Circled Sets, Circled Hull, and Circled Family

Fahui Zhai Qingdao University of Science and Technology China Jianbing Cao Qingdao University of Science and Technology China

Xiquan Liang Qingdao University of Science and Technology China

Summary. In this article, we prove some basic properties of the circled sets. We also define the circled hull, and give the definition of a circled family.

MML identifier: CIRCLED1, version: 7.5.01 4.39.921

The articles [15], [19], [14], [3], [4], [12], [5], [11], [13], [18], [9], [8], [2], [17], [16], [6], [1], [7], and [10] provide the terminology and notation for this paper.

1. Circled Sets

One can prove the following proposition

(1) For every real linear space V and for all circled subsets A, B of V holds A - B is circled.

Let V be a real linear space and let M, N be circled subsets of V. Note that M - N is circled.

Next we state the proposition

(2) Let V be a non empty RLS structure and M be a subset of V. Then M is circled if and only if for every vector u of V and for every real number r such that $|r| \leq 1$ and $u \in M$ holds $r \cdot u \in M$.

C 2005 University of Białystok ISSN 1426-2630 Let V be a non empty RLS structure and let M be a subset of V. Let us observe that M is circled if and only if:

(Def. 1) For every vector u of V and for every real number r such that $|r| \leq 1$ and $u \in M$ holds $r \cdot u \in M$.

The following propositions are true:

- (3) Let V be a real linear space, M be a subset of V, and r be a real number. If M is circled, then $r \cdot M$ is circled.
- (4) Let V be a real linear space, M_1 , M_2 be subsets of V, and r_1 , r_2 be real numbers. If M_1 is circled and M_2 is circled, then $r_1 \cdot M_1 + r_2 \cdot M_2$ is circled.
- (5) Let V be a real linear space, M_1 , M_2 , M_3 be subsets of V, and r_1 , r_2 , r_3 be real numbers. Suppose M_1 is circled and M_2 is circled and M_3 is circled. Then $r_1 \cdot M_1 + r_2 \cdot M_2 + r_3 \cdot M_3$ is circled.
- (6) For every real linear space V holds $Up(\mathbf{0}_V)$ is circled.
- (7) For every real linear space V holds $Up(\Omega_V)$ is circled.
- (8) For every real linear space V and for all circled subsets M, N of V holds $M \cap N$ is circled.
- (9) For every real linear space V and for all circled subsets M, N of V holds $M \cup N$ is circled.

2. CIRCLED HULL AND CIRCLED FAMILY

Let V be a non empty RLS structure and let M be a subset of V. The functor Circled-Family M yields a family of subsets of V and is defined as follows:

(Def. 2) For every subset N of V holds $N \in \text{Circled-Family } M$ iff N is circled and $M \subseteq N$.

Let V be a real linear space and let M be a subset of V. The functor $\operatorname{Cir} M$ yielding a circled subset of V is defined by:

(Def. 3) Cir $M = \bigcap$ Circled-Family M.

Let V be a real linear space and let M be a subset of V. Note that Circled-Family M is non empty.

We now state several propositions:

- (10) For every real linear space V and for all subsets M_1 , M_2 of V such that $M_1 \subseteq M_2$ holds Circled-Family $M_2 \subseteq$ Circled-Family M_1 .
- (11) For every real linear space V and for all subsets M_1 , M_2 of V such that $M_1 \subseteq M_2$ holds Cir $M_1 \subseteq$ Cir M_2 .
- (12) For every real linear space V and for every subset M of V holds $M \subseteq \operatorname{Cir} M$.
- (13) Let V be a real linear space, M be a subset of V, and N be a circled subset of V. If $M \subseteq N$, then $\operatorname{Cir} M \subseteq N$.

- (14) For every real linear space V and for every circled subset M of V holds $\operatorname{Cir} M = M$.
- (15) For every real linear space V holds $\operatorname{Cir}(\emptyset_V) = \emptyset$.
- (16) For every real linear space V and for every subset M of V and for every real number r holds $r \cdot \operatorname{Cir} M = \operatorname{Cir}(r \cdot M)$.

3. BASIC PROPERTIES OF COMBINATION

Let V be a real linear space and let L be a linear combination of V. We say that L is circled if and only if the condition (Def. 4) is satisfied.

