0 and M_1 is permutable with M_2 , then $M_1 + M_2$ is permutable with $M_2 + M_2$.
- (53) If n > 0 and M_1 is permutable with M_2 , then $M_1 + M_2$ is permutable with $M_1 + M_2$.
- (54) If n > 0 and M_1 is permutable with M_2 , then $M_1 \cdot M_2$ is permutable with M_2 .
- (55) If n > 0 and M_1 is permutable with M_2 , then $M_1 \cdot M_1$ is permutable with M_2 .
- (56) If n > 0 and M_1 is permutable with M_2 , then $M_1 \cdot M_1$ is permutable with $M_2 \cdot M_2$.
- (57) If n > 0 and M_1 is permutable with M_2 and $M_3 = M_1^{\mathrm{T}}$ and $M_4 = M_2^{\mathrm{T}}$,

546

then M_3 is permutable with M_4 .

- (58) Suppose n > 0 and M_1 is reversible and M_2 is reversible and M_3 is reversible. Then $M_1 \cdot M_2 \cdot M_3$ is reversible and $(M_1 \cdot M_2 \cdot M_3)^{\smile} = M_3^{\smile} \cdot M_2^{\smile} \cdot M_1^{\smile}$.
- (59) If n > 0 and M_1 is orthogonal and M_2 is orthogonal and M_3 is orthogonal, then $M_1 \cdot M_2 \cdot M_3$ is orthogonal.

(60) If
$$n > 0$$
, then $\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$ is orthogonal.

(61) If n > 0 and M_1 is orthogonal and M_2 is orthogonal, then $M_1 \stackrel{\sim}{\cdot} M_2$ is orthogonal.

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [3] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [4] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [5] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711–717, 1991.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [7] Yatsuka Nakamura and Hiroshi Yamazaki. Calculation of matrices of field elements. Part I. Formalized Mathematics, 11(4):385–391, 2003.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [9] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [10] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [13] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1–8, 1993.

Received December 7, 2005