Several Differentiable Formulas of Special Functions. Part II

Yan Zhang
Qingdao University of Science and Technology
China

Bo Li
Qingdao University of Science
and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Summary. In this article, we give several other differentiable formulas of special functions.

MML identifier: FDIFF_6, version: 7.6.01 4.50.934

The papers [11], [13], [14], [1], [8], [10], [2], [4], [7], [5], [6], [9], [15], [3], and [12] provide the notation and terminology for this paper.

For simplicity, we use the following convention: x, a denote real numbers, n denotes a natural number, Z denotes an open subset of \mathbb{R}, and f, f_{1}, f_{2} denote partial functions from \mathbb{R} to \mathbb{R}.

One can prove the following propositions:
(1) If $a>0$, then $\exp \left(x \cdot \log _{e} a\right)=a_{\mathbb{R}}^{x}$.
(2) If $a>0$, then $\exp \left(-x \cdot \log _{e} a\right)=a_{\mathbb{R}}^{-x}$.
(3) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}-f_{2}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=a^{\mathbf{2}}$ and $f_{2}=\frac{2}{\mathbb{Z}}$. Then $f_{1}-f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}-f_{2}\right)^{\prime}{ }_{Z}(x)=-2 \cdot x$.
(4) Suppose $Z \subseteq \operatorname{dom}\left(\frac{f_{1}+f_{2}}{f_{1}-f_{2}}\right)$ and $f_{2}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a^{2}$ and $\left(f_{1}-f_{2}\right)(x) \neq 0$. Then $\frac{f_{1}+f_{2}}{f_{1}-f_{2}}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{f_{1}+f_{2}}{f_{1}-f_{2}}\right)_{Y}^{\prime}(x)=\frac{4 \cdot a^{2} \cdot x}{\left(a^{2}-x^{2}\right)^{2}}$.
(5) Suppose $Z \subseteq \operatorname{dom} f$ and $f=\log _{-}(e) \cdot \frac{f_{1}+f_{2}}{f_{1}-f_{2}}$ and $f_{2}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a^{2}$ and $\left(f_{1}-f_{2}\right)(x)>0$ and $a \neq 0$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\mid Z}^{\prime}(x)=\frac{4 \cdot a^{2} \cdot x}{a^{4}-x^{4}}$.
(6) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{4 \cdot a^{2}} f\right)$ and $f=\log _{-}(e) \cdot \frac{f_{1}+f_{2}}{f_{1}-f_{2}}$ and $f_{2}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a^{2}$ and $\left(f_{1}-f_{2}\right)(x)>0$ and $a \neq 0$. Then $\frac{1}{4 \cdot a^{2}} f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{4 \cdot a^{2}} f\right)^{\prime}{ }_{Z}(x)=\frac{x}{a^{4}-x^{4}}$.
(7) Suppose $Z \subseteq \operatorname{dom}\left(\frac{f_{1}}{f_{2}+f_{1}}\right)$ and $f_{1}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{2}(x)=1$ and $x \neq 0$. Then $\frac{f_{1}}{f_{2}+f_{1}}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{f_{1}}{f_{2}+f_{1}}\right)^{\prime}{ }_{Y}(x)=\frac{2 \cdot x}{\left(1+x^{2}\right)^{2}}$.
(8) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2} f\right)$ and $f=\log _{-}(e) \cdot \frac{f_{1}}{f_{2}+f_{1}}$ and $f_{1}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{2}(x)=1$ and $x \neq 0$. Then $\frac{1}{2} f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{2} f\right)^{\prime}{ }_{Z}(x)=\frac{1}{x \cdot\left(1+x^{2}\right)}$.
(9) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot{ }_{\mathbb{Z}}^{n}\right)$ and for every x such that $x \in Z$ holds $x>0$. Then $\log _{-}(e) \cdot{ }_{\mathbb{Z}}^{n}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot{ }_{\mathbb{Z}}^{n}\right)_{\mid Z}^{\prime}(x)=\frac{n}{x}$.
