Stirling Numbers of the Second Kind

Karol Pa̧k
Institute of Mathematics
University of Białystok
Akademicka 2, 15-267 Białystok, Poland

Abstract

Summary. In this paper we define Stirling numbers of the second kind by cardinality of certain functional classes so that

$$
S(n, k)=\{f \text { where } f \text { is function of } n, k: f \text { is onto increasing }\}
$$

After that we show basic properties of this number in order to prove recursive dependence of Stirling number of the second kind. Consecutive theorems are introduced to prove formula

$$
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}(k-i)^{n}
$$

where $k \leq n$.

MML identifier: STIRL2_1, version: 7.5.01 4.39.921

The papers [18], [9], [21], [14], [23], [6], [24], [2], [3], [8], [10], [1], [22], [7], [11], [20], [16], [19], [4], [5], [13], [12], [17], and [15] provide the terminology and notation for this paper.

For simplicity, we adopt the following convention: k, l, m, n, i, j denote natural numbers, K, N denote non empty subsets of \mathbb{N}, K_{1}, N_{1}, M_{1} denote subsets of \mathbb{N}, and X, Y denote sets.

Let us consider k. Then $\{k\}$ is a subset of \mathbb{N}. Let us consider l. Then $\{k, l\}$ is a subset of \mathbb{N}. Let us consider m. Then $\{k, l, m\}$ is a non empty subset of \mathbb{N}.

The following propositions are true:
(1) $\min N=\min ^{*} N$.
(2) $\min (\min K, \min N)=\min (K \cup N)$.
(3) $\min \left(\min ^{*} K_{1}, \min ^{*} N_{1}\right) \leq \min ^{*}\left(K_{1} \cup N_{1}\right)$.
(4) If $\min ^{*} N_{1} \notin N_{1} \cap K_{1}$, then $\min ^{*} N_{1}=\min ^{*}\left(N_{1} \backslash K_{1}\right)$.
(5) $\min ^{*}\{n\}=n$ and $\min \{n\}=n$.
(6) $\min ^{*}\{n, k\}=\min (n, k)$ and $\min \{n, k\}=\min (n, k)$.
(7) $\min ^{*}\{n, k, l\}=\min (n, \min (k, l))$.
(8) n is a subset of \mathbb{N}.

Let us consider n. One can verify that every element of n is natural.
We now state several propositions:
(9) If $N \subseteq n$, then $n-1$ is a natural number.
(10) If $k \in n$, then $k \leq n-1$ and $n-1$ is a natural number.
(11) $\min ^{*} n=0$.
(12) If $N \subseteq n$, then $\min ^{*} N \leq n-1$.
(13) If $N \subseteq n$ and $N \neq\{n-1\}$, then $\min ^{*} N<n-1$.
(14) If $N_{1} \subseteq n$ and $n>0$, then $\min ^{*} N_{1} \leq n-1$.

In the sequel f, g are functions from n into k.
Let us consider n, X, let f be a function from n into X, and let x be a set. Then $f^{-1}(x)$ is a subset of \mathbb{N}.

Let us consider X, k, let f be a function from X into k, and let x be a set. Then $f(x)$ is an element of k.

Let us consider X, N_{1}, let f be a function from X into N_{1}, and let x be a set. One can verify that $f(x)$ is natural.

Let us consider n, k and let f be a function from n into k. We say that f is increasing if and only if:
(Def. 1) $n=0$ iff $k=0$ and for all l, m such that $l \in \operatorname{rng} f$ and $m \in \operatorname{rng} f$ and $l<m$ holds $\min ^{*}\left(f^{-1}(\{l\})\right)<\min ^{*}\left(f^{-1}(\{m\})\right)$.
We now state several propositions:
(15) If $n=0$ and $k=0$, then f is onto and increasing.
(16) If $n>0$, then $\min ^{*}\left(f^{-1}(\{m\})\right) \leq n-1$.
(17) If f is onto, then $n \geq k$.
(18) If f is onto and increasing, then for every m such that $m<k$ holds $m \leq \min ^{*}\left(f^{-1}(\{m\})\right)$.
(19) If f is onto and increasing, then for every m such that $m<k$ holds $\min ^{*}\left(f^{-1}(\{m\})\right) \leq(n-k)+m$.
(20) If f is onto and increasing and $n=k$, then $f=\operatorname{id}_{n}$.
(21) If $f=\operatorname{id}_{n}$ and $n>0$, then f is increasing.
(22) If $n=0$ iff $k=0$, then there exists a function from n into k which is increasing.
(23) If $n=0$ iff $k=0$ and $n \geq k$, then there exists a function from n into k which is onto and increasing.

