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Summary. In this paper we define Stirling numbers of the second kind

by cardinality of certain functional classes so that

S(n, k) = {f where f is function of n, k : f is onto increasing}

After that we show basic properties of this number in order to prove recursive

dependence of Stirling number of the second kind. Consecutive theorems are

introduced to prove formula

S(n, k) =
1
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Σ
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where k ≤ n.
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The papers [18], [9], [21], [14], [23], [6], [24], [2], [3], [8], [10], [1], [22], [7], [11],

[20], [16], [19], [4], [5], [13], [12], [17], and [15] provide the terminology and

notation for this paper.

For simplicity, we adopt the following convention: k, l, m, n, i, j denote

natural numbers, K, N denote non empty subsets of N, K1, N1, M1 denote

subsets of N, and X, Y denote sets.

Let us consider k. Then {k} is a subset of N. Let us consider l. Then {k, l}

is a subset of N. Let us consider m. Then {k, l,m} is a non empty subset of N.

The following propositions are true:

(1) minN = min∗N.

(2) min(minK, minN) = min(K ∪ N).

(3) min(min∗K1, min∗N1) ≤ min∗(K1 ∪ N1).
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(4) If min∗N1 /∈ N1 ∩ K1, then min∗N1 = min∗(N1 \ K1).

(5) min∗{n} = n and min{n} = n.

(6) min∗{n, k} = min(n, k) and min{n, k} = min(n, k).

(7) min∗{n, k, l} = min(n, min(k, l)).

(8) n is a subset of N.

Let us consider n. One can verify that every element of n is natural.

We now state several propositions:

(9) If N ⊆ n, then n − 1 is a natural number.

(10) If k ∈ n, then k ≤ n − 1 and n − 1 is a natural number.

(11) min∗n = 0.

(12) If N ⊆ n, then min∗N ≤ n − 1.

(13) If N ⊆ n and N 6= {n − 1}, then min∗N < n − 1.

(14) If N1 ⊆ n and n > 0, then min∗N1 ≤ n − 1.

In the sequel f , g are functions from n into k.

Let us consider n, X, let f be a function from n into X, and let x be a set.

Then f−1(x) is a subset of N.

Let us consider X, k, let f be a function from X into k, and let x be a set.

Then f(x) is an element of k.

Let us consider X, N1, let f be a function from X into N1, and let x be a

set. One can verify that f(x) is natural.

Let us consider n, k and let f be a function from n into k. We say that f is

increasing if and only if:

(Def. 1) n = 0 iff k = 0 and for all l, m such that l ∈ rng f and m ∈ rng f and

l < m holds min∗(f−1({l})) < min∗(f−1({m})).

We now state several propositions:

(15) If n = 0 and k = 0, then f is onto and increasing.

(16) If n > 0, then min∗(f−1({m})) ≤ n − 1.

(17) If f is onto, then n ≥ k.

(18) If f is onto and increasing, then for every m such that m < k holds

m ≤ min∗(f−1({m})).

(19) If f is onto and increasing, then for every m such that m < k holds

min∗(f−1({m})) ≤ (n − k) + m.

(20) If f is onto and increasing and n = k, then f = idn.

(21) If f = idn and n > 0, then f is increasing.

(22) If n = 0 iff k = 0, then there exists a function from n into k which is

increasing.

(23) If n = 0 iff k = 0 and n ≥ k, then there exists a function from n into k

which is onto and increasing.
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The scheme Sch1 deals with natural numbers A, B and a unary predicate

P, and states that:

{f ; f ranges over functions from A into B : P[f ]} is finite

for all values of the parameters.

In the sequel f is a function from n into k.

One can prove the following propositions:

(24) For all n, k holds {f : f is onto and increasing} is finite.

(25) For all n, k holds {f : f is onto and increasing} is a natural number.

Let us consider n, k. The functor n block k yields a natural number and is

defined by:

(Def. 2) n block k = {f : f is onto and increasing} .

Next we state several propositions:

(26) n blockn = 1.

(27) If k 6= 0, then 0 block k = 0.

(28) 0 block k = 1 iff k = 0.

(29) If n < k, then n block k = 0.

(30) n block 0 = 1 iff n = 0.

(31) If n 6= 0, then n block 0 = 0.

(32) If n 6= 0, then n block 1 = 1.