(10) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{f_{2}}+\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}\right)$ and for every x such that $x \in Z$ holds $f_{2}(x)=x$ and $f_{2}(x)>0$ and $f_{1}(x)=x-1$ and $f_{1}(x)>0$. Then $\frac{1}{f_{2}}+\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{f_{2}}+\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}\right)_{Y Z}^{\prime}(x)=\frac{1}{x^{2} \cdot(x-1)}$.
(11) Suppose $Z \subseteq \operatorname{dom}(\exp \cdot f)$ and for every x such that $x \in Z$ holds $f(x)=$ $x \cdot \log _{e} a$ and $a>0$. Then exp $\cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $(\exp \cdot f)^{\prime}{ }_{Z}(x)=\left(a_{\mathbb{R}}^{x}\right) \cdot \log _{e} a$.
(12) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{\log _{e} a}\left(\left(\exp \cdot f_{1}\right) f_{2}\right)\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=x \cdot \log _{e} a$ and $f_{2}(x)=x-\frac{1}{\log _{e} a}$ and $a>0$ and $a \neq 1$. Then $\frac{1}{\log _{e} a}\left(\left(\exp \cdot f_{1}\right) f_{2}\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{\log _{e} a}\left(\left(\exp \cdot f_{1}\right) f_{2}\right)\right)^{\prime} Z(x)=x \cdot a_{\mathbb{R}}^{x}$.
(13) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{1+\log _{e} a}((\exp \cdot f) \exp)\right)$ and for every x such that $x \in Z$ holds $f(x)=x \cdot \log _{e} a$ and $a>0$ and $a \neq \frac{1}{e}$. Then $\frac{1}{1+\log _{e} a}((\exp \cdot f) \exp)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{1+\log _{e} a}((\exp \cdot f) \exp)\right)^{\dagger}(x)=\left(a_{\mathbb{R}}^{x}\right) \cdot \exp (x)$.
(14) Suppose $Z \subseteq \operatorname{dom}(\exp \cdot f)$ and for every x such that $x \in Z$ holds $f(x)=$ $-x$. Then $\exp \cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $(\exp \cdot f)_{\mid Z}^{\prime}(x)=-\exp (-x)$.
(15) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}\left(\exp \cdot f_{2}\right)\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=-x-1$ and $f_{2}(x)=-x$. Then $f_{1}\left(\exp \cdot f_{2}\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}\left(\exp \cdot f_{2}\right)\right)_{\mid Z}^{\prime}(x)=\frac{x}{\exp x}$.
(16) Suppose $Z \subseteq \operatorname{dom}(-\exp \cdot f)$ and for every x such that $x \in Z$ holds $f(x)=-x \cdot \log _{e} a$ and $a>0$. Then $-\exp \cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $(-\exp \cdot f)^{\prime}(x)=\left(a_{\mathbb{R}}^{-x}\right) \cdot \log _{e} a$.
(17) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{\log _{e} a}\left(\left(-\exp \cdot f_{1}\right) f_{2}\right)\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=-x \cdot \log _{e} a$ and $f_{2}(x)=x+\frac{1}{\log _{e} a}$ and $a>0$ and $a \neq 1$. Then $\frac{1}{\log _{e} a}\left(\left(-\exp \cdot f_{1}\right) f_{2}\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{\log _{e} a}\left(\left(-\exp \cdot f_{1}\right) f_{2}\right)\right)^{\prime} Z(x)=\frac{x}{a_{\mathbb{R}}^{x}}$.
(18) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{\log _{e} a-1} \frac{\exp \cdot f}{\exp }\right)$ and for every x such that $x \in Z$ holds $f(x)=x \cdot \log _{e} a$ and $a>0$ and $a \neq e$. Then $\frac{1}{\log _{e} a-1} \frac{\exp \cdot f}{\exp }$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{\log _{e} a-1} \frac{\exp \cdot f}{\exp }\right)^{\prime} Z(x)=\frac{a_{\mathbb{R}}^{x}}{\exp (x)}$.
