Limit of Sequence of Subsets

Bo Zhang Shinshu University Nagano, Japan Hiroshi Yamazaki Shinshu University Nagano, Japan Yatsuka Nakamura Shinshu University Nagano, Japan

Summary. A concept of "limit of sequence of subsets" is defined here. This article contains the following items: 1. definition of the superior sequence and the inferior sequence of sets, 2. definition of the superior limit and the inferior limit of sets, and additional properties for the sigma-field of sets, 3. definition of the limit value of a convergent sequence of sets, and additional properties for the sigma-field of sets.

MML identifier: SETLIM_1, version: 7.5.01 4.39.921

The notation and terminology used here are introduced in the following papers: [9], [1], [13], [2], [10], [6], [11], [4], [12], [14], [8], [7], [3], and [5].

For simplicity, we adopt the following rules: n, m, k, k_1, k_2 denote natural numbers, x, X, Y, Z denote sets, A denotes a subset of X, B, A_1, A_2, A_3 denote sequences of subsets of X, S_1 denotes a σ -field of subsets of X, and S, S_2, S_3, S_4 denote sequences of subsets of S_1 .

Next we state a number of propositions:

- (1) For every function f from \mathbb{N} into Y and for every n holds $\{f(k) : n \leq k\} \neq \emptyset$.
- (2) For every function f from N into Y holds $f(n+m) \in \{f(k) : n \le k\}$.
- (3) For every function f from \mathbb{N} into Y holds $\{f(k_1) : n \le k_1\} = \{f(k_2) : n+1 \le k_2\} \cup \{f(n)\}.$
- (4) Let f be a function from \mathbb{N} into Y. Then for every k_1 holds $x \in f(n+k_1)$ if and only if for every Z such that $Z \in \{f(k_2) : n \leq k_2\}$ holds $x \in Z$.
- (5) For every non empty set Y and for every function f from N into Y holds $x \in \operatorname{rng} f$ iff there exists n such that x = f(n).
- (6) For every non empty set Y and for every function f from N into Y holds rng $f = \{f(k)\}.$

C 2005 University of Białystok ISSN 1426-2630

- (7) For every non empty set Y and for every function f from N into Y holds $\operatorname{rng}(f \uparrow k) = \{f(n) : k \leq n\}.$
- (8) $x \in \bigcap \operatorname{rng} B$ iff for every *n* holds $x \in B(n)$.
- (9) Intersection $B = \bigcap \operatorname{rng} B$.
- (10) Intersection $B \subseteq \bigcup B$.
- (11) If for every n holds B(n) = A, then $\bigcup B = A$.
- (12) If for every *n* holds B(n) = A, then Intersection B = A.
- (13) If B is constant, then $\bigcup B =$ Intersection B.
- (14) If B is constant and the value of B = A, then for every n holds $\bigcup \{B(k) : n \le k\} = A$.
- (15) If B is constant and the value of B = A, then for every n holds $\bigcap \{B(k) : n \le k\} = A$.
- (16) Let given X, B and f be a function. Suppose dom $f = \mathbb{N}$ and for every n holds $f(n) = \bigcap \{B(k) : n \leq k\}$. Then f is a sequence of subsets of X.
- (17) Let X be a set, B be a sequence of subsets of X, and f be a function. Suppose dom $f = \mathbb{N}$ and for every n holds $f(n) = \bigcup \{B(k) : n \leq k\}$. Then f is a function from \mathbb{N} into 2^X .

Let us consider X, B. We say that B is monotone if and only if:

(Def. 1) B is non-decreasing or non-increasing.

Let B be a function. The inferior setsequence B yields a function and is defined by the conditions (Def. 2).

- (Def. 2)(i) dom (the inferior setsequence B) = \mathbb{N} , and
 - (ii) for every *n* holds (the inferior setsequence B) $(n) = \bigcap \{B(k) : n \le k\}$.

Let X be a set and let B be a sequence of subsets of X. Then the inferior sets equence B is a sequence of subsets of X.

Let B be a function. The superior setsequence B yields a function and is defined by the conditions (Def. 3).

(Def. 3)(i) dom (the superior setsequence B) = \mathbb{N} , and

(ii) for every *n* holds (the superior setsequence B) $(n) = \bigcup \{B(k) : n \le k\}$.

Let X be a set and let B be a sequence of subsets of X. Then the superior sets equence B is a sequence of subsets of X.

