Properties of Connected Subsets of the Real Line

Artur Korniłowicz ${ }^{1}$
Institute of Computer Science
University of Białystok
Sosnowa 64, 15-887 Białystok, Poland

MML identifier: RCOMP_3, version: 7.5.01 4.39.921

The papers [31], [36], [3], [37], [27], [18], [9], [38], [10], [22], [14], [4], [34], [5], [39], [1], [33], [30], [2], [23], [21], [6], [20], [35], [29], [24], [28], [40], [17], [13], [12], [26], [15], [8], [11], [16], [19], [25], [32], and [7] provide the notation and terminology for this paper.

1. Preliminaries

Let X be a non empty set. Observe that Ω_{X} is non empty.
Let us observe that every subspace of the metric space of real numbers is real-membered.

Let S be a real-membered 1-sorted structure. One can check that the carrier of S is real-membered.

One can check that there exists a real-membered set which is non empty, finite, lower bounded, and upper bounded.

We now state three propositions:
(1) For every non empty lower bounded real-membered set X and for every closed subset Y of \mathbb{R} such that $X \subseteq Y$ holds $\inf X \in Y$.
(2) For every non empty upper bounded real-membered set X and for every closed subset Y of \mathbb{R} such that $X \subseteq Y$ holds $\sup X \in Y$.
(3) For all subsets X, Y of \mathbb{R} holds $\overline{X \cup Y}=\bar{X} \cup \bar{Y}$.

[^0]
2. Intervals

In the sequel a, b, r, s are real numbers.
Let us consider r, s. One can check the following observations:

* $[r, s[$ is bounded,
* $\quad r, s]$ is bounded, and
* $] r, s$ [is bounded.

Let us consider r, s. One can verify the following observations:

* $[r, s]$ is connected,
* $[r, s[$ is connected,
* $] r, s]$ is connected, and
* $] r, s[$ is connected.

Let us observe that there exists a subset of \mathbb{R} which is open, bounded, connected, and non empty.

One can prove the following propositions:
(4) If $r<s$, then $\inf [r, s[=r$.
(5) If $r<s$, then $\sup [r, s[=s$.
(6) If $r<s$, then inf $] r, s]=r$.
(7) If $r<s$, then $\sup] r, s]=s$.
(8) If $a \leq b$ or $r \leq s$ and if $[a, b]=[r, s]$, then $a=r$ and $b=s$.
(9) If $a<b$ or $r<s$ and if $] a, b[=] r, s[$, then $a=r$ and $b=s$.
(10) If $a<b$ or $r<s$ and if $] a, b]=] r, s]$, then $a=r$ and $b=s$.
(11) If $a<b$ or $r<s$ and if $[a, b[=[r, s[$, then $a=r$ and $b=s$.
(12) If $a<b$ and $[a, b[\subseteq[r, s]$, then $r \leq a$ and $b \leq s$.
(13) If $a<b$ and $[a, b[\subseteq[r, s[$, then $r \leq a$ and $b \leq s$.
(14) If $a<b$ and $] a, b] \subseteq[r, s]$, then $r \leq a$ and $b \leq s$.
(15) If $a<b$ and $] a, b] \subseteq] r, s]$, then $r \leq a$ and $b \leq s$.

3. Halflines

One can prove the following propositions:
(16) $\left.[a, b]^{c}=\right]-\infty, a[\cup] b,+\infty[$.
(17) $\left.] a, b\left[{ }^{\mathrm{c}}=\right]-\infty, a\right] \cup[b,+\infty[$.
(18) $\quad\left[a, b\left[^{\mathrm{c}}=\right]-\infty, a[\cup[b,+\infty[\right.$.
(19) $\left.\left.\left.] a, b]^{c}=\right]-\infty, a\right] \cup\right] b,+\infty[$.
(20) If $a \leq b$, then $[a, b] \cap(]-\infty, a] \cup[b,+\infty[)=\{a, b\}$.