(33) 1 ≤ k and k ≤ n or k = n iff n block k > 0.

In the sequel x, y denote sets.

Now we present three schemes. The scheme Sch2 deals with sets A, B, C,

D, a function E from A into B, and a unary functor F yielding a set, and states

that:

There exists a function h from C into D such that h↾A = E and

for every x such that x ∈ C \ A holds h(x) = F(x)

provided the parameters satisfy the following conditions:

• For every x such that x ∈ C \ A holds F(x) ∈ D,

• A ⊆ C and B ⊆ D, and

• If B is empty, then A is empty.

The scheme Sch3 deals with sets A, B, C, D, a unary functor F yielding a

set, and a ternary predicate P, and states that:

{f ; f ranges over functions from A into B :P[f,A,B]} =

{f ; f ranges over functions from C into D :P[f, C,D]

∧ rng(f↾A) ⊆ B ∧
∧

x
(x ∈ C \ A ⇒ f(x) = F(x))}

provided the following requirements are met:

• For every x such that x ∈ C \ A holds F(x) ∈ D,

• A ⊆ C and B ⊆ D,

• If B is empty, then A is empty, and
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• Let f be a function from C into D. Suppose that for every x such

that x ∈ C \ A holds F(x) = f(x). Then P[f, C,D] if and only if

P[f↾A,A,B].

The scheme Sch4 deals with sets A, B, C, D and a ternary predicate P, and

states that:

{f ; f ranges over functions from A into B : P[f,A,B]} =

{f ; f ranges over functions from A ∪ {C} into B ∪ {D} :

P[f,A ∪ {C},B ∪ {D}] ∧ rng(f↾A) ⊆ B ∧ f(C) = D}

provided the parameters meet the following conditions:

• If B is empty, then A is empty,

• C /∈ A, and

• For every function f from A∪{C} into B∪{D} such that f(C) = D

holds P[f,A ∪ {C},B ∪ {D}] iff P[f↾A,A,B].

We now state several propositions:

(34) For every function f from n + 1 into k + 1 such that f is onto and

increasing and f−1({f(n)}) = {n} holds f(n) = k.

(35) For every function f from n+1 into k such that k 6= 0 and f−1({f(n)}) 6=

{n} there exists m such that m ∈ f−1({f(n)}) and m 6= n.

(36) Let f be a function from n into k and g be a function from n + m into

k + l. Suppose g is increasing and f = g↾n. Let given i, j. If i ∈ rng f and

j ∈ rng f and i < j, then min∗(f−1({i})) < min∗(f−1({j})).

(37) Let f be a function from n+1 into k+1. Suppose f is onto and increasing

and f−1({f(n)}) = {n}. Then rng(f↾n) ⊆ k and for every function g from

n into k such that g = f↾n holds g is onto and increasing.

(38) Let f be a function from n + 1 into k and g be a function from n into

k. Suppose f is onto and increasing and f−1({f(n)}) 6= {n} and f↾n = g.

Then g is onto and increasing.

(39) Let f be a function from n into k and g be a function from n + 1 into

k + m. Suppose f is onto and increasing and f = g↾n. Let given i, j. If

i ∈ rng g and j ∈ rng g and i < j, then min∗(g−1({i})) < min∗(g−1({j})).

(40) Let f be a function from n into k and g be a function from n + 1 into

k + 1. Suppose f is onto and increasing and f = g↾n and g(n) = k. Then

g is onto and increasing and g−1({g(n)}) = {n}.

(41) Let f be a function from n into k and g be a function from n + 1 into

k. Suppose f is onto and increasing and f = g↾n and g(n) < k. Then g is

onto and increasing and g−1({g(n)}) 6= {n}.

In the sequel f1 denotes a function from n + 1 into k + 1 and f denotes a

function from n into k.

We now state the proposition

(42) {f1 : f1 is onto and increasing ∧ f1
−1({f1(n)}) = {n}} =
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{f : f is onto and increasing} .

In the sequel f ′ is a function from n + 1 into k.

The following proposition is true

(43) For every l such that l < k holds

{f ′ : f ′ is onto and increasing ∧ f ′−1({f ′(n)}) 6= {n} ∧ f ′(n) = l} =

{f : f is onto and increasing} .

