Limit of Sequence of Subsets

Bo Zhang
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Summary. A concept of "limit of sequence of subsets" is defined here. This article contains the following items: 1. definition of the superior sequence and the inferior sequence of sets, 2 . definition of the superior limit and the inferior limit of sets, and additional properties for the sigma-field of sets, 3. definition of the limit value of a convergent sequence of sets, and additional properties for the sigma-field of sets.

MML identifier: SETLIM_1, version: 7.5.01 4.39.921

The notation and terminology used here are introduced in the following papers: [9], [1], [13], [2], [10], [6], [11], [4], [12], [14], [8], [7], [3], and [5].

For simplicity, we adopt the following rules: n, m, k, k_{1}, k_{2} denote natural numbers, x, X, Y, Z denote sets, A denotes a subset of $X, B, A_{1}, A_{2}, A_{3}$ denote sequences of subsets of X, S_{1} denotes a σ-field of subsets of X, and S, S_{2}, S_{3}, S_{4} denote sequences of subsets of S_{1}.

Next we state a number of propositions:
(1) For every function f from \mathbb{N} into Y and for every n holds $\{f(k): n \leq$ $k\} \neq \emptyset$.
(2) For every function f from \mathbb{N} into Y holds $f(n+m) \in\{f(k): n \leq k\}$.
(3) For every function f from \mathbb{N} into Y holds $\left\{f\left(k_{1}\right): n \leq k_{1}\right\}=\left\{f\left(k_{2}\right)\right.$: $\left.n+1 \leq k_{2}\right\} \cup\{f(n)\}$.
(4) Let f be a function from \mathbb{N} into Y. Then for every k_{1} holds $x \in f\left(n+k_{1}\right)$ if and only if for every Z such that $Z \in\left\{f\left(k_{2}\right): n \leq k_{2}\right\}$ holds $x \in Z$.
(5) For every non empty set Y and for every function f from \mathbb{N} into Y holds $x \in \operatorname{rng} f$ iff there exists n such that $x=f(n)$.
(6) For every non empty set Y and for every function f from \mathbb{N} into Y holds $\operatorname{rng} f=\{f(k)\}$.
(7) For every non empty set Y and for every function f from \mathbb{N} into Y holds $\operatorname{rng}(f \uparrow k)=\{f(n): k \leq n\}$.
(8) $\quad x \in \bigcap \operatorname{rng} B$ iff for every n holds $x \in B(n)$.
(9) Intersection $B=\bigcap \operatorname{rng} B$.
(10) Intersection $B \subseteq \bigcup B$.
(11) If for every n holds $B(n)=A$, then $\bigcup B=A$.
(12) If for every n holds $B(n)=A$, then Intersection $B=A$.
(13) If B is constant, then $\bigcup B=\operatorname{Intersection} B$.
(14) If B is constant and the value of $B=A$, then for every n holds $\bigcup\{B(k)$: $n \leq k\}=A$.
(15) If B is constant and the value of $B=A$, then for every n holds $\bigcap\{B(k)$: $n \leq k\}=A$.
(16) Let given X, B and f be a function. Suppose $\operatorname{dom} f=\mathbb{N}$ and for every n holds $f(n)=\bigcap\{B(k): n \leq k\}$. Then f is a sequence of subsets of X.
(17) Let X be a set, B be a sequence of subsets of X, and f be a function. Suppose $\operatorname{dom} f=\mathbb{N}$ and for every n holds $f(n)=\bigcup\{B(k): n \leq k\}$. Then f is a function from \mathbb{N} into 2^{X}.
Let us consider X, B. We say that B is monotone if and only if:
(Def. 1) B is non-decreasing or non-increasing.
Let B be a function. The inferior setsequence B yields a function and is defined by the conditions (Def. 2).
(Def. 2)(i) \quad dom (the inferior setsequence $B)=\mathbb{N}$, and
(ii) for every n holds (the inferior setsequence $B)(n)=\bigcap\{B(k): n \leq k\}$.

Let X be a set and let B be a sequence of subsets of X. Then the inferior setsequence B is a sequence of subsets of X.

Let B be a function. The superior setsequence B yields a function and is defined by the conditions (Def. 3).
(Def. 3)(i) $\quad \operatorname{dom}($ the superior setsequence $B)=\mathbb{N}$, and
(ii) for every n holds (the superior setsequence $B)(n)=\bigcup\{B(k): n \leq k\}$.

Let X be a set and let B be a sequence of subsets of X. Then the superior setsequence B is a sequence of subsets of X.