Next we state several propositions:

- (18) (The inferior sets equence B)(0) = Intersection B.
- (19) (The superior setsequence B)(0) = $\bigcup B$.
- (20) $x \in (\text{the inferior sets equence } B)(n)$ iff for every k holds $x \in B(n+k)$.
- (21) $x \in (\text{the superior sets} equence B)(n)$ iff there exists k such that $x \in B(n+k)$.
- (22) (The inferior sets equence B)(n) = (the inferior set sequence B) $(n+1) \cap B(n)$.

348

BO ZHANG et al.

- (23) (The superior sets equence B)(n) = (the superior sets equence B) $(n+1) \cup B(n)$.
- (24) The inferior sets equence B is non-decreasing.
- (25) The superior sets equence B is non-increasing.
- (26) The inferior sets equence B is monotone and the superior sets equence B is monotone.

Let X be a set and let A be a sequence of subsets of X. Observe that the inferior sets equence A is non-decreasing.

Let X be a set and let A be a sequence of subsets of X. Observe that the superior sets equence A is non-increasing.

The following propositions are true:

- (27) Intersection $B \subseteq (\text{the inferior setsequence } B)(n)$.
- (28) (The superior sets equence B) $(n) \subseteq \bigcup B$.
- (29) For all B, n holds $\{B(k) : n \le k\}$ is a family of subsets of X.
- (30) $\bigcup B = (\text{Intersection Complement } B)^c$.
- (31) (The inferior sets equence B(n) = (the superior sets equence Complement $B(n)^{c}$.
- (32) (The superior setsequence B)(n) = (the inferior setsequence Complement B) $(n)^{c}$.
- (33) Complement (the inferior sets equence B) = the superior sets equence Complement B.
- (34) Complement (the superior sets equence B) = the inferior sets equence Complement B.
- (35) Suppose that for every n holds $A_3(n) = A_1(n) \cup A_2(n)$. Let given n. Then (the inferior setsequence $B(n) \cup$ (the inferior setsequence $A_2(n) \subseteq$ (the inferior setsequence $A_3(n)$.
- (36) Suppose that for every n holds $A_3(n) = A_1(n) \cap A_2(n)$. Let given n. Then (the inferior setsequence $A_3(n) =$ (the inferior setsequence $A_1(n) \cap$ (the inferior setsequence $A_2(n)$.
- (37) Suppose that for every n holds $A_3(n) = A_1(n) \cup A_2(n)$. Let given n. Then (the superior setsequence $A_3(n) =$ (the superior setsequence $A_1(n) \cup$ (the superior setsequence $A_2(n)$.
- (38) Suppose that for every n holds $A_3(n) = A_1(n) \cap A_2(n)$. Let given n. Then (the superior setsequence $A_3(n) \subseteq$ (the superior setsequence $A_1(n) \cap$ (the superior setsequence $A_2(n)$.
- (39) If B is constant and the value of B = A, then for every n holds (the inferior setsequence B)(n) = A.
- (40) If B is constant and the value of B = A, then for every n holds (the superior setsequence B)(n) = A.

BO ZHANG et al.

- (41) If B is non-decreasing, then $B(n) \subseteq$ (the superior setsequence B)(n+1).
- (42) If B is non-decreasing, then (the superior sets equence B)(n) = (the superior sets equence B)(n + 1).
- (43) If B is non-decreasing, then (the superior setsequence B) $(n) = \bigcup B$.
- (44) If B is non-decreasing, then Intersection (the superior sets equence B) = $\bigcup B$.
- (45) If B is non-decreasing, then $B(n) \subseteq$ (the inferior setsequence B)(n+1).
- (46) If B is non-decreasing, then (the inferior setsequence B)(n) = B(n).
- (47) If B is non-decreasing, then the inferior sets equence B = B.
- (48) If B is non-increasing, then (the superior sets equence B) $(n+1) \subseteq B(n)$.
- (49) If B is non-increasing, then (the superior sets equence B)(n) = B(n).
- (50) If B is non-increasing, then the superior sets equence B = B.
- (51) If B is non-increasing, then (the inferior setsequence B) $(n+1) \subseteq B(n)$.
- (52) If B is non-increasing, then (the inferior setsequence B)(n) = (the inferior setsequence B)(n + 1).
- (53) If B is non-increasing, then (the inferior sets equence B)(n) = Intersection B.
- (54) If B is non-increasing, then \bigcup (the inferior setsequence B) = Intersection B.

Let X be a set and let B be a sequence of subsets of X. Then $\liminf B$ can be characterized by the condition:

(Def. 4) $\liminf B = \bigcup$ (the inferior setsequence B).