Let us consider a. One can verify the following observations:

* $]-\infty, a]$ is non lower bounded, upper bounded, and connected,
* $\quad]-\infty, a[$ is non lower bounded, upper bounded, and connected,
* $[a,+\infty[$ is lower bounded, non upper bounded, and connected, and
* $\quad] a,+\infty[$ is lower bounded, non upper bounded, and connected.

The following propositions are true:
(21) $\sup]-\infty, a]=a$.
(22) $\sup]-\infty, a[=a$.
(23) $\inf [a,+\infty[=a$.
(24) $\inf] a,+\infty[=a$.

4. Connectedness

Let us observe that $\Omega_{\mathbb{R}}$ is connected, non lower bounded, and non upper bounded.

One can prove the following propositions:
(25) For every bounded connected subset X of \mathbb{R} such that $\inf X \in X$ and $\sup X \in X$ holds $X=[\inf X, \sup X]$.
(26) For every bounded subset X of \mathbb{R} such that $\inf X \notin X$ holds $X \subseteq$ $] \inf X, \sup X]$.
(27) For every bounded connected subset X of \mathbb{R} such that $\inf X \notin X$ and $\sup X \in X$ holds $X=] \inf X, \sup X]$.
(28) For every bounded subset X of \mathbb{R} such that $\sup X \notin X$ holds $X \subseteq$ $[\inf X, \sup X[$.
(29) For every bounded connected subset X of \mathbb{R} such that $\inf X \in X$ and $\sup X \notin X$ holds $X=[\inf X, \sup X[$.
(30) For every bounded subset X of \mathbb{R} such that $\inf X \notin X$ and $\sup X \notin X$ holds $X \subseteq] \inf X, \sup X[$.
(31) For every non empty bounded connected subset X of \mathbb{R} such that inf $X \notin$ X and $\sup X \notin X$ holds $X=] \inf X, \sup X[$.
(32) For every subset X of \mathbb{R} such that X is upper bounded holds $X \subseteq$ $]-\infty, \sup X]$.
(33) For every connected subset X of \mathbb{R} such that X is not lower bounded and X is upper bounded and $\sup X \in X$ holds $X=]-\infty, \sup X]$.
(34) For every subset X of \mathbb{R} such that X is upper bounded and $\sup X \notin X$ holds $X \subseteq]-\infty, \sup X[$.
(35) For every non empty connected subset X of \mathbb{R} such that X is not lower bounded and X is upper bounded and $\sup X \notin X$ holds $X=]-\infty, \sup X[$.
(36) For every subset X of \mathbb{R} such that X is lower bounded holds $X \subseteq$ $[\inf X,+\infty[$.
(37) For every connected subset X of \mathbb{R} such that X is lower bounded and X is not upper bounded and $\inf X \in X$ holds $X=[\inf X,+\infty[$.
(38) For every subset X of \mathbb{R} such that X is lower bounded and $\inf X \notin X$ holds $X \subseteq] \inf X,+\infty[$.
(39) For every non empty connected subset X of \mathbb{R} such that X is lower bounded and X is not upper bounded and $\inf X \notin X$ holds $X=$]inf $X,+\infty[$.
(40) For every connected subset X of \mathbb{R} such that X is not upper bounded and X is not lower bounded holds $X=\mathbb{R}$.
(41) Let X be a connected subset of \mathbb{R}. Then X is empty or $X=\mathbb{R}$ or there exists a such that $X=]-\infty, a]$ or there exists a such that $X=]-\infty, a[$ or there exists a such that $X=[a,+\infty[$ or there exists a such that $X=$ $] a,+\infty[$ or there exist a, b such that $a \leq b$ and $X=[a, b]$ or there exist a, b such that $a<b$ and $X=[a, b[$ or there exist a, b such that $a<b$ and $X=] a, b]$ or there exist a, b such that $a<b$ and $X=] a, b[$.
(42) For every non empty connected subset X of \mathbb{R} such that $r \notin X$ holds $r \leq \inf X$ or $\sup X \leq r$.
(43) Let X, Y be non empty bounded connected subsets of \mathbb{R}. Suppose $\inf X \leq \inf Y$ and $\sup Y \leq \sup X$ and $\operatorname{if} \inf X=\inf Y$ and $\inf Y \in Y$, then $\inf X \in X$ and if $\sup X=\sup Y$ and $\sup Y \in Y$, then $\sup X \in X$. Then $Y \subseteq X$.
Let us observe that there exists a subset of \mathbb{R} which is open, closed, connected, non empty, and non bounded.