(19) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{1-\log _{e} a} \frac{\exp }{\exp \cdot f}\right)$ and for every x such that $x \in Z$ holds $f(x)=x \cdot \log _{e} a$ and $a>0$ and $a \neq e$. Then $\frac{1}{1-\log _{e} a} \frac{\exp }{\exp \cdot f}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{1-\log _{e} a} \frac{\exp }{\exp \cdot f}\right)^{\prime}{ }_{Z}(x)=\frac{\exp (x)}{a_{\mathbb{R}}^{x}}$.
(20) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot(\exp +f)\right)$ and for every x such that $x \in Z$ holds $f(x)=1$. Then $\log _{-}(e) \cdot(\exp +f)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot(\exp +f)\right)_{\mid Z}^{\prime}(x)=\frac{\exp (x)}{\exp (x)+1}$.
(21) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot(\exp -f)\right)$ and for every x such that $x \in Z$ holds $f(x)=1$ and $(\exp -f)(x)>0$. Then $\log _{-}(e) \cdot(\exp -f)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e)\right.$. $(\exp -f))_{{ }_{Z}}^{\prime}(x)=\frac{\exp (x)}{\exp (x)-1}$.
(22) Suppose $Z \subseteq \operatorname{dom}\left(-\log _{-}(e) \cdot(f-\exp)\right)$ and for every x such that $x \in Z$ holds $f(x)=1$ and $(f-\exp)(x)>0$. Then $-\log _{-}(e) \cdot(f-\exp)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(-\log _{-}(e) \cdot(f-\exp)\right)_{\mid Z}^{\prime}(x)=\frac{\exp (x)}{1-\exp (x)}$.
(23) Suppose $Z \subseteq \operatorname{dom}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot \exp +f\right)$ and for every x such that $x \in Z$ holds $f(x)=1$. Then $(\underset{\mathbb{Z}}{2}) \cdot \exp +f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot \exp +f\right)^{\prime}{ }_{Z}(x)=2 \cdot \exp (2 \cdot x)$.
(24) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2}\left(\log _{-}(e) \cdot f\right)\right)$ and $f=\left({ }_{\mathbb{Z}}^{2}\right) \cdot \exp +f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$. Then $\frac{1}{2}\left(\log _{-}(e) \cdot f\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{2}\left(\log _{-}(e) \cdot f\right)\right)_{\mid Z}^{\prime}(x)=\frac{\exp x}{\exp x+\exp (-x)}$.
(25) Suppose $Z \subseteq \operatorname{dom}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot \exp -f\right)$ and for every x such that $x \in Z$ holds $f(x)=1$. Then $\binom{2}{\mathbb{Z}} \cdot \exp -f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot \exp -f\right)^{\prime}{ }_{Z}(x)=2 \cdot \exp (2 \cdot x)$.
(26) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2}\left(\log _{-}(e) \cdot f\right)\right)$ and $f=(\underset{\mathbb{Z}}{2}) \cdot \exp -f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f(x)>0$. Then $\frac{1}{2}\left(\log _{-}(e) \cdot f\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{2}\left(\log _{-}(e)\right.\right.$. $f))_{{ }_{Z}}^{\prime}(x)=\frac{\exp x}{\exp x-\exp (-x)}$.
(27) Suppose $Z \subseteq \operatorname{dom}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot(\exp -f)\right)$ and for every x such that $x \in Z$ holds $f(x)=1$. Then $\left(\frac{2}{\mathbb{Z}}\right) \cdot(\exp -f)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(_{\mathbb{Z}}^{2}\right) \cdot(\exp -f)\right)_{Y}^{\prime}(x)=2 \cdot \exp (x) \cdot(\exp (x)-1)$.
(28) Suppose $Z \subseteq \operatorname{dom} f$ and $f=\log _{-}(e) \cdot \frac{\left(\frac{2}{2}\right) \cdot\left(\exp -f_{1}\right)}{\exp }$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $\left(\exp -f_{1}\right)(x)>0$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\lceil Z}^{\prime}(x)=\frac{\exp (x)+1}{\exp (x)-1}$.