The scheme $S c h 1$ deals with natural numbers \mathcal{A}, \mathcal{B} and a unary predicate \mathcal{P}, and states that:
$\{f ; f$ ranges over functions from \mathcal{A} into $\mathcal{B}: \mathcal{P}[f]\}$ is finite for all values of the parameters.

In the sequel f is a function from n into k.
One can prove the following propositions:
(24) For all n, k holds $\{f: f$ is onto and increasing $\}$ is finite.
(25) For all n, k holds $\overline{\{f: f \text { is onto and increasing }\}}$ is a natural number.

Let us consider n, k. The functor n block k yields a natural number and is defined by:
(Def. 2) n block $k=\overline{\{f: f \text { is onto and increasing }\}}$.
Next we state several propositions:
(26) n block $n=1$.
(27) If $k \neq 0$, then 0 block $k=0$.
(28) 0 block $k=\mathbf{1}$ iff $k=0$.
(29) If $n<k$, then n block $k=0$.
(30) n block $0=\mathbf{1}$ iff $n=0$.
(31) If $n \neq 0$, then n block $0=0$.
(32) If $n \neq 0$, then n block $1=\mathbf{1}$.
(33) $1 \leq k$ and $k \leq n$ or $k=n$ iff n block $k>0$.

In the sequel x, y denote sets.
Now we present three schemes. The scheme $S c h 2$ deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, \mathcal{D}, a function \mathcal{E} from \mathcal{A} into \mathcal{B}, and a unary functor \mathcal{F} yielding a set, and states that:

There exists a function h from \mathcal{C} into \mathcal{D} such that $h \upharpoonright \mathcal{A}=\mathcal{E}$ and for every x such that $x \in \mathcal{C} \backslash \mathcal{A}$ holds $h(x)=\mathcal{F}(x)$ provided the parameters satisfy the following conditions:

- For every x such that $x \in \mathcal{C} \backslash \mathcal{A}$ holds $\mathcal{F}(x) \in \mathcal{D}$,
- $\mathcal{A} \subseteq \mathcal{C}$ and $\mathcal{B} \subseteq \mathcal{D}$, and
- If \mathcal{B} is empty, then \mathcal{A} is empty.

The scheme $\operatorname{Sch} 3$ deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$, a unary functor \mathcal{F} yielding a set, and a ternary predicate \mathcal{P}, and states that:
$\overline{\overline{\{f ; f \text { ranges over functions from } \mathcal{A} \text { into } \mathcal{B}: \mathcal{P}[f, \mathcal{A}, \mathcal{B}]\}}}=$
$\overline{\overline{\{f ; f \text { ranges over functions from } \mathcal{C} \text { into } \mathcal{D}: \mathcal{P}[f, \mathcal{C}, \mathcal{D}]}}$
$\overline{\wedge \operatorname{rng}\left(f\lceil\mathcal{A}) \subseteq \mathcal{B} \wedge \wedge_{x}(x \in \mathcal{C} \backslash \mathcal{A} \Rightarrow f(x)=\mathcal{F}(x))\right\}}$ provided the following requirements are met:

- For every x such that $x \in \mathcal{C} \backslash \mathcal{A}$ holds $\mathcal{F}(x) \in \mathcal{D}$,
- $\mathcal{A} \subseteq \mathcal{C}$ and $\mathcal{B} \subseteq \mathcal{D}$,
- If \mathcal{B} is empty, then \mathcal{A} is empty, and
- Let f be a function from \mathcal{C} into \mathcal{D}. Suppose that for every x such that $x \in \mathcal{C} \backslash \mathcal{A}$ holds $\mathcal{F}(x)=f(x)$. Then $\mathcal{P}[f, \mathcal{C}, \mathcal{D}]$ if and only if $\mathcal{P}[f \upharpoonright \mathcal{A}, \mathcal{A}, \mathcal{B}]$.
The scheme $S c h_{4}$ deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ and a ternary predicate \mathcal{P}, and states that:

$$
\frac{\underline{\overline{\overline{f ; f} ; f \text { ranges over functions from } \mathcal{A} \text { into } \mathcal{B}: \mathcal{P}[f, \mathcal{A}, \mathcal{B}]\}}}=}{\overline{\overline{\mathcal{P}[f ; f, \mathcal{A} \cup\{\mathcal{C}\}, \mathcal{B} \cup\{\mathcal{D}\}] \wedge \operatorname{rng}(f\lceil\mathcal{A}) \subseteq \mathcal{B} \wedge f(\mathcal{C})=\mathcal{D}\}}}}
$$

provided the parameters meet the following conditions:

- If \mathcal{B} is empty, then \mathcal{A} is empty,
- $\mathcal{C} \notin \mathcal{A}$, and
- For every function f from $\mathcal{A} \cup\{\mathcal{C}\}$ into $\mathcal{B} \cup\{\mathcal{D}\}$ such that $f(\mathcal{C})=\mathcal{D}$ holds $\mathcal{P}[f, \mathcal{A} \cup\{\mathcal{C}\}, \mathcal{B} \cup\{\mathcal{D}\}]$ iff $\mathcal{P}[f\lceil\mathcal{A}, \mathcal{A}, \mathcal{B}]$.
We now state several propositions:
(34) For every function f from $n+1$ into $k+1$ such that f is onto and increasing and $f^{-1}(\{f(n)\})=\{n\}$ holds $f(n)=k$.
(35) For every function f from $n+1$ into k such that $k \neq 0$ and $f^{-1}(\{f(n)\}) \neq$ $\{n\}$ there exists m such that $m \in f^{-1}(\{f(n)\})$ and $m \neq n$.
(36) Let f be a function from n into k and g be a function from $n+m$ into $k+l$. Suppose g is increasing and $f=g \upharpoonright n$. Let given i, j. If $i \in \operatorname{rng} f$ and $j \in \operatorname{rng} f$ and $i<j$, then $\min ^{*}\left(f^{-1}(\{i\})\right)<\min ^{*}\left(f^{-1}(\{j\})\right)$.
(37) Let f be a function from $n+1$ into $k+1$. Suppose f is onto and increasing and $f^{-1}(\{f(n)\})=\{n\}$. Then $\operatorname{rng}(f\lceil n) \subseteq k$ and for every function g from n into k such that $g=f\lceil n$ holds g is onto and increasing.
(38) Let f be a function from $n+1$ into k and g be a function from n into k. Suppose f is onto and increasing and $f^{-1}(\{f(n)\}) \neq\{n\}$ and $f\lceil n=g$. Then g is onto and increasing.
(39) Let f be a function from n into k and g be a function from $n+1$ into $k+m$. Suppose f is onto and increasing and $f=g\lceil n$. Let given i, j. If $i \in \operatorname{rng} g$ and $j \in \operatorname{rng} g$ and $i<j$, then $\min ^{*}\left(g^{-1}(\{i\})\right)<\min ^{*}\left(g^{-1}(\{j\})\right)$.
(40) Let f be a function from n into k and g be a function from $n+1$ into $k+1$. Suppose f is onto and increasing and $f=g\lceil n$ and $g(n)=k$. Then g is onto and increasing and $g^{-1}(\{g(n)\})=\{n\}$.
(41) Let f be a function from n into k and g be a function from $n+1$ into k. Suppose f is onto and increasing and $f=g \upharpoonright n$ and $g(n)<k$. Then g is onto and increasing and $g^{-1}(\{g(n)\}) \neq\{n\}$.
In the sequel f_{1} denotes a function from $n+1$ into $k+1$ and f denotes a function from n into k.

We now state the proposition

$$
\begin{equation*}
\overline{\left.\overline{\left\{f_{1}: f_{1} \text { is onto and increasing } \wedge f_{1}-1\right.}\left(\left\{f_{1}(n)\right\}\right)=\{n\}\right\}}= \tag{42}
\end{equation*}
$$

$\overline{\{f: f \text { is onto and increasing }\}}$.
In the sequel f^{\prime} is a function from $n+1$ into k.
The following proposition is true
(43) For every l such that $l<k$ holds

$$
\overline{\left.\overline{\left\{f^{\prime}: f^{\prime}\right. \text { is onto and increasing }} \wedge f^{\prime-1}\left(\left\{f^{\prime}(n)\right\}\right) \neq\{n\} \wedge f^{\prime}(n)=l\right\}}=
$$

For simplicity, we adopt the following convention: D denotes a non empty set, F, G denote finite 0 -sequences of D, F_{1} denotes a finite 0 -sequence of \mathbb{N}, b denotes a binary operation on D, and d, d_{1}, d_{2} denote elements of D.