5. \mathbb{R}^{1}

Next we state several propositions:
(44) For every subset X of $\mathbb{R}^{\mathbf{1}}$ such that $a \leq b$ and $X=[a, b]$ holds $\operatorname{Fr} X=$ $\{a, b\}$.
(45) For every subset X of $\mathbb{R}^{\mathbf{1}}$ such that $a<b$ and $\left.X=\right] a, b[$ holds $\operatorname{Fr} X=$ $\{a, b\}$.
(46) For every subset X of $\mathbb{R}^{\mathbf{1}}$ such that $a<b$ and $X=[a, b[$ holds $\operatorname{Fr} X=$ $\{a, b\}$.
(47) For every subset X of $\mathbb{R}^{\mathbf{1}}$ such that $a<b$ and $\left.\left.X=\right] a, b\right]$ holds $\operatorname{Fr} X=$ $\{a, b\}$.
(48) For every subset X of $\mathbb{R}^{\mathbf{1}}$ such that $X=[a, b]$ holds $\left.\operatorname{Int} X=\right] a, b[$.
(49) For every subset X of $\mathbb{R}^{\mathbf{1}}$ such that $\left.X=\right] a, b[$ holds Int $X=] a, b[$.
(50) For every subset X of $\mathbb{R}^{\mathbf{1}}$ such that $X=[a, b[$ holds $\operatorname{Int} X=] a, b[$.
(51) For every subset X of $\mathbb{R}^{\mathbf{1}}$ such that $\left.\left.X=\right] a, b\right]$ holds Int $\left.X=\right] a, b[$.

Let X be a convex subset of $\mathbb{R}^{\mathbf{1}}$. Observe that $\mathbb{R}^{\mathbf{1}} \upharpoonright X$ is convex.
Let A be a connected subset of \mathbb{R}. One can check that $R^{1} A$ is convex.
We now state the proposition
(52) Let X be a subset of $\mathbb{R}^{\mathbf{1}}$ and Y be a subset of \mathbb{R}. If $X=Y$, then X is connected iff Y is connected.

6. Topology of Closed Intervals

Let us consider r. Note that $[r, r]_{\mathrm{T}}$ is trivial.
The following four propositions are true:
(53) If $r \leq s$, then every subset of $[r, s]_{\mathrm{T}}$ is a bounded subset of \mathbb{R}.
(54) If $r \leq s$, then for every subset X of $[r, s]_{\mathrm{T}}$ such that $X=[a, b[$ and $r<a$ and $b \leq s$ holds Int $X=] a, b[$.
(55) If $r \leq s$, then for every subset X of $[r, s]_{\mathrm{T}}$ such that $\left.\left.X=\right] a, b\right]$ and $r \leq a$ and $b<s$ holds Int $X=] a, b[$.
(56) Let X be a subset of $[r, s]_{\mathrm{T}}$ and Y be a subset of \mathbb{R}. If $X=Y$, then X is connected iff Y is connected.
Let T be a topological space. Observe that there exists a subset of T which is open, closed, and connected.

Let T be a non empty connected topological space. Observe that there exists a subset of T which is non empty, open, closed, and connected.