(29) Suppose $Z \subseteq \operatorname{dom}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot(\exp +f)\right)$ and for every x such that $x \in Z$ holds $f(x)=1$. Then $\left(\frac{2}{\mathbb{Z}}\right) \cdot(\exp +f)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(_{\mathbb{Z}}^{2}\right) \cdot(\exp +f)\right)_{Y}^{\prime}(x)=2 \cdot \exp (x) \cdot(\exp (x)+1)$.
(30) Suppose $Z \subseteq \operatorname{dom} f$ and $f=\log _{-}(e) \cdot \frac{\left(\frac{2}{2}\right) \cdot\left(\exp +f_{1}\right)}{\exp }$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\lceil Z}^{\prime}(x)=\frac{\exp (x)-1}{\exp (x)+1}$.
(31) Suppose $Z \subseteq \operatorname{dom}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot(f-\exp)\right)$ and for every x such that $x \in Z$ holds $f(x)=1$. Then $\left(\frac{2}{\mathbb{Z}}\right) \cdot(f-\exp)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(_{\mathbb{Z}}^{2}\right) \cdot(f-\exp)\right)^{\prime}{ }_{Z}(x)=-2 \cdot \exp (x) \cdot(1-\exp (x))$.
(32) Suppose $Z \subseteq \operatorname{dom} f$ and $f=\log _{-}(e) \cdot \frac{\exp }{\left(\frac{2}{2}\right) \cdot\left(f_{1}-\exp \right)}$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $\left(f_{1}-\exp \right)(x)>0$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\mid Z}^{\prime}(x)=\frac{1+\exp (x)}{1-\exp (x)}$.
(33) Suppose $Z \subseteq \operatorname{dom} f$ and $f=\log _{-}(e) \cdot \frac{\exp }{\left(\frac{2}{2}\right) \cdot\left(f_{1}+\exp \right)}$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\mid Z}^{\prime}(x)=\frac{1-\exp (x)}{1+\exp (x)}$.
(34) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot f\right)$ and $f=\exp +\exp \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=-x$. Then $\log _{-}(e) \cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot f\right)_{\mid Z}^{\prime}(x)=\frac{\exp x-\exp (-x)}{\exp x+\exp (-x)}$.
(35) Suppose $Z \subseteq \operatorname{dom}(\log -(e) \cdot f)$ and $f=\exp -\exp \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=-x$ and $f(x)>0$. Then $\log _{-}(e) \cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot f\right)_{\mid}^{\prime}(x)=$ $\frac{\exp x+\exp (-x)}{\exp x-\exp (-x)}$.
(36) Suppose $Z \subseteq \operatorname{dom}\left(\frac{2}{3}\left(\binom{\frac{3}{2}}{\mathbb{R}_{3}} \cdot(f+\exp)\right)\right)$ and for every x such that $x \in Z$ holds $f(x)=1$. Then $\frac{2}{3}\left(\binom{\frac{3}{2}}{\mathbb{R}} \cdot(f+\exp)\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{2}{3}\left(\left(_{\mathbb{R}}^{\frac{3}{2}}\right) \cdot(f+\exp)\right)\right)^{\prime} Z(x)=\exp (x) \cdot(1+\exp (x))_{\mathbb{R}}^{\frac{1}{2}}$.
(37) Suppose $\left.Z \subseteq \operatorname{dom}\left(\frac{2}{3 \cdot \log _{e} a}\binom{\frac{3}{2}}{\mathbb{R}} \cdot\left(f+\exp \cdot f_{1}\right)\right)\right)$ and for every x such that $x \in Z$ holds $f(x)=1$ and $f_{1}(x)=x \cdot \log _{e} a$ and $a>0$ and $a \neq 1$. Then $\frac{2}{3 \cdot \log _{e} a}\left(\binom{\frac{3}{2}}{\mathbb{R}} \cdot\left(f+\exp \cdot f_{1}\right)\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left.\left.\left(\frac{2}{3 \cdot \log _{e} a}\binom{\left(\frac{3}{2}\right.}{\mathbb{R}} \cdot\left(f+\exp \cdot f_{1}\right)\right)\right)_{\lceil Z}^{\prime}(x)=\left(a_{\mathbb{R}}^{x}\right) \cdot\left(1+a_{\mathbb{R}}^{x}\right)\right)_{\mathbb{R}}^{\frac{1}{2}}$.