Next we state several propositions:
(18) (The inferior setsequence $B)(0)=$ Intersection B.
(19) (The superior setsequence $B)(0)=\bigcup B$.
(20) $\quad x \in($ the inferior setsequence $B)(n)$ iff for every k holds $x \in B(n+k)$.
(21) $\quad x \in($ the superior setsequence $B)(n)$ iff there exists k such that $x \in$ $B(n+k)$.
(22) (The inferior setsequence $B)(n)=($ the inferior setsequence $B)(n+1) \cap$ $B(n)$.
(23) (The superior setsequence $B)(n)=($ the superior setsequence $B)(n+1) \cup$ $B(n)$.
(24) The inferior setsequence B is non-decreasing.
(25) The superior setsequence B is non-increasing.
(26) The inferior setsequence B is monotone and the superior setsequence B is monotone.
Let X be a set and let A be a sequence of subsets of X. Observe that the inferior setsequence A is non-decreasing.

Let X be a set and let A be a sequence of subsets of X. Observe that the superior setsequence A is non-increasing.

The following propositions are true:
(27) Intersection $B \subseteq($ the inferior setsequence $B)(n)$.
(28) (The superior setsequence $B)(n) \subseteq \bigcup B$.
(29) For all B, n holds $\{B(k): n \leq k\}$ is a family of subsets of X.
(30) $\cup B=(\text { Intersection Complement } B)^{\mathrm{c}}$.
(31) (The inferior setsequence $B)(n)=$ (the superior setsequence Complement $B)(n)^{\mathrm{c}}$.
(32) (The superior setsequence $B)(n)=$ (the inferior setsequence Complement $B)(n)^{\mathrm{c}}$.
(33) Complement (the inferior setsequence B) $=$ the superior setsequence Complement B.
(34) Complement (the superior setsequence B) $=$ the inferior setsequence Complement B.
(35) Suppose that for every n holds $A_{3}(n)=A_{1}(n) \cup A_{2}(n)$. Let given n. Then (the inferior setsequence $B)(n) \cup\left(\right.$ the inferior setsequence $\left.A_{2}\right)(n) \subseteq$ (the inferior setsequence $\left.A_{3}\right)(n)$.
(36) Suppose that for every n holds $A_{3}(n)=A_{1}(n) \cap A_{2}(n)$. Let given n. Then (the inferior setsequence $\left.A_{3}\right)(n)=\left(\right.$ the inferior setsequence $\left.A_{1}\right)(n) \cap$ (the inferior setsequence $\left.A_{2}\right)(n)$.
(37) Suppose that for every n holds $A_{3}(n)=A_{1}(n) \cup A_{2}(n)$. Let given n. Then $\left(\right.$ the superior setsequence $\left.A_{3}\right)(n)=\left(\right.$ the superior setsequence $\left.A_{1}\right)(n) \cup($ the superior setsequence $\left.A_{2}\right)(n)$.
(38) Suppose that for every n holds $A_{3}(n)=A_{1}(n) \cap A_{2}(n)$. Let given n. Then (the superior setsequence $\left.A_{3}\right)(n) \subseteq\left(\right.$ the superior setsequence $\left.A_{1}\right)(n) \cap($ the superior setsequence $\left.A_{2}\right)(n)$.
(39) If B is constant and the value of $B=A$, then for every n holds (the inferior setsequence $B)(n)=A$.
(40) If B is constant and the value of $B=A$, then for every n holds (the superior setsequence $B)(n)=A$.
(41) If B is non-decreasing, then $B(n) \subseteq($ the superior setsequence $B)(n+1)$.
(42) If B is non-decreasing, then (the superior setsequence $B)(n)=$ (the superior setsequence $B)(n+1)$.
(43) If B is non-decreasing, then (the superior setsequence $B)(n)=\bigcup B$.
(44) If B is non-decreasing, then Intersection (the superior setsequence B) $=$ $\bigcup B$.
(45) If B is non-decreasing, then $B(n) \subseteq($ the inferior setsequence $B)(n+1)$.
(46) If B is non-decreasing, then (the inferior setsequence $B)(n)=B(n)$.
(47) If B is non-decreasing, then the inferior setsequence $B=B$.
(48) If B is non-increasing, then (the superior setsequence $B)(n+1) \subseteq B(n)$.
(49) If B is non-increasing, then (the superior setsequence $B)(n)=B(n)$.
(50) If B is non-increasing, then the superior setsequence $B=B$.
(51) If B is non-increasing, then (the inferior setsequence $B)(n+1) \subseteq B(n)$.
(52) If B is non-increasing, then (the inferior setsequence $B)(n)=($ the inferior setsequence $B)(n+1)$.
(53) If B is non-increasing, then (the inferior setsequence $B)(n)=$ Intersection B.
(54) If B is non-increasing, then \bigcup (the inferior setsequence $B)=$ Intersection B.
Let X be a set and let B be a sequence of subsets of X. Then $\lim \inf B$ can be characterized by the condition:
(Def. 4) $\quad \lim \inf B=\bigcup$ (the inferior setsequence B).
Let X be a set and let B be a sequence of subsets of X. Then $\lim \sup B$ can be characterized by the condition:
(Def. 5) $\limsup B=$ Intersection (the superior setsequence B).
Let X be a set and let B be a sequence of subsets of X. We introduce $\lim B$ as a synonym of $\lim \sup B$.