Let us consider D, F, b. Let us assume that b has a unity or len $F \geq 1$. The functor $b \odot F$ yielding an element of D is defined as follows:
(Def. 3)(i) $b \odot F=\mathbf{1}_{b}$ if b has a unity and len $F=0$,
(ii) there exists a function f from \mathbb{N} into D such that $f(0)=F(0)$ and for every n such that $n+1<\operatorname{len} F$ holds $f(n+1)=b(f(n), F(n+1))$ and $b \odot F=f(\operatorname{len} F-1)$, otherwise.
One can prove the following three propositions:
(44) $b \odot\langle d\rangle=d$.
(45) If b has a unity or len $F>0$, then $b \odot F^{\frown}\langle d\rangle=b(b \odot F, d)$.
(46) If $F \neq\langle \rangle_{D}$, then there exist G, d such that $F=G^{\wedge}\langle d\rangle$.

The scheme $S c h 5$ deals with a non empty set \mathcal{A} and a unary predicate \mathcal{P}, and states that:

For every finite 0 -sequence F of \mathcal{A} holds $\mathcal{P}[F]$
provided the parameters satisfy the following conditions:

- $\mathcal{P}\left[\left\rangle_{\mathcal{A}}\right]\right.$, and
- For every finite 0 -sequence F of \mathcal{A} and for every element d of \mathcal{A} such that $\mathcal{P}[F]$ holds $\mathcal{P}\left[F^{\wedge}\langle d\rangle\right]$.
Next we state the proposition
(47) If b is associative and if b has a unity or len $F \geq 1$ and len $G \geq 1$, then $b \odot F^{\frown} G=b(b \odot F, b \odot G)$.
Let us consider D and let us consider d, d_{1}. Then $\left\langle d, d_{1}\right\rangle$ is a finite 0 -sequence of D. Let us consider d_{2}. Then $\left\langle d, d_{1}, d_{2}\right\rangle$ is a finite 0 -sequence of D.

The following propositions are true:
(48) $b \odot\left\langle d_{1}, d_{2}\right\rangle=b\left(d_{1}, d_{2}\right)$.
(49) $b \odot\left\langle d, d_{1}, d_{2}\right\rangle=b\left(b\left(d, d_{1}\right), d_{2}\right)$.

Let us consider F_{1}. The functor $\sum F_{1}$ yields a natural number and is defined by:
(Def. 4) $\quad \sum F_{1}=+_{\mathbb{N}} \odot F_{1}$.
Let us consider F_{1}, x. Then $F_{1}(x)$ is a natural number.
One can prove the following propositions:
(50) If for every n such that $n \in \operatorname{dom} F_{1}$ holds $F_{1}(n) \leq k$, then $\sum F_{1} \leq$ len $F_{1} \cdot k$.
(51) If for every n such that $n \in \operatorname{dom} F_{1}$ holds $F_{1}(n) \geq k$, then $\sum F_{1} \geq$ len $F_{1} \cdot k$.
(52) If len $F_{1}>0$ and there exists x such that $x \in \operatorname{dom} F_{1}$ and $F_{1}(x)=k$, then $\sum F_{1} \geq k$.
(53) $\sum F_{1}=0$ iff len $F_{1}=0$ or for every n such that $n \in \operatorname{dom} F_{1}$ holds $F_{1}(n)=0$.
(54) For every function f and for every n holds $\bigcup \operatorname{rng}(f \upharpoonright n) \cup f(n)=$ $\bigcup \operatorname{rng}(f \upharpoonright(n+1))$.
Now we present three schemes. The scheme $\operatorname{Sch} 6$ deals with a non empty set \mathcal{A}, a natural number \mathcal{B}, and a binary predicate \mathcal{P}, and states that:

There exists a finite 0 -sequence p of \mathcal{A} such that $\operatorname{dom} p=\mathcal{B}$ and for every k such that $k \in \mathcal{B}$ holds $\mathcal{P}[k, p(k)]$
provided the parameters have the following property:

- For every k such that $k \in \mathcal{B}$ there exists an element x of \mathcal{A} such that $\mathcal{P}[k, x]$.
The scheme $S c h 7$ deals with a non empty set \mathcal{A} and a finite 0 -sequence \mathcal{B} of \mathcal{A}, and states that:

There exists a finite 0 -sequence C_{1} of \mathbb{N} such that $\operatorname{dom} C_{1}=\operatorname{dom} \mathcal{B}$ and for every i such that $i \in \operatorname{dom} C_{1}$ holds $C_{1}(i)=\overline{\overline{\mathcal{B}}(i)}$ and $\overline{\overline{\bigcup \mathrm{rng} \mathcal{B}}}=\sum C_{1}$
provided the following requirements are met:

- For every i such that $i \in \operatorname{dom} \mathcal{B}$ holds $\mathcal{B}(i)$ is finite, and
- For all i, j such that $i \in \operatorname{dom} \mathcal{B}$ and $j \in \operatorname{dom} \mathcal{B}$ and $i \neq j$ holds $\mathcal{B}(i)$ misses $\mathcal{B}(j)$.
The scheme $S c h 8$ deals with finite sets \mathcal{A}, \mathcal{B}, a set \mathcal{C}, a function \mathcal{D} from $\operatorname{card} \mathcal{B}$ into \mathcal{B}, and a unary predicate \mathcal{P}, and states that:

There exists a finite 0 -sequence F of \mathbb{N} such that
(i) $\operatorname{dom} F=\operatorname{card} \mathcal{B}$,
(ii) $\overline{\overline{\{g ; g} \text { ranges over functions from } \mathcal{A} \text { into } \mathcal{B}: \mathcal{P}[g]\}}=\sum F$,
and
(iii) for every i such that $i \in \operatorname{dom} F$ holds $F(i)=$
$\overline{\overline{\{g ; g} \text { ranges over functions from } \mathcal{A} \text { into } \mathcal{B}: \mathcal{P}[g] \wedge g(\mathcal{C})=\mathcal{D}(i)\}}$ provided the parameters have the following properties:

- \mathcal{D} is onto and one-to-one,
- \mathcal{B} is non empty, and
- $\mathcal{C} \in \mathcal{A}$.

One can prove the following propositions:

$$
\begin{equation*}
k \cdot(n \text { block } k)=\overline{\left.\overline{\left\{f^{\prime}: f^{\prime}\right.} \text { is onto and increasing } \wedge f^{\prime-1}\left(\left\{f^{\prime}(n)\right\}\right) \neq\{n\}\right\}} . \tag{55}
\end{equation*}
$$

$$
\begin{equation*}
(n+1) \operatorname{block}(k+1)=(k+1) \cdot(n \operatorname{block}(k+1))+(n \text { block } k) . \tag{56}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } n \geq 1 \text {, then } n \text { block } 2=\frac{1}{2} \cdot\left(2^{n}-2\right) \tag{57}
\end{equation*}
$$

If $n \geq 2$, then n block $3=\frac{1}{6} \cdot\left(\left(3^{n}-3 \cdot 2^{n}\right)+3\right)$.
If $n \geq 3$, then n block $4=\frac{1}{24} \cdot\left(\left(\left(4^{n}-4 \cdot 3^{n}\right)+6 \cdot 2^{n}\right)-4\right)$.
(60) $3!=6$ and $4!=24$.
$\binom{n}{1}=n$ and $\binom{n}{2}=\frac{n \cdot(n-1)}{2}$ and $\binom{n}{3}=\frac{n \cdot(n-1) \cdot(n-2)}{6}$ and $\binom{n}{4}=$ $\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3)}{24}$.
(62) $\quad(n+1)$ block $n=\binom{n+1}{2}$.
(63) $\quad(n+2)$ block $n=3 \cdot\binom{n+2}{4}+\binom{n+2}{3}$.
(64) For every function F and for every y holds $\operatorname{rng}\left(F \upharpoonright\left(\operatorname{dom} F \backslash F^{-1}(\{y\})\right)\right)=$ $\operatorname{rng} F \backslash\{y\}$ and for every x such that $x \neq y$ holds $(F \upharpoonright(\operatorname{dom} F \backslash$ $\left.\left.F^{-1}(\{y\})\right)\right)^{-1}(\{x\})=F^{-1}(\{x\})$.
(65) If $\overline{\bar{X}}=k+1$ and $x \in X$, then $\overline{\overline{X \backslash\{x\}}}=k$.