(38) Suppose $Z \subseteq \operatorname{dom}\left(\left(-\frac{1}{2}\right)((\right.$ the function $\left.\cos) \cdot f)\right)$ and for every x such that $x \in Z$ holds $f(x)=2 \cdot x$. Then
(i) $\left(-\frac{1}{2}\right)(($ the function cos $) \cdot f)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(-\frac{1}{2}\right)((\text { the function cos }) \cdot f)\right)^{\prime}{ }_{Y}(x)=$ $\sin (2 \cdot x)$
(39) Suppose that
(i) $\quad Z \subseteq \operatorname{dom}\left(2\left(\left(_{\mathbb{R}}^{\frac{1}{2}}\right) \cdot(f-\right.\right.$ the function $\left.\left.\cos)\right)\right)$, and
(ii) for every x such that $x \in Z$ holds $f(x)=1$ and (the function $\sin)(x)>0$ and $($ the function $\cos)(x)<1$ and (the function $\cos)(x)>-1$.
Then
(iii) $\quad 2\left(\binom{\frac{1}{2}}{\mathbb{R}} \cdot(f-\right.$ the function $\left.\cos)\right)$ is differentiable on Z, and
(iv) for every x such that $x \in Z$ holds $\left(2\left(\binom{\frac{1}{2}}{\mathbb{R}} \cdot(f-\text { the function } \cos)\right)\right)^{\prime}{ }_{Z}^{\prime}(x)=$ $(1+(\text { the function } \cos)(x))_{\mathbb{R}}^{\frac{1}{2}}$.
(40) Suppose that
(i) $\quad Z \subseteq \operatorname{dom}\left((-2)\binom{\frac{1}{2}}{\mathbb{R}} \cdot(f+\right.$ the function cos $\left.\left.)\right)\right)$, and
(ii) for every x such that $x \in Z$ holds $f(x)=1$ and (the function $\sin)(x)>0$ and (the function $\cos)(x)<1$ and (the function $\cos)(x)>-1$.
Then
(iii) $\quad(-2)\left(\binom{\frac{1}{2}}{\mathbb{R}} \cdot(f+\right.$ the function cos $\left.)\right)$ is differentiable on Z, and
(iv) for every x such that $x \in Z$ holds $\left((-2)\left(\binom{\frac{1}{2}}{\mathbb{R}} \cdot(f+\right.\right.$ the function $\cos)))^{\prime}{ }_{Z}(x)=(1-(\text { the function } \cos)(x))_{\mathbb{R}}^{\frac{1}{2}}$.
(41) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2}\left(\log _{-}(e) \cdot f\right)\right)$ and $f=f_{1}+2$ (the function \sin) and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f(x)>0$. Then
(i) $\quad \frac{1}{2}\left(\log _{-}(e) \cdot f\right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{2}\left(\log _{-}(e) \cdot f\right)\right)_{\mid Z}^{\prime}(x)=$ $\frac{(\text { the function } \cos)(x)}{1+2 \cdot(\text { the function } \sin)(x)}$.
(42) Suppose $Z \subseteq \operatorname{dom}\left(\left(-\frac{1}{2}\right)\left(\log _{-}(e) \cdot f\right)\right)$ and $f=f_{1}+2$ (the function cos) and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f(x)>0$. Then
(i) $\quad\left(-\frac{1}{2}\right)\left(\log _{-}(e) \cdot f\right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(-\frac{1}{2}\right)\left(\log _{-}(e) \cdot f\right)\right)^{\prime}{ }_{Z}(x)=$ $\frac{(\text { the function } \sin)(x)}{1+2 \cdot(\text { the function } \cos)(x)}$.
(43) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{4 \cdot a}((\right.$ the function $\left.\sin) \cdot f)\right)$ and for every x such that $x \in Z$ holds $f(x)=2 \cdot a \cdot x$ and $a \neq 0$. Then
(i) $\frac{1}{4 \cdot a}(($ the function $\sin) \cdot f)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{4 \cdot a}((\text { the function } \sin) \cdot f)\right)^{\prime}{ }_{Y}(x)=$ $\frac{1}{2} \cdot \cos (2 \cdot a \cdot x)$.
