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The terminology and notation used in this paper are introduced in the following

papers: [13], [15], [16], [2], [4], [10], [12], [3], [1], [6], [9], [7], [8], [11], [17], [5],

and [14].

For simplicity, we use the following convention: x, a, b are real numbers,

n is a natural number, Z is an open subset of R, and f , f1, f2, g are partial

functions from R to R.

Next we state a number of propositions:

(1) Suppose Z ⊆ dom(f1

f2
) and for every x such that x ∈ Z holds f1(x) =

a + x and f2(x) = a−x and f2(x) 6= 0. Then f1

f2
is differentiable on Z and

for every x such that x ∈ Z holds (f1

f2
)′↾Z(x) = 2·a

(a−x)2
.

(2) Suppose Z ⊆ dom(f1

f2
) and for every x such that x ∈ Z holds f1(x) =

x− a and f2(x) = x + a and f2(x) 6= 0. Then f1

f2
is differentiable on Z and

for every x such that x ∈ Z holds (f1

f2
)′↾Z(x) = 2·a

(x+a)2
.
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(3) Suppose Z ⊆ dom(f1

f2
) and for every x such that x ∈ Z holds f1(x) =

x− a and f2(x) = x− b and f2(x) 6= 0. Then f1

f2
is differentiable on Z and

for every x such that x ∈ Z holds (f1

f2
)′↾Z(x) = a−b

(x−b)2
.

(4) Suppose Z ⊆ dom f and for every x such that x ∈ Z holds f(x) = x and

f(x) 6= 0. Then 1
f

is differentiable on Z and for every x such that x ∈ Z

holds ( 1
f
)′↾Z(x) = − 1

x2 .

(5) Suppose Z ⊆ dom((the function sin) · 1
f
) and for every x such that x ∈ Z

holds f(x) = x and f(x) 6= 0. Then

(i) (the function sin) · 1
f

is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) · 1
f
)′↾Z(x) =

− 1
x2 · (the function cos)( 1

x
).

(6) Suppose Z ⊆ dom((the function cos) · 1
f
) and for every x such that x ∈ Z

holds f(x) = x and f(x) 6= 0. Then

(i) (the function cos) · 1
f

is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) · 1
f
)′↾Z(x) = 1

x2 ·(the

function sin)( 1
x
).

(7) Suppose Z ⊆ dom(idZ ((the function sin) · 1
f
)) and for every x such that

x ∈ Z holds f(x) = x and f(x) 6= 0. Then

(i) idZ ((the function sin) · 1
f
) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (idZ ((the function sin) · 1
f
))′↾Z(x) =

(the function sin)( 1
x
) − 1

x
· (the function cos)( 1

x
).

(8) Suppose Z ⊆ dom(idZ ((the function cos) · 1
f
)) and for every x such that

x ∈ Z holds f(x) = x and f(x) 6= 0. Then

(i) idZ ((the function cos) · 1
f
) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (idZ ((the function cos) · 1
f
))′↾Z(x) =

(the function cos)( 1
x
) + 1

x
· (the function sin)( 1

x
).

(9) Suppose Z ⊆ dom(((the function sin) · 1
f
) ((the function cos) · 1

f
)) and

for every x such that x ∈ Z holds f(x) = x and f(x) 6= 0. Then

(i) ((the function sin) · 1
f
) ((the function cos) · 1

f
) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (((the function sin) · 1
f
) ((the function

cos) · 1
f
))′↾Z(x) = 1

x2 · ((the function sin)( 1
x
)2 − (the function cos)( 1

x
)2).

(10) Suppose Z ⊆ dom(((the function sin) ·f) ((n
Z
) · (the function sin))) and

n ≥ 1 and for every x such that x ∈ Z holds f(x) = n · x. Then

(i) ((the function sin) ·f) ((n
Z
) · (the function sin)) is differentiable on Z,

and

(ii) for every x such that x ∈ Z holds (((the function sin) ·f) ((n
Z
) · (the

function sin)))′↾Z(x) = n · (the function sin)(x)n−1
Z

· (the function sin)((n+

1) · x).
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(11) Suppose Z ⊆ dom(((the function cos) ·f) ((n
Z
) · (the function sin))) and

n ≥ 1 and for every x such that x ∈ Z holds f(x) = n · x. Then

(i) ((the function cos) ·f) ((n
Z
) · (the function sin)) is differentiable on Z,

and

(ii) for every x such that x ∈ Z holds (((the function cos) ·f) ((n
Z
) · (the

function sin)))′↾Z(x) = n · (the function sin)(x)n−1
Z

· (the function cos)((n+

1) · x).

(12) Suppose Z ⊆ dom(((the function cos) ·f) ((n
Z
) · (the function cos))) and

n ≥ 1 and for every x such that x ∈ Z holds f(x) = n · x. Then

(i) ((the function cos) ·f) ((n
Z
) · (the function cos)) is differentiable on Z,

and

(ii) for every x such that x ∈ Z holds (((the function cos) ·f) ((n
Z
)·(the func-

tion cos)))′↾Z(x) = −n · (the function cos)(x)n−1
Z

· (the function sin)((n + 1)

·x).