For simplicity, we adopt the following convention: D denotes a non empty

set, F , G denote finite 0-sequences of D, F1 denotes a finite 0-sequence of N, b

denotes a binary operation on D, and d, d1, d2 denote elements of D.

Let us consider D, F , b. Let us assume that b has a unity or lenF ≥ 1. The

functor b ⊙ F yielding an element of D is defined as follows:

(Def. 3)(i) b ⊙ F = 1b if b has a unity and lenF = 0,

(ii) there exists a function f from N into D such that f(0) = F (0) and for

every n such that n + 1 < len F holds f(n + 1) = b(f(n), F (n + 1)) and

b ⊙ F = f(lenF − 1), otherwise.

One can prove the following three propositions:

(44) b ⊙ 〈d〉 = d.

(45) If b has a unity or lenF > 0, then b ⊙ F a 〈d〉 = b(b ⊙ F, d).

(46) If F 6= 〈〉
D

, then there exist G, d such that F = G a 〈d〉.

The scheme Sch5 deals with a non empty set A and a unary predicate P,

and states that:

For every finite 0-sequence F of A holds P[F ]

provided the parameters satisfy the following conditions:

• P[〈〉
A

], and

• For every finite 0-sequence F of A and for every element d of A

such that P[F ] holds P[F a 〈d〉].

Next we state the proposition

(47) If b is associative and if b has a unity or lenF ≥ 1 and lenG ≥ 1, then

b ⊙ F a G = b(b ⊙ F, b ⊙ G).

Let us consider D and let us consider d, d1. Then 〈d, d1〉 is a finite 0-sequence

of D. Let us consider d2. Then 〈d, d1, d2〉 is a finite 0-sequence of D.

The following propositions are true:

(48) b ⊙ 〈d1, d2〉 = b(d1, d2).

(49) b ⊙ 〈d, d1, d2〉 = b(b(d, d1), d2).

Let us consider F1. The functor
∑

F1 yields a natural number and is defined

by:

(Def. 4)
∑

F1 = +N ⊙ F1.

Let us consider F1, x. Then F1(x) is a natural number.

One can prove the following propositions:
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(50) If for every n such that n ∈ domF1 holds F1(n) ≤ k, then
∑

F1 ≤

len F1 · k.

(51) If for every n such that n ∈ domF1 holds F1(n) ≥ k, then
∑

F1 ≥

len F1 · k.

(52) If lenF1 > 0 and there exists x such that x ∈ domF1 and F1(x) = k,

then
∑

F1 ≥ k.

(53)
∑

F1 = 0 iff lenF1 = 0 or for every n such that n ∈ domF1 holds

F1(n) = 0.

(54) For every function f and for every n holds
⋃

rng(f↾n) ∪ f(n) =
⋃

rng(f↾(n + 1)).

Now we present three schemes. The scheme Sch6 deals with a non empty

set A, a natural number B, and a binary predicate P, and states that:

There exists a finite 0-sequence p of A such that dom p = B and

for every k such that k ∈ B holds P[k, p(k)]

provided the parameters have the following property:

• For every k such that k ∈ B there exists an element x of A such

that P[k, x].

The scheme Sch7 deals with a non empty set A and a finite 0-sequence B of

A, and states that:

There exists a finite 0-sequence C1 of N such that domC1 = domB

and for every i such that i ∈ domC1 holds C1(i) = B(i) and
⋃

rngB =
∑

C1

provided the following requirements are met:

• For every i such that i ∈ domB holds B(i) is finite, and

• For all i, j such that i ∈ domB and j ∈ domB and i 6= j holds

B(i) misses B(j).

The scheme Sch8 deals with finite sets A, B, a set C, a function D from

cardB into B, and a unary predicate P, and states that:

There exists a finite 0-sequence F of N such that

(i) domF = cardB,

(ii) {g; g ranges over functions from A into B :P[g]} =
∑

F,

and

(iii) for every i such that i ∈ domF holds F (i) =

{g; g ranges over functions from A into B :P[g] ∧ g(C) = D(i)}

provided the parameters have the following properties:

• D is onto and one-to-one,

• B is non empty, and

• C ∈ A.

One can prove the following propositions:

(55) k·(n block k) = {f ′ : f ′ is onto and increasing ∧ f ′−1({f ′(n)}) 6= {n}} .
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(56) (n + 1) block(k + 1) = (k + 1) · (n block(k + 1)) + (n block k).

