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The papers [11], [13], [14], [1], [8], [10], [2], [4], [7], [5], [6], [9], [15], [3], and [12]

provide the notation and terminology for this paper.

For simplicity, we use the following convention: x, a denote real numbers, n

denotes a natural number, Z denotes an open subset of R, and f , f1, f2 denote

partial functions from R to R.

One can prove the following propositions:

(1) If a > 0, then exp(x · log
e
a) = ax

R
.

(2) If a > 0, then exp(−x · log
e
a) = a−x

R
.

(3) Suppose Z ⊆ dom(f1 − f2) and for every x such that x ∈ Z holds

f1(x) = a2 and f2 = 2
Z
. Then f1 − f2 is differentiable on Z and for every

x such that x ∈ Z holds (f1 − f2)
′

↾Z(x) = −2 · x.

(4) Suppose Z ⊆ dom(f1+f2

f1−f2
) and f2 = 2

Z
and for every x such that x ∈ Z

holds f1(x) = a2 and (f1 − f2)(x) 6= 0. Then f1+f2

f1−f2
is differentiable on Z

and for every x such that x ∈ Z holds (f1+f2

f1−f2
)′↾Z(x) = 4·a2

·x
(a2

−x2)2
.
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(5) Suppose Z ⊆ dom f and f = log (e) · f1+f2

f1−f2
and f2 = 2

Z
and for every x

such that x ∈ Z holds f1(x) = a2 and (f1−f2)(x) > 0 and a 6= 0. Then f is

differentiable on Z and for every x such that x ∈ Z holds f ′

↾Z(x) = 4·a2
·x

a4
−x4 .

(6) Suppose Z ⊆ dom( 1
4·a2 f) and f = log (e) · f1+f2

f1−f2
and f2 = 2

Z
and for

every x such that x ∈ Z holds f1(x) = a2 and (f1 − f2)(x) > 0 and a 6= 0.

Then 1
4·a2 f is differentiable on Z and for every x such that x ∈ Z holds

( 1
4·a2 f)′↾Z(x) = x

a4
−x4 .

(7) Suppose Z ⊆ dom( f1

f2+f1
) and f1 = 2

Z
and for every x such that x ∈ Z

holds f2(x) = 1 and x 6= 0. Then f1

f2+f1
is differentiable on Z and for every

x such that x ∈ Z holds ( f1

f2+f1
)′↾Z(x) = 2·x

(1+x2)2
.

(8) Suppose Z ⊆ dom(1
2 f) and f = log (e) · f1

f2+f1
and f1 = 2

Z
and for every

x such that x ∈ Z holds f2(x) = 1 and x 6= 0. Then 1
2 f is differentiable

on Z and for every x such that x ∈ Z holds (1
2 f)′↾Z(x) = 1

x·(1+x2)
.

(9) Suppose Z ⊆ dom(log (e) · n
Z
) and for every x such that x ∈ Z holds

x > 0. Then log (e) · n
Z

is differentiable on Z and for every x such that

x ∈ Z holds (log (e) · n
Z
)′↾Z(x) = n

x
.

(10) Suppose Z ⊆ dom( 1
f2

+ log (e) · f1

f2
) and for every x such that x ∈ Z

holds f2(x) = x and f2(x) > 0 and f1(x) = x − 1 and f1(x) > 0. Then
1
f2

+ log (e) · f1

f2
is differentiable on Z and for every x such that x ∈ Z

holds ( 1
f2

+ log (e) · f1

f2
)′↾Z(x) = 1

x2
·(x−1)

.

(11) Suppose Z ⊆ dom(exp ·f) and for every x such that x ∈ Z holds f(x) =

x · log
e
a and a > 0. Then exp ·f is differentiable on Z and for every x such

that x ∈ Z holds (exp ·f)′↾Z(x) = (ax
R
) · log

e
a.

(12) Suppose Z ⊆ dom( 1
log

e
a

((exp ·f1) f2)) and for every x such that x ∈ Z

holds f1(x) = x · log
e
a and f2(x) = x − 1

log
e

a
and a > 0 and a 6= 1. Then

1
log

e
a

((exp ·f1) f2) is differentiable on Z and for every x such that x ∈ Z

holds ( 1
log

e
a

((exp ·f1) f2))
′

↾Z(x) = x · ax
R
.

(13) Suppose Z ⊆ dom( 1
1+log

e
a

((exp ·f) exp)) and for every x such that

x ∈ Z holds f(x) = x · log
e
a and a > 0 and a 6= 1

e
. Then

1
1+log

e
a

((exp ·f) exp) is differentiable on Z and for every x such that x ∈ Z

holds ( 1
1+log

e
a

((exp ·f) exp))′↾Z(x) = (ax
R
) · exp(x).