(13) Suppose Z ⊆ dom(((the function sin) ·f) ((n
Z
) · (the function cos))) and

n ≥ 1 and for every x such that x ∈ Z holds f(x) = n · x. Then

(i) ((the function sin) ·f) ((n
Z
) · (the function cos)) is differentiable on Z,

and

(ii) for every x such that x ∈ Z holds (((the function sin) ·f) ((n
Z
) · (the

function cos)))′↾Z(x) = n ·(the function cos)(x)n−1
Z

·(the function cos)((n+

1) · x).

(14) Suppose Z ⊆ dom( 1
f

(the function sin)) and for every x such that x ∈ Z

holds f(x) = x and f(x) 6= 0. Then

(i) 1
f

(the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
f

(the function sin))′↾Z(x) = 1
x
· (the

function cos)(x) − 1
x2 · (the function sin)(x).

(15) Suppose Z ⊆ dom( 1
f

(the function cos)) and for every x such that x ∈ Z

holds f(x) = x and f(x) 6= 0. Then

(i) 1
f

(the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
f

(the function cos))′↾Z(x) =

− 1
x
· (the function sin)(x) − 1

x2 · (the function cos)(x).

(16) Suppose Z ⊆ dom((the function sin)+(
1

2

R
) · f) and for every x such that

x ∈ Z holds f(x) = x and f(x) > 0. Then

(i) (the function sin)+(
1

2

R
) · f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin)+(
1

2

R
) · f)′↾Z(x) =

(the function cos)(x) + 1
2 · x

−
1

2

R
.

(17) Suppose Z ⊆ dom(g ((the function sin) · 1
f
)) and g = 2

Z
and for every x

such that x ∈ Z holds f(x) = x and f(x) 6= 0. Then

(i) g ((the function sin) · 1
f
) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds (g ((the function sin) · 1
f
))′↾Z(x) =

2 · x · (the function sin)( 1
x
) − (the function cos)( 1

x
).

(18) Suppose Z ⊆ dom(g ((the function cos) · 1
f
)) and g = 2

Z
and for every x

such that x ∈ Z holds f(x) = x and f(x) 6= 0. Then

(i) g ((the function cos) · 1
f
) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (g ((the function cos) · 1
f
))′↾Z(x) =

2 · x · (the function cos)( 1
x
) + (the function sin)( 1

x
).

(19) Suppose Z ⊆ dom(log (e) · f) and for every x such that x ∈ Z holds

f(x) = x and f(x) > 0. Then log (e) · f is differentiable on Z and for

every x such that x ∈ Z holds (log (e) · f)′↾Z(x) = 1
x
.

(20) Suppose Z ⊆ dom(idZ f) and f = log (e) · f1 and for every x such that

x ∈ Z holds f1(x) = x and f1(x) > 0. Then idZ f is differentiable on Z

and for every x such that x ∈ Z holds (idZ f)′↾Z(x) = 1 + (log (e))(x).

(21) Suppose Z ⊆ dom(g f) and g = 2
Z

and f = log (e)·f1 and for every x such

that x ∈ Z holds f1(x) = x and f1(x) > 0. Then g f is differentiable on Z

and for every x such that x ∈ Z holds (g f)′↾Z(x) = x + 2 · x · (log (e))(x).

(22) Suppose Z ⊆ dom(f1+f2

f1−f2
) and for every x such that x ∈ Z holds f1(x) =

a and f2 = 2
Z

and for every x such that x ∈ Z holds (f1 − f2)(x) > 0.

Then f1+f2

f1−f2
is differentiable on Z and for every x such that x ∈ Z holds

(f1+f2

f1−f2
)′↾Z(x) = 4·a·x

(a−x2)2
.

(23) Suppose that

(i) Z ⊆ dom(log (e) · f1+f2

f1−f2
),

(ii) for every x such that x ∈ Z holds f1(x) = a,

(iii) f2 = 2
Z
,

(iv) for every x such that x ∈ Z holds (f1 − f2)(x) > 0, and

(v) for every x such that x ∈ Z holds (f1 + f2)(x) > 0.

Then log (e) · f1+f2

f1−f2
is differentiable on Z and for every x such that x ∈ Z

holds (log (e) · f1+f2

f1−f2
)′↾Z(x) = 4·a·x

a2
−x4 .

(24) Suppose Z ⊆ dom( 1
f

g) and for every x such that x ∈ Z holds f(x) = x

and g = log (e) · f1 and for every x such that x ∈ Z holds f1(x) = x and

f1(x) > 0. Then 1
f

g is differentiable on Z and for every x such that x ∈ Z

holds ( 1
f

g)′↾Z(x) = 1
x2 · (1 − (log (e))(x)).

(25) Suppose Z ⊆ dom( 1
f
) and f = log (e) · f1 and for every x such that

x ∈ Z holds f1(x) = x and f1(x) > 0 and for every x such that x ∈ Z

holds f(x) 6= 0. Then 1
f

is differentiable on Z and for every x such that

x ∈ Z holds ( 1
f
)′↾Z(x) = − 1

x·(log (e))(x)2
.
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