- (Def. 4) There exists a finite sequence F of elements of the carrier of V such that
 - (i) F is one-to-one,
 - (ii) $\operatorname{rng} F = \operatorname{the support of } L$, and
 - (iii) there exists a finite sequence f of elements of \mathbb{R} such that len f = len Fand $\sum f = 1$ and for every natural number n such that $n \in \text{dom } f$ holds f(n) = L(F(n)) and $f(n) \ge 0$.

The following propositions are true:

- (17) Let V be a real linear space and L be a linear combination of V. If L is circled, then the support of $L \neq \emptyset$.
- (18) Let V be a real linear space, L be a linear combination of V, and v be a vector of V. If L is circled and $L(v) \leq 0$, then $v \notin$ the support of L.
- (19) For every real linear space V and for every linear combination L of V such that L is circled holds $L \neq \mathbf{0}_{\mathrm{LC}_V}$.
- (20) For every real linear space V holds there exists a linear combination of V which is circled.

Let V be a real linear space. One can check that there exists a linear combination of V which is circled.

Let V be a real linear space. A circled combination of V is a circled linear combination of V.

We now state the proposition

(21) For every real linear space V and for every non empty subset M of V holds there exists a linear combination of M which is circled.

Let V be a real linear space and let M be a non empty subset of V. Note that there exists a linear combination of M which is circled.

Let V be a real linear space and let M be a non empty subset of V. A circled combination of M is a circled linear combination of M.

Let V be a real linear space. The functor circledComb V is defined as follows:

(Def. 5) For every set L holds $L \in \text{circledComb } V$ iff L is a circled combination of V.

Let V be a real linear space and let M be a non empty subset of V. The functor circledComb M is defined by:

(Def. 6) For every set L holds $L \in \text{circledComb} M$ iff L is a circled combination of M.

The following propositions are true:

- (22) Let V be a real linear space and v be a vector of V. Then there exists a circled combination L of V such that $\sum L = v$ and for every non empty subset A of V such that $v \in A$ holds L is a circled combination of A.
- (23) Let V be a real linear space and v_1, v_2 be vectors of V. Suppose $v_1 \neq v_2$. Then there exists a circled combination L of V such that for every non empty subset A of V if $\{v_1, v_2\} \subseteq A$, then L is a circled combination of A.
- (24) Let V be a real linear space, L_1 , L_2 be circled combinations of V, and a, b be real numbers. Suppose $a \cdot b > 0$. Then the support of $a \cdot L_1 + b \cdot L_2 =$ (the support of $a \cdot L_1$) \cup (the support of $b \cdot L_2$).
- (25) Let V be a real linear space, v be a vector of V, and L be a linear combination of V. If L is circled and the support of $L = \{v\}$, then L(v) = 1 and $\sum L = L(v) \cdot v$.
- (26) Let V be a real linear space, v_1 , v_2 be vectors of V, and L be a linear combination of V. Suppose L is circled and the support of $L = \{v_1, v_2\}$ and $v_1 \neq v_2$. Then $L(v_1) + L(v_2) = 1$ and $L(v_1) \geq 0$ and $L(v_2) \geq 0$ and $\sum L = L(v_1) \cdot v_1 + L(v_2) \cdot v_2$.
- (27) Let V be a real linear space, v be a vector of V, and L be a linear combination of $\{v\}$. If L is circled, then L(v) = 1 and $\sum L = L(v) \cdot v$.
- (28) Let V be a real linear space, v_1 , v_2 be vectors of V, and L be a linear combination of $\{v_1, v_2\}$. Suppose $v_1 \neq v_2$ and L is circled. Then $L(v_1) + L(v_2) = 1$ and $L(v_1) \geq 0$ and $L(v_2) \geq 0$ and $\sum L = L(v_1) \cdot v_1 + L(v_2) \cdot v_2$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [6] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [7] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99–107, 2005.
- [8] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53–58, 2003.
- [9] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. *Formalized Mathematics*, 11(1):23–28, 2003.

- [10] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Topology of real unitary space. Formalized Mathematics, 11(1):33–38, 2003.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [16] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581–588, 1990.
 [17] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized
- [17] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297–301, 1990.
- [18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received August 30, 2005