(14) Suppose Z ⊆ dom(exp ·f) and for every x such that x ∈ Z holds f(x) =

−x. Then exp ·f is differentiable on Z and for every x such that x ∈ Z

holds (exp ·f)′↾Z(x) = −exp(−x).

(15) Suppose Z ⊆ dom(f1 (exp ·f2)) and for every x such that x ∈ Z holds

f1(x) = −x − 1 and f2(x) = −x. Then f1 (exp ·f2) is differentiable on Z

and for every x such that x ∈ Z holds (f1 (exp ·f2))
′

↾Z(x) = x
exp x

.
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(16) Suppose Z ⊆ dom(−exp ·f) and for every x such that x ∈ Z holds

f(x) = −x · log
e
a and a > 0. Then −exp ·f is differentiable on Z and for

every x such that x ∈ Z holds (−exp ·f)′↾Z(x) = (a−x
R

) · log
e
a.

(17) Suppose Z ⊆ dom( 1
log

e
a

((−exp ·f1) f2)) and for every x such that x ∈ Z

holds f1(x) = −x · log
e
a and f2(x) = x + 1

log
e

a
and a > 0 and a 6= 1.

Then 1
log

e
a

((−exp ·f1) f2) is differentiable on Z and for every x such that

x ∈ Z holds ( 1
log

e
a

((−exp ·f1) f2))
′

↾Z(x) = x
ax

R

.

(18) Suppose Z ⊆ dom( 1
log

e
a−1

exp ·f
exp ) and for every x such that x ∈ Z holds

f(x) = x · log
e
a and a > 0 and a 6= e. Then 1

log
e

a−1
exp ·f
exp is differentiable

on Z and for every x such that x ∈ Z holds ( 1
log

e
a−1

exp ·f
exp )′↾Z(x) =

ax

R

exp(x) .

(19) Suppose Z ⊆ dom( 1
1−log

e
a

exp
exp ·f

) and for every x such that x ∈ Z holds

f(x) = x · log
e
a and a > 0 and a 6= e. Then 1

1−log
e

a
exp

exp ·f
is differentiable

on Z and for every x such that x ∈ Z holds ( 1
1−log

e
a

exp
exp ·f

)′↾Z(x) = exp(x)
ax

R

.

(20) Suppose Z ⊆ dom(log (e) · (exp+f)) and for every x such that x ∈ Z

holds f(x) = 1. Then log (e) · (exp+f) is differentiable on Z and for every

x such that x ∈ Z holds (log (e) · (exp+f))′↾Z(x) = exp(x)
exp(x)+1 .

(21) Suppose Z ⊆ dom(log (e) · (exp−f)) and for every x such that x ∈ Z

holds f(x) = 1 and (exp−f)(x) > 0. Then log (e) · (exp−f) is dif-

ferentiable on Z and for every x such that x ∈ Z holds (log (e) ·

(exp−f))′↾Z(x) = exp(x)
exp(x)−1 .

(22) Suppose Z ⊆ dom(−log (e) · (f − exp)) and for every x such that

x ∈ Z holds f(x) = 1 and (f − exp)(x) > 0. Then −log (e) · (f − exp)

is differentiable on Z and for every x such that x ∈ Z holds

(−log (e) · (f − exp))′↾Z(x) = exp(x)
1−exp(x) .

(23) Suppose Z ⊆ dom((2
Z
) · exp+f) and for every x such that x ∈ Z holds

f(x) = 1. Then (2
Z
) · exp+f is differentiable on Z and for every x such

that x ∈ Z holds ((2
Z
) · exp+f)′↾Z(x) = 2 · exp(2 · x).

(24) Suppose Z ⊆ dom(1
2 (log (e) · f)) and f = (2

Z
) · exp+f1 and for every x

such that x ∈ Z holds f1(x) = 1. Then 1
2 (log (e) ·f) is differentiable on Z

and for every x such that x ∈ Z holds (1
2 (log (e)·f))′↾Z(x) = exp x

exp x+exp(−x) .

(25) Suppose Z ⊆ dom((2
Z
) · exp−f) and for every x such that x ∈ Z holds

f(x) = 1. Then (2
Z
) · exp−f is differentiable on Z and for every x such

that x ∈ Z holds ((2
Z
) · exp−f)′↾Z(x) = 2 · exp(2 · x).