(57) If n ≥ 1, then n block 2 = 1
2 · (2n − 2).

(58) If n ≥ 2, then n block 3 = 1
6 · ((3n − 3 · 2n) + 3).

(59) If n ≥ 3, then n block 4 = 1
24 · (((4n − 4 · 3n) + 6 · 2n) − 4).

(60) 3! = 6 and 4! = 24.

(61)
(

n

1

)

= n and
(

n

2

)

= n·(n−1)
2 and

(

n

3

)

= n·(n−1)·(n−2)
6 and

(

n

4

)

=
n·(n−1)·(n−2)·(n−3)

24 .

(62) (n + 1) blockn =
(

n+1
2

)

.

(63) (n + 2) blockn = 3 ·
(

n+2
4

)

+
(

n+2
3

)

.

(64) For every function F and for every y holds rng(F ↾(dom F \F−1({y}))) =

rng F \ {y} and for every x such that x 6= y holds (F ↾(dom F \

F−1({y})))−1({x}) = F−1({x}).

(65) If X = k + 1 and x ∈ X, then X \ {x} = k.

The scheme Sch9 concerns a unary predicate P and a binary predicate Q,

and states that:

For every function F such that rng F is finite holds P[F ]

provided the following conditions are met:

• P[∅], and

• For every function F such that for every x such that x ∈ rng F

and Q[x, F ] holds P[F ↾(dom F \ F−1({x}))] holds P[F ].

We now state several propositions:

(66) For every subset N of N such that N is finite there exists k such that

for every n such that n ∈ N holds n ≤ k.

(67) Let given X, Y , x, y. Suppose if Y is empty, then X is empty and

x /∈ X. Let F be a function from X into Y . Then there exists a function

G from X ∪ {x} into Y ∪ {y} such that G↾X = F and G(x) = y.

(68) Let given X, Y , x, y such that if Y is empty, then X is empty. Let F be

a function from X into Y and G be a function from X ∪ {x} into Y ∪ {y}

such that G↾X = F and G(x) = y. Then

(i) if F is onto, then G is onto, and

(ii) if y /∈ Y and F is one-to-one, then G is one-to-one.

(69) Let N be a finite subset of N. Then there exists a function O1 from N

into cardN such that O1 is bijective and for all n, k such that n ∈ domO1

and k ∈ domO1 and n < k holds O1(n) < O1(k).

(70) Let X, Y be finite sets and F be a function from X into Y . If cardX =

cardY, then F is onto iff F is one-to-one.

(71) Let F , G be functions and given y. Suppose y ∈ rng(G · F ) and G is

one-to-one. Then there exists x such that x ∈ domG and x ∈ rng F and

G−1({y}) = {x} and F−1({x}) = (G · F )−1({y}).
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Let us consider N1, K1 and let f be a function from N1 into K1. We say

that f is increasing if and only if:

(Def. 5) For all l, m such that l ∈ rng f and m ∈ rng f and l < m holds

min∗(f−1({l})) < min∗(f−1({m})).

The following four propositions are true:

(72) For every function F from N1 into K1 such that F is increasing holds

min∗ rng F = F (min∗ domF ).

(73) Let F be a function from N1 into K1. Suppose rng F is finite. Then

there exists a function I from N1 into K1 and there exists a permutation

P of rng F such that F = P · I and rng F = rng I and I is increasing.

(74) Let F be a function from N1 into K1. Suppose rng F is finite. Let I1, I2

be functions from N1 into M1 and P1, P2 be functions. Suppose that P1 is

one-to-one and P2 is one-to-one and rng I1 = rng I2 and rng I1 = domP1

and domP1 = dom P2 and F = P1 · I1 and F = P2 · I2 and I1 is increasing

and I2 is increasing. Then P1 = P2 and I1 = I2.

(75) Let F be a function from N1 into K1. Suppose rng F is finite. Let I1,

I2 be functions from N1 into K1 and P1, P2 be permutations of rng F.

Suppose F = P1 ·I1 and F = P2 ·I2 and rng F = rng I1 and rng F = rng I2

and I1 is increasing and I2 is increasing. Then P1 = P2 and I1 = I2.
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