Let X be a set and let B be a sequence of subsets of X. Then $\limsup B$ can be characterized by the condition:

(Def. 5) $\limsup B =$ Intersection (the superior setsequence B).

Let X be a set and let B be a sequence of subsets of X. We introduce $\lim B$ as a synonym of $\limsup B$.

Next we state a number of propositions:

- (55) Intersection $B \subseteq \liminf B$.
- (56) $\liminf B = \lim (\text{the inferior setsequence } B).$
- (57) $\limsup B = \lim (\text{the superior sets equence } B).$
- (58) $\limsup B = (\liminf \operatorname{Complement} B)^{c}$.
- (59) If B is constant and the value of B = A, then B is convergent and $\lim B = A$ and $\lim \inf B = A$ and $\limsup B = A$.
- (60) If B is non-decreasing, then $\limsup B = \bigcup B$.
- (61) If B is non-decreasing, then $\liminf B = \bigcup B$.
- (62) If B is non-increasing, then $\limsup B = \operatorname{Intersection} B$.
- (63) If B is non-increasing, then $\liminf B = \operatorname{Intersection} B$.

350

- (64) If B is non-decreasing, then B is convergent and $\lim B = \bigcup B$.
- (65) If B is non-increasing, then B is convergent and $\lim B = \text{Intersection } B$.
- (66) If B is monotone, then B is convergent.

Let X be a set, let S_1 be a σ -field of subsets of X, and let S be a sequence of subsets of S_1 . Let us observe that S is constant if and only if:

(Def. 6) There exists an element A of S_1 such that for every n holds S(n) = A.

Let X be a set, let S_1 be a σ -field of subsets of X, and let S be a sequence of subsets of S_1 . Then the inferior sets equence S is a sequence of subsets of S_1 .

Let X be a set, let S_1 be a σ -field of subsets of X, and let S be a sequence of subsets of S_1 . Then the superior sets equence S is a sequence of subsets of S_1 .

The following propositions are true:

- (67) $x \in \limsup S$ iff for every *n* there exists *k* such that $x \in S(n+k)$.
- (68) $x \in \liminf S$ iff there exists n such that for every k holds $x \in S(n+k)$.
- (69) Intersection $S \subseteq \liminf S$.
- (70) $\limsup S \subseteq \bigcup S$.
- (71) $\liminf S \subseteq \limsup S.$

Let X be a set, let S_1 be a σ -field of subsets of X, and let S be a sequence of subsets of S_1 . The functor $S^{\mathbf{c}}$ yields a sequence of subsets of S_1 and is defined by:

(Def. 7) $S^{\mathbf{c}} = \text{Complement } S.$

Next we state a number of propositions:

- (72) $\liminf S = (\limsup(S^{\mathbf{c}}))^{\mathbf{c}}.$
- (73) $\limsup S = (\liminf (S^{\mathbf{c}}))^{\mathbf{c}}.$
- (74) If for every n holds $S_4(n) = S_2(n) \cup S_3(n)$, then $\liminf S_2 \cup \liminf S_3 \subseteq \liminf S_4$.
- (75) If for every n holds $S_4(n) = S_2(n) \cap S_3(n)$, then $\liminf S_4 = \liminf S_2 \cap \liminf S_3$.
- (76) If for every n holds $S_4(n) = S_2(n) \cup S_3(n)$, then $\limsup S_4 = \limsup S_2 \cup \limsup S_3$.
- (77) If for every *n* holds $S_4(n) = S_2(n) \cap S_3(n)$, then $\limsup S_4 \subseteq \limsup S_2 \cap \limsup S_3$.
- (78) If S is constant and the value of S = A, then S is convergent and $\lim S = A$ and $\lim \inf S = A$ and $\limsup S = A$.
- (79) If S is non-decreasing, then $\limsup S = \bigcup S$.
- (80) If S is non-decreasing, then $\liminf S = \bigcup S$.
- (81) If S is non-decreasing, then S is convergent and $\lim S = \bigcup S$.
- (82) If S is non-increasing, then $\limsup S = \operatorname{Intersection} S$.
- (83) If S is non-increasing, then $\liminf S = \operatorname{Intersection} S$.

BO ZHANG et al.

- If S is non-increasing, then S is convergent and $\lim S = \text{Intersection } S$. (84)
- (85) If S is monotone, then S is convergent.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe*matics*, 1(1):41–46, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-[2]65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, [4]1990.
- [5] Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003.
- Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, [6]1(3):471-475, 1990.
- Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.

[8] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

- [9] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [10]Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [11] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213–225, 1997.
 [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received March 15, 2005