The scheme Sch 9 concerns a unary predicate \mathcal{P} and a binary predicate \mathcal{Q}, and states that:

For every function F such that $\operatorname{rng} F$ is finite holds $\mathcal{P}[F]$
provided the following conditions are met:

- $\mathcal{P}[\emptyset]$, and
- For every function F such that for every x such that $x \in \operatorname{rng} F$ and $\mathcal{Q}[x, F]$ holds $\mathcal{P}\left[F \upharpoonright\left(\operatorname{dom} F \backslash F^{-1}(\{x\})\right)\right]$ holds $\mathcal{P}[F]$.
We now state several propositions:
(66) For every subset N of \mathbb{N} such that N is finite there exists k such that for every n such that $n \in N$ holds $n \leq k$.
(67) Let given X, Y, x, y. Suppose if Y is empty, then X is empty and $x \notin X$. Let F be a function from X into Y. Then there exists a function G from $X \cup\{x\}$ into $Y \cup\{y\}$ such that $G \upharpoonright X=F$ and $G(x)=y$.
(68) Let given X, Y, x, y such that if Y is empty, then X is empty. Let F be a function from X into Y and G be a function from $X \cup\{x\}$ into $Y \cup\{y\}$ such that $G \upharpoonright X=F$ and $G(x)=y$. Then
(i) if F is onto, then G is onto, and
(ii) if $y \notin Y$ and F is one-to-one, then G is one-to-one.
(69) Let N be a finite subset of \mathbb{N}. Then there exists a function O_{1} from N into card N such that O_{1} is bijective and for all n, k such that $n \in \operatorname{dom} O_{1}$ and $k \in \operatorname{dom} O_{1}$ and $n<k$ holds $O_{1}(n)<O_{1}(k)$.
(70) Let X, Y be finite sets and F be a function from X into Y. If $\operatorname{card} X=$ card Y, then F is onto iff F is one-to-one.
(71) Let F, G be functions and given y. Suppose $y \in \operatorname{rng}(G \cdot F)$ and G is one-to-one. Then there exists x such that $x \in \operatorname{dom} G$ and $x \in \operatorname{rng} F$ and $G^{-1}(\{y\})=\{x\}$ and $F^{-1}(\{x\})=(G \cdot F)^{-1}(\{y\})$.

Let us consider N_{1}, K_{1} and let f be a function from N_{1} into K_{1}. We say that f is increasing if and only if:
(Def. 5) For all l, m such that $l \in \operatorname{rng} f$ and $m \in \operatorname{rng} f$ and $l<m$ holds $\min ^{*}\left(f^{-1}(\{l\})\right)<\min ^{*}\left(f^{-1}(\{m\})\right)$.
The following four propositions are true:
(72) For every function F from N_{1} into K_{1} such that F is increasing holds $\min ^{*} \operatorname{rng} F=F\left(\min ^{*} \operatorname{dom} F\right)$.
(73) Let F be a function from N_{1} into K_{1}. Suppose $\operatorname{rng} F$ is finite. Then there exists a function I from N_{1} into K_{1} and there exists a permutation P of $\operatorname{rng} F$ such that $F=P \cdot I$ and $\operatorname{rng} F=\operatorname{rng} I$ and I is increasing.
(74) Let F be a function from N_{1} into K_{1}. Suppose rng F is finite. Let I_{1}, I_{2} be functions from N_{1} into M_{1} and P_{1}, P_{2} be functions. Suppose that P_{1} is one-to-one and P_{2} is one-to-one and $\operatorname{rng} I_{1}=\operatorname{rng} I_{2}$ and $\operatorname{rng} I_{1}=\operatorname{dom} P_{1}$ and $\operatorname{dom} P_{1}=\operatorname{dom} P_{2}$ and $F=P_{1} \cdot I_{1}$ and $F=P_{2} \cdot I_{2}$ and I_{1} is increasing and I_{2} is increasing. Then $P_{1}=P_{2}$ and $I_{1}=I_{2}$.
(75) Let F be a function from N_{1} into K_{1}. Suppose $\operatorname{rng} F$ is finite. Let I_{1}, I_{2} be functions from N_{1} into K_{1} and P_{1}, P_{2} be permutations of $\operatorname{rng} F$. Suppose $F=P_{1} \cdot I_{1}$ and $F=P_{2} \cdot I_{2}$ and $\operatorname{rng} F=\operatorname{rng} I_{1}$ and $\operatorname{rng} F=\operatorname{rng} I_{2}$ and I_{1} is increasing and I_{2} is increasing. Then $P_{1}=P_{2}$ and $I_{1}=I_{2}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[4] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45-48, 2005.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635-642, 1991.
[12] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[13] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[16] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[17] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[19] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[22] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

