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The articles [21], [25], [2], [20], [26], [5], [27], [6], [3], [1], [24], [10], [18], [16],

[9], [4], [13], [11], [19], [23], [17], [7], [8], [22], [12], [15], and [14] provide the

terminology and notation for this paper.

We use the following convention: n is a natural number, p1, p2 are points of

En

T
, and a, b, c, d are real numbers.

Let us consider a, b, c, d. One can verify that ClosedInsideOfRectangle(a, b, c,

d) is convex.

Let us consider a, b, c, d. Observe that Trectangle(a, b, c, d) is convex.

The following propositions are true:

(1) Let e be a positive real number and g be a continuous map from I into

En

T
. Then there exists a finite sequence h of elements of R such that

(i) h(1) = 0,

(ii) h(lenh) = 1,

(iii) 5 ≤ len h,

(iv) rng h ⊆ the carrier of I,

(v) h is increasing, and
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(vi) for every natural number i and for every subset Q of I and for every

subset W of En such that 1 ≤ i and i < len h and Q = [hi, hi+1] and

W = g◦Q holds ∅W < e.

(2) For every subset P of En

T
such that P ⊆ L(p1, p2) and p1 ∈ P and p2 ∈ P

and P is connected holds P = L(p1, p2).

(3) For every path g from p1 to p2 such that rng g ⊆ L(p1, p2) holds rng g =

L(p1, p2).

(4) Let P , Q be non empty subsets of E2
T
, p1, p2, q1, q2 be points of E2

T
, f

be a path from p1 to p2, and g be a path from q1 to q2. Suppose that

(i) rng f = P,

(ii) rng g = Q,

(iii) for every point p of E2
T

such that p ∈ P holds (p1)1 ≤ p1 and p1 ≤ (p2)1,

(iv) for every point p of E2
T

such that p ∈ Q holds (p1)1 ≤ p1 and p1 ≤ (p2)1,

(v) for every point p of E2
T

such that p ∈ P holds (q1)2 ≤ p2 and p2 ≤ (q2)2,

and

(vi) for every point p of E2
T

such that p ∈ Q holds (q1)2 ≤ p2 and p2 ≤ (q2)2.

Then P meets Q.

(5) Let f , g be continuous maps from I into E2
T

and O, I be points of I.

Suppose that O = 0 and I = 1 and f(O)1 = a and f(I)1 = b and

g(O)2 = c and g(I)2 = d and for every point r of I holds a ≤ f(r)1 and

f(r)1 ≤ b and a ≤ g(r)1 and g(r)1 ≤ b and c ≤ f(r)2 and f(r)2 ≤ d and

c ≤ g(r)2 and g(r)2 ≤ d. Then rng f meets rng g.

(6) Let a1, b1, c1, d1 be points of Trectangle(a, b, c, d), h be a path from a1

to b1, v be a path from d1 to c1, and A1, B1, C1, D1 be points of E2
T
.

Suppose (A1)1 = a and (B1)1 = b and (C1)2 = c and (D1)2 = d and

a1 = A1 and b1 = B1 and c1 = C1 and d1 = D1. Then there exist points

s, t of I such that h(s) = v(t).
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[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
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