(44) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}-\frac{1}{4 \cdot a}((\right.$ the function $\left.\sin) \cdot f)\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=\frac{x}{2}$ and $f(x)=2 \cdot a \cdot x$ and $a \neq 0$. Then
(i) $\quad f_{1}-\frac{1}{4 \cdot a}(($ the function $\sin) \cdot f)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(f_{1}-\frac{1}{4 \cdot a}((\text { the function } \sin) \cdot f)\right)^{\prime}{ }_{Z}(x)=$ $(\sin (a \cdot x))^{2}$.
(45) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+\frac{1}{4 \cdot a}((\right.$ the function $\left.\sin) \cdot f)\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=\frac{x}{2}$ and $f(x)=2 \cdot a \cdot x$ and $a \neq 0$. Then
(i) $\quad f_{1}+\frac{1}{4 \cdot a}(($ the function $\sin) \cdot f)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(f_{1}+\frac{1}{4 \cdot a}((\text { the function } \sin) \cdot f)\right)^{\prime}{ }_{Z}^{\prime}(x)=$ $(\cos (a \cdot x))^{2}$.
(46) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{n}\left(\left(_{\mathbb{Z}}^{n}\right) \cdot(\right.\right.$ the function cos $\left.\left.)\right)\right)$ and $n>0$. Then
(i) $\frac{1}{n}\left(\binom{n}{\mathbb{Z}} \cdot(\right.$ the function $\left.\cos)\right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{n}\left(\left({ }_{\mathbb{Z}}^{n}\right) \cdot(\text { the function } \cos)\right)\right)^{\prime}{ }_{Z}(x)=$ $-\left((\right.$ the function $\left.\cos)(x)_{\mathbb{Z}}^{n-1}\right) \cdot($ the function $\sin)(x)$.
(47) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{3}\left(\left({ }_{\mathbb{Z}}^{3}\right) \cdot(\right.\right.$ the function $\left.\cos)\right)$-the function $\left.\cos \right)$ and $n>0$. Then
(i) $\quad \frac{1}{3}\left(\left({ }_{\mathbb{Z}}^{3}\right) \cdot(\right.$ the function $\left.\cos)\right)$-the function cos is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{3}((\underset{\mathbb{Z}}{3}) \cdot(\right.$ the function $\cos))$-the function $\cos)^{\prime}{ }^{\prime}(x)=($ the function $\sin)(x)^{3}$.
(48) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function $\sin)-\frac{1}{3}\left(\binom{3}{\mathbb{Z}} \cdot(\right.$ the function $\left.\left.\sin)\right)\right)$ and $n>0$. Then
(i) $\quad($ the function $\sin)-\frac{1}{3}\left(\left({ }_{\mathbb{Z}}^{3}\right) \cdot(\right.$ the function $\left.\sin)\right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\sin)-\frac{1}{3}\left(\left({ }_{\mathbb{Z}}^{3}\right) \cdot(\right.$ the function $\sin)))_{\mid Z}^{\prime}(x)=($ the function $\cos)(x)^{3}$.
(49) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\sin) \cdot \log _{-}(e)\right)$. Then
(i) (the function $\sin) \cdot \log _{-}(e)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left((\text { the function } \sin) \cdot \log _{-}(e)\right)^{\prime}{ }_{Z}(x)=$ $\frac{(\text { the function } \cos)\left(\log _{e} x\right)}{x}$.
(50) Suppose $Z \subseteq \operatorname{dom}\left(-(\right.$ the function cos $\left.) \cdot \log _{-}(e)\right)$. Then
(i) $\quad-$ (the function $\cos) \cdot \log _{-}(e)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(-(\text { the function } \cos) \cdot \log _{-}(e)\right)^{\prime}{ }_{Y}(x)=$ $\frac{(\text { the function } \sin)\left(\log _{e} x\right)}{x}$.

References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathemat$i c s, 1(2): 269-272,1990$.
[5] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[6] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[7] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[8] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[9] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[10] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[15] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received November 23, 2005

