A Theory of Sequential Files

Hirofumi Fukura
Shinshu University
Nagano, Japan

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Abstract

Summary. This article is a continuation of [6]. We present the notion of files and records. These are two finite sequences. One is a record and another is a separator for the carriage return and/or line feed. So, we define the record. The sequential text file contains records and separators. Generally, a record and a separator are paired in the file. And in a special situation, the separator does not exist in the file, for that the record is only one record or record is nothing. And the record does not exist in the file, for that some separator is in the file. In this article, we present a theory for files and records.

MML identifier: FILEREC1, version: 7.5.01 4.39.921

The terminology and notation used here are introduced in the following articles: [11], [12], [7], [1], [10], [13], [8], [2], [3], [4], [9], [5], and [6].

In this paper a, b, c denote sets.
The following propositions are true:
(1) Let D be a non empty set and p, q, r, s be finite sequences of elements of D. Then $p^{\wedge} q^{\wedge} r^{\wedge} s=p^{\wedge}\left(q^{\wedge} r\right)^{\wedge} s$ and $\left(p^{\wedge} q^{\wedge} r\right)^{\wedge} s=p^{\wedge} q^{\wedge}\left(r^{\wedge} s\right)$ and $\left(p^{\wedge}\left(q^{\wedge} r\right)\right)^{\wedge} s=p^{\wedge} q^{\wedge}\left(r^{\wedge} s\right)$.
(2) For every set D and for every finite sequence f of elements of D holds $f \upharpoonright$ len $f=f$.
(3) For every non empty set D and for all finite sequences p, q of elements of D such that len $p=0$ holds $q=p^{\wedge} q$.
(4) Let D be a non empty set, f be a finite sequence of elements of D, and n, m be natural numbers. If $n \leq m$, then $\operatorname{len}\left(f_{\downharpoonright m}\right) \leq \operatorname{len}\left(f_{\downharpoonright n}\right)$.
(5) For every non empty set D and for all finite sequences f, g of elements of D such that len $g \geq 1$ holds $\operatorname{mid}(f \frown g, \operatorname{len} f+1, \operatorname{len} f+\operatorname{len} g)=g$.
(6) Let D be a non empty set, f, g be finite sequences of elements of D, and i, j be natural numbers. If $1 \leq i$ and $i \leq j$ and $j \leq \operatorname{len} f$, then $\operatorname{mid}(f \frown g, i, j)=\operatorname{mid}(f, i, j)$.
(7) Let D be a non empty set, f be a finite sequence of elements of D, and i, j, n be natural numbers. If $1 \leq i$ and $i \leq j$ and $i \leq \operatorname{len}(f\lceil n)$ and $j \leq \operatorname{len}(f\lceil n)$, then $\operatorname{mid}(f, i, j)=\operatorname{mid}(f\lceil n, i, j)$.
(8) For every non empty set D and for every finite sequence f of elements of D such that $f=\langle a\rangle$ holds $a \in D$.
(9) For every non empty set D and for every finite sequence f of elements of D such that $f=\langle a, b\rangle$ holds $a \in D$ and $b \in D$.
(10) Let D be a non empty set and f be a finite sequence of elements of D. If $f=\langle a, b, c\rangle$, then $a \in D$ and $b \in D$ and $c \in D$.
(11) For every non empty set D and for every finite sequence f of elements of D such that $f=\langle a\rangle$ holds $f \upharpoonright 1=\langle a\rangle$.
(12) For every non empty set D and for every finite sequence f of elements of D such that $f=\langle a, b\rangle$ holds $f_{l 1}=\langle b\rangle$.
(13) For every non empty set D and for every finite sequence f of elements of D such that $f=\langle a, b, c\rangle$ holds $f \upharpoonright 1=\langle a\rangle$.
(14) For every non empty set D and for every finite sequence f of elements of D such that $f=\langle a, b, c\rangle$ holds $f \upharpoonright 2=\langle a, b\rangle$.
(15) For every non empty set D and for every finite sequence f of elements of D such that $f=\langle a, b, c\rangle$ holds $f_{l 1}=\langle b, c\rangle$.
(16) For every non empty set D and for every finite sequence f of elements of D such that $f=\langle a, b, c\rangle$ holds $f_{12}=\langle c\rangle$.
(17) For every non empty set D and for every finite sequence f of elements of D such that len $f=0$ holds $\operatorname{Rev}(f)=f$.
(18) Let D be a non empty set, r be a finite sequence of elements of D, and i be a natural number. If $i \leq \operatorname{len} r$, then $\operatorname{Rev}\left(r_{l i}\right)=\operatorname{Rev}(r) \upharpoonright\left(\operatorname{len} r-^{\prime} i\right)$.
(19) Let D be a non empty set and f, C_{1} be finite sequences of elements of D. If C_{1} is not a substring of f and C_{1} separates uniquely, then $\operatorname{instr}\left(1, f{ }^{\frown}\right.$ $\left.C_{1}\right)=\operatorname{len} f+1$.
(20) For every non empty set D and for every finite sequence f of elements of D holds every finite sequence f, g of elements of D is a preposition of $\left(f^{\frown} g\right)_{l \operatorname{len} f}$.
(21) Let D be a non empty set and f, C_{1} be finite sequences of elements of D. Suppose C_{1} is not a substring of f and C_{1} separates uniquely. Then $f \frown C_{1}$ is terminated by C_{1}.
Let D be a set. We introduce file of D as a synonym of finite sequence of elements of D.