(26) Suppose Z ⊆ dom(1
2 (log (e) · f)) and f = (2

Z
) · exp−f1 and for every

x such that x ∈ Z holds f1(x) = 1 and f(x) > 0. Then 1
2 (log (e) · f)

is differentiable on Z and for every x such that x ∈ Z holds (1
2 (log (e) ·

f))′↾Z(x) = exp x
exp x−exp(−x) .
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(27) Suppose Z ⊆ dom((2
Z
) · (exp−f)) and for every x such that x ∈ Z holds

f(x) = 1. Then (2
Z
) · (exp−f) is differentiable on Z and for every x such

that x ∈ Z holds ((2
Z
) · (exp−f))′↾Z(x) = 2 · exp(x) · (exp(x) − 1).

(28) Suppose Z ⊆ dom f and f = log (e) ·
(2
Z
)·(exp−f1)

exp and for every x such

that x ∈ Z holds f1(x) = 1 and (exp−f1)(x) > 0. Then f is differentiable

on Z and for every x such that x ∈ Z holds f ′

↾Z(x) = exp(x)+1
exp(x)−1 .

(29) Suppose Z ⊆ dom((2
Z
) · (exp+f)) and for every x such that x ∈ Z holds

f(x) = 1. Then (2
Z
) · (exp+f) is differentiable on Z and for every x such

that x ∈ Z holds ((2
Z
) · (exp+f))′↾Z(x) = 2 · exp(x) · (exp(x) + 1).

(30) Suppose Z ⊆ dom f and f = log (e) ·
(2
Z
)·(exp +f1)

exp and for every x such

that x ∈ Z holds f1(x) = 1. Then f is differentiable on Z and for every x

such that x ∈ Z holds f ′

↾Z(x) = exp(x)−1
exp(x)+1 .

(31) Suppose Z ⊆ dom((2
Z
) · (f − exp)) and for every x such that x ∈ Z holds

f(x) = 1. Then (2
Z
) · (f − exp) is differentiable on Z and for every x such

that x ∈ Z holds ((2
Z
) · (f − exp))′↾Z(x) = −2 · exp(x) · (1 − exp(x)).

(32) Suppose Z ⊆ dom f and f = log (e) · exp
(2
Z
)·(f1−exp)

and for every x such

that x ∈ Z holds f1(x) = 1 and (f1 − exp)(x) > 0. Then f is differentiable

on Z and for every x such that x ∈ Z holds f ′

↾Z(x) = 1+exp(x)
1−exp(x) .

(33) Suppose Z ⊆ dom f and f = log (e) · exp
(2
Z
)·(f1+exp)

and for every x such

that x ∈ Z holds f1(x) = 1. Then f is differentiable on Z and for every x

such that x ∈ Z holds f ′

↾Z(x) = 1−exp(x)
1+exp(x) .

(34) Suppose Z ⊆ dom(log (e) ·f) and f = exp+exp ·f1 and for every x such

that x ∈ Z holds f1(x) = −x. Then log (e) · f is differentiable on Z and

for every x such that x ∈ Z holds (log (e) · f)′↾Z(x) = exp x−exp(−x)
exp x+exp(−x) .

(35) Suppose Z ⊆ dom(log (e) ·f) and f = exp− exp ·f1 and for every x such

that x ∈ Z holds f1(x) = −x and f(x) > 0. Then log (e) · f is differen-

tiable on Z and for every x such that x ∈ Z holds (log (e) · f)′↾Z(x) =
exp x+exp(−x)
exp x−exp(−x) .

(36) Suppose Z ⊆ dom(2
3 ((

3

2

R
) · (f + exp))) and for every x such that x ∈ Z

holds f(x) = 1. Then 2
3 ((

3

2

R
) ·(f +exp)) is differentiable on Z and for every

x such that x ∈ Z holds (2
3 ((

3

2

R
) · (f +exp)))′↾Z(x) = exp(x) · (1+exp(x))

1

2

R
.

(37) Suppose Z ⊆ dom( 2
3·log

e
a

((
3

2

R
) · (f + exp ·f1))) and for every x such that

x ∈ Z holds f(x) = 1 and f1(x) = x · log
e
a and a > 0 and a 6= 1. Then

2
3·log

e
a

((
3

2

R
) · (f + exp ·f1)) is differentiable on Z and for every x such that

x ∈ Z holds ( 2
3·log

e
a

((
3

2

R
) · (f + exp ·f1)))

′

↾Z(x) = (ax
R
) · (1 + ax

R
)

1

2

R
.
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(38) Suppose Z ⊆ dom((−1
2) ((the function cos) ·f)) and for every x such

that x ∈ Z holds f(x) = 2 · x. Then

(i) (−1
2) ((the function cos) ·f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((−1
2) ((the function cos) ·f))′↾Z(x) =

sin(2 · x).