Next we state a number of propositions:
(55) Intersection $B \subseteq \lim \inf B$.
(56) $\lim \inf B=\lim$ (the inferior setsequence B).
(57) $\lim \sup B=\lim$ (the superior setsequence B).
(58) $\lim \sup B=(\liminf \text { Complement } B)^{\mathrm{c}}$.
(59) If B is constant and the value of $B=A$, then B is convergent and $\lim B=A$ and $\lim \inf B=A$ and $\limsup B=A$.
(60) If B is non-decreasing, then $\lim \sup B=\bigcup B$.
(61) If B is non-decreasing, then $\liminf B=\bigcup B$.
(62) If B is non-increasing, then $\lim \sup B=\operatorname{Intersection} B$.
(63) If B is non-increasing, then $\lim \inf B=$ Intersection B.
(64) If B is non-decreasing, then B is convergent and $\lim B=\bigcup B$.
(65) If B is non-increasing, then B is convergent and $\lim B=\operatorname{Intersection} B$.
(66) If B is monotone, then B is convergent.

Let X be a set, let S_{1} be a σ-field of subsets of X, and let S be a sequence of subsets of S_{1}. Let us observe that S is constant if and only if:
(Def. 6) There exists an element A of S_{1} such that for every n holds $S(n)=A$.
Let X be a set, let S_{1} be a σ-field of subsets of X, and let S be a sequence of subsets of S_{1}. Then the inferior setsequence S is a sequence of subsets of S_{1}.

Let X be a set, let S_{1} be a σ-field of subsets of X, and let S be a sequence of subsets of S_{1}. Then the superior setsequence S is a sequence of subsets of S_{1}.

The following propositions are true:
(67) $\quad x \in \lim \sup S$ iff for every n there exists k such that $x \in S(n+k)$.
(68) $\quad x \in \lim \inf S$ iff there exists n such that for every k holds $x \in S(n+k)$.
(69) Intersection $S \subseteq \liminf S$.
(70) $\lim \sup S \subseteq \bigcup S$.
(71) $\liminf S \subseteq \lim \sup S$.

Let X be a set, let S_{1} be a σ-field of subsets of X, and let S be a sequence of subsets of S_{1}. The functor S^{c} yields a sequence of subsets of S_{1} and is defined by:
(Def. 7) $\quad S^{\mathbf{c}}=$ Complement S.
Next we state a number of propositions:
(72) $\liminf S=\left(\limsup \left(S^{\mathbf{c}}\right)\right)^{\mathbf{c}}$.
(73) $\limsup S=\left(\liminf \left(S^{\mathbf{c}}\right)\right)^{\mathbf{c}}$.
(74) If for every n holds $S_{4}(n)=S_{2}(n) \cup S_{3}(n)$, then $\liminf S_{2} \cup \liminf S_{3} \subseteq$ $\liminf S_{4}$.
(75) If for every n holds $S_{4}(n)=S_{2}(n) \cap S_{3}(n)$, then $\liminf S_{4}=\liminf S_{2} \cap$ $\liminf S_{3}$.
(76) If for every n holds $S_{4}(n)=S_{2}(n) \cup S_{3}(n)$, then $\lim \sup S_{4}=\lim \sup S_{2} \cup$ $\limsup S_{3}$.
(77) If for every n holds $S_{4}(n)=S_{2}(n) \cap S_{3}(n)$, then $\lim \sup S_{4} \subseteq \lim \sup S_{2} \cap$ $\lim \sup S_{3}$.
(78) If S is constant and the value of $S=A$, then S is convergent and $\lim S=A$ and $\liminf S=A$ and $\lim \sup S=A$.
(79) If S is non-decreasing, then $\lim \sup S=\bigcup S$.
(80) If S is non-decreasing, then $\lim \inf S=\bigcup S$.
(81) If S is non-decreasing, then S is convergent and $\lim S=\bigcup S$.
(82) If S is non-increasing, then $\lim \sup S=$ Intersection S.
(83) If S is non-increasing, then $\lim \inf S=\operatorname{Intersection} S$.
(84) If S is non-increasing, then S is convergent and $\lim S=$ Intersection S.
(85) If S is monotone, then S is convergent.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[5] Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003.
[6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[7] Andrzej Nẹdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[8] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[9] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213-225, 1997.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