Let D be a non empty set and let r, f, C_{1} be files of D. We say that r is a record of f and C_{1} if and only if:
(Def. 1) $\quad C_{1}{ }^{\wedge} r$ is a substring of $\operatorname{addcr}\left(f, C_{1}\right)$ or r is a preposition of $\operatorname{addcr}\left(f, C_{1}\right)$ but r is terminated by C_{1}.
The following propositions are true:
(22) For every non empty set D and for every finite sequence r of elements of D holds ovlpart $\left(\varepsilon_{D}, r\right)=\varepsilon_{D}$ and ovlpart $\left(r, \varepsilon_{D}\right)=\varepsilon_{D}$.
(23) For every non empty set D holds every finite sequence C_{1} of elements of D is a record of ε_{D} and C_{1}.
(24) Let D be a non empty set, a, b be sets, and f, r, C_{1} be files of D. Suppose $a \neq b$ and $D=\{a, b\}$ and $C_{1}=\langle b\rangle$ and $f=\langle b, a, b\rangle$ and $r=\langle a$, $b\rangle$. Then C_{1} is a record of f and C_{1} and r is a record of f and C_{1}.
(25) For every non empty set D and for all files f, C_{1} of D holds f is a preposition of $f^{\wedge} C_{1}$.
(26) For every non empty set D and for all files f, C_{1} of D holds f is a preposition of $\operatorname{addcr}\left(f, C_{1}\right)$.
(27) For every non empty set D and for all files r, C_{1} of D such that C_{1} is a postposition of r holds $0 \leq \operatorname{len} r-\operatorname{len} C_{1}$.
(28) For every non empty set D and for all files C_{1}, r of D such that C_{1} is a postposition of r holds $r=\operatorname{addcr}\left(r, C_{1}\right)$.
(29) For every non empty set D and for all files C_{1}, r of D such that r is terminated by C_{1} holds $r=\operatorname{addcr}\left(r, C_{1}\right)$.
(30) For every non empty set D and for all files f, g of D such that f is terminated by g holds len $g \leq \operatorname{len} f$.
(31) For every non empty set D and for all files f, C_{1} of D holds len $\operatorname{addcr}\left(f, C_{1}\right) \geq \operatorname{len} f$ and len $\operatorname{addcr}\left(f, C_{1}\right) \geq \operatorname{len} C_{1}$.
(32) For every non empty set D and for all finite sequences f, g of elements of D holds $g=(\operatorname{ovlpart}(f, g))^{\wedge} \operatorname{ovlrdiff}(f, g)$.
(33) For every non empty set D and for all finite sequences f, g of elements of D holds ovlcon $(f, g)=(\operatorname{ovlldiff}(f, g))^{\wedge} g$.
(34) For every non empty set D and for all files C_{1}, r of D holds $\operatorname{addcr}\left(r, C_{1}\right)=$ (ovlldiff $\left.\left(r, C_{1}\right)\right)^{\wedge} C_{1}$.
(35) Let D be a non empty set and r_{1}, r_{2}, f be files of D. If $f=r_{1}{ }^{\wedge} r_{2}$, then r_{1} is a substring of f and r_{2} is a substring of f.
(36) Let D be a non empty set and r_{1}, r_{2}, r_{3}, f be files of D. Suppose $f=r_{1} \wedge r_{2} \wedge r_{3}$. Then r_{1} is a substring of f and r_{2} is a substring of f and r_{3} is a substring of f.
(37) Let D be a non empty set and C_{1}, r_{1}, r_{2} be files of D. Suppose r_{1} is terminated by C_{1} and r_{2} is terminated by C_{1}. Then $C_{1}{ }^{\wedge} r_{2}$ is a substring
of $\operatorname{addcr}\left(r_{1}{ }^{\wedge} r_{2}, C_{1}\right)$.
(38) Let D be a non empty set, f, g be files of D, and n be a natural number. If $0<n$ and $g=\emptyset$, then $\operatorname{instr}(n, f)=n$.
(39) Let D be a non empty set, f, g be files of D, and n be a natural number. If $0<n$ and $n \leq \operatorname{len} f$, then $\operatorname{instr}(n, f) \leq \operatorname{len} f$.
(40) For every non empty set D and for every file f of D holds every file f, C_{1} of D is a substring of ovlcon $\left(f, C_{1}\right)$.
(41) For every non empty set D and for every file f of D holds every file f, C_{1} of D is a substring of $\operatorname{addcr}\left(f, C_{1}\right)$.
(42) Let D be a non empty set, f, g be finite sequences of elements of D, and n be a natural number. If g is a substring of $f\lceil n$ and len $g>0$ and len $g \leq n$, then g is a substring of f.
(43) For every non empty set D and for all files f, C_{1} of D holds there exists a file of D which is a record of f and C_{1}.
(44) For every non empty set D and for all files f, C_{1}, r of D such that r is a record of f and C_{1} holds r is a record of r and C_{1}.
(45) Let D be a non empty set and C_{1}, r_{1}, r_{2}, f be files of D. Suppose r_{1} is terminated by C_{1} and r_{2} is terminated by C_{1} and $f=r_{1}{ }^{\wedge} r_{2}$. Then r_{1} is a record of f and C_{1} and r_{2} is a record of f and C_{1}.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Bylinski. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[6] Hirofumi Fukura and Yatsuka Nakamura. Concatenation of finite sequences reducing overlapping part and an argument of separators of sequential files. Formalized Mathematics, 12(2):219-224, 2004.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[9] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[10] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