(39) Suppose that

(i) Z ⊆ dom(2 ((
1

2

R
) · (f − the function cos))), and

(ii) for every x such that x ∈ Z holds f(x) = 1 and (the function sin)(x) > 0

and (the function cos)(x) < 1 and (the function cos)(x) > −1.

Then

(iii) 2 ((
1

2

R
) · (f − the function cos)) is differentiable on Z, and

(iv) for every x such that x ∈ Z holds (2 ((
1

2

R
)·(f−the function cos)))′↾Z(x) =

(1 + (the function cos)(x))
1

2

R
.

(40) Suppose that

(i) Z ⊆ dom((−2) ((
1

2

R
) · (f + the function cos))), and

(ii) for every x such that x ∈ Z holds f(x) = 1 and (the function sin)(x) > 0

and (the function cos)(x) < 1 and (the function cos)(x) > −1.

Then

(iii) (−2) ((
1

2

R
) · (f + the function cos)) is differentiable on Z, and

(iv) for every x such that x ∈ Z holds ((−2) ((
1

2

R
) · (f + the function

cos)))′↾Z(x) = (1 − (the function cos)(x))
1

2

R
.

(41) Suppose Z ⊆ dom(1
2 (log (e) · f)) and f = f1 + 2 (the function sin) and

for every x such that x ∈ Z holds f1(x) = 1 and f(x) > 0. Then

(i) 1
2 (log (e) · f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (1
2 (log (e) · f))′↾Z(x) =

(the function cos)(x)
1+2·(the function sin)(x) .

(42) Suppose Z ⊆ dom((−1
2) (log (e) · f)) and f = f1 + 2 (the function cos)

and for every x such that x ∈ Z holds f1(x) = 1 and f(x) > 0. Then

(i) (−1
2) (log (e) · f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((−1
2) (log (e) · f))′↾Z(x) =

(the function sin)(x)
1+2·(the function cos)(x) .

(43) Suppose Z ⊆ dom( 1
4·a ((the function sin) ·f)) and for every x such that

x ∈ Z holds f(x) = 2 · a · x and a 6= 0. Then

(i) 1
4·a ((the function sin) ·f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
4·a ((the function sin) ·f))′↾Z(x) =

1
2 · cos(2 · a · x).

(44) Suppose Z ⊆ dom(f1 −
1

4·a ((the function sin) ·f)) and for every x such

that x ∈ Z holds f1(x) = x
2 and f(x) = 2 · a · x and a 6= 0. Then
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(i) f1 −
1

4·a ((the function sin) ·f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f1−
1

4·a ((the function sin) ·f))′↾Z(x) =

(sin(a · x))2.

(45) Suppose Z ⊆ dom(f1 + 1
4·a ((the function sin) ·f)) and for every x such

that x ∈ Z holds f1(x) = x
2 and f(x) = 2 · a · x and a 6= 0. Then

(i) f1 + 1
4·a ((the function sin) ·f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f1+
1

4·a ((the function sin) ·f))′↾Z(x) =

(cos(a · x))2.

(46) Suppose Z ⊆ dom( 1
n

((n
Z
) · (the function cos))) and n > 0. Then

(i) 1
n

((n
Z
) · (the function cos)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
n

((n
Z
) · (the function cos)))′↾Z(x) =

−((the function cos)(x)n−1
Z

) · (the function sin)(x).

(47) Suppose Z ⊆ dom(1
3 ((3

Z
) · (the function cos))−the function cos) and

n > 0. Then

(i) 1
3 ((3

Z
) · (the function cos))−the function cos is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (1
3 ((3

Z
) · (the function cos))−the

function cos)′↾Z(x) = (the function sin)(x)3.

(48) Suppose Z ⊆ dom((the function sin)−1
3 ((3

Z
) · (the function sin))) and

n > 0. Then

(i) (the function sin)−1
3 ((3

Z
) · (the function sin)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin)−1
3 ((3

Z
) · (the

function sin)))′↾Z(x) = (the function cos)(x)3.

(49) Suppose Z ⊆ dom((the function sin) · log (e)). Then

(i) (the function sin) · log (e) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) · log (e))′↾Z(x) =
(the function cos)(log

e
x)

x
.

(50) Suppose Z ⊆ dom(−(the function cos) · log (e)). Then

(i) −(the function cos) · log (e) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−(the function cos) · log (e))′↾Z(x) =
(the function sin)(log

e
x)

x
.
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