We now state the proposition
(57) Suppose $r \leq s$. Let X be an open connected subset of $[r, s]_{\mathrm{T}}$. Then
(i) X is empty, or
(ii) $X=[r, s]$, or
(iii) there exists a real number a such that $r<a$ and $a \leq s$ and $X=[r, a[$, or
(iv) there exists a real number a such that $r \leq a$ and $a<s$ and $X=] a, s]$, or
(v) there exist real numbers a, b such that $r \leq a$ and $a<b$ and $b \leq s$ and $X=] a, b[$.

7. Minimal Cover of Intervals

Next we state three propositions:
(58) Let T be a 1 -sorted structure and F be a family of subsets of T. Then F is a cover of T if and only if F is a cover of Ω_{T}.
(59) Let T be a 1-sorted structure, F be a finite family of subsets of T, and F_{1} be a family of subsets of T. Suppose F is a cover of T and $F_{1}=F \backslash\{X ; X$
ranges over subsets of $T: X \in F \wedge \bigvee_{Y: \text { subset of } T}(Y \in F \wedge X \subseteq Y \wedge X \neq$ $Y)\}$. Then F_{1} is a cover of T.
(60) Let S be a trivial non empty 1 -sorted structure, s be a point of S, and F be a family of subsets of S. If F is a cover of S, then $\{s\} \in F$.
Let T be a topological structure and let F be a family of subsets of T. We say that F is connected if and only if:
(Def. 1) For every subset X of T such that $X \in F$ holds X is connected.
Let T be a topological space. Note that there exists a family of subsets of T which is non empty, open, closed, and connected.

In the sequel n, m are natural numbers and F is a family of subsets of $[r, s]_{\mathrm{T}}$.
The following two propositions are true:
(61) Let L be a topological space and G, G_{1} be families of subsets of L. Suppose G is a cover of L and finite. Let A_{1} be a set such that $G_{1}=$ $G \backslash\left\{X ; X\right.$ ranges over subsets of $L: X \in G \wedge \bigvee_{Y: \text { subset of } L}(Y \in$ $G \wedge X \subseteq Y \wedge X \neq Y)\}$ and $A_{1}=\{C ; C$ ranges over families of subsets of L : C is a cover of $\left.L \wedge C \subseteq G_{1}\right\}$. Then A_{1} has the lower Zorn property w.r.t. $\subseteq_{\left(A_{1}\right)}$.
(62) Let L be a topological space and G, A_{1} be sets. Suppose $A_{1}=\{C ; C$ ranges over families of subsets of $L: C$ is a cover of $L \wedge C \subseteq G\}$. Let M be a set. Suppose M is minimal in $\subseteq_{\left(A_{1}\right)}$ and $M \in$ field $\left(\subseteq_{\left(A_{1}\right)}\right)$. Let A_{4} be a subset of L. Suppose $A_{4} \in M$. Then it is not true that there exist subsets A_{2}, A_{3} of L such that $A_{2} \in M$ and $A_{3} \in M$ and $A_{4} \subseteq A_{2} \cup A_{3}$ and $A_{4} \neq A_{2}$ and $A_{4} \neq A_{3}$.
Let r, s be real numbers and let F be a family of subsets of $[r, s]_{\mathrm{T}}$. Let us assume that F is a cover of $[r, s]_{\mathrm{T}} F$ is open F is connected and $r \leq s$. A finite sequence of elements of $2^{\mathbb{R}}$ is said to be an interval cover of F if it satisfies the conditions (Def. 2).
(Def. 2)(i) rng it $\subseteq F$,
(ii) \bigcup rng it $=[r, s]$,
(iii) for every natural number n such that $1 \leq n$ holds if $n \leq$ len it, then it_{n} is non empty and if $n+1 \leq$ lenit, then $\inf \left(\mathrm{it}_{n}\right) \leq \inf \left(\mathrm{it}_{n+1}\right)$ and $\sup \left(\mathrm{it}_{n}\right) \leq \sup \left(\mathrm{it}_{n+1}\right)$ and $\inf \left(\mathrm{it}_{n+1}\right)<\sup \left(\mathrm{it}_{n}\right)$ and if $n+2 \leq$ len it, then $\sup \left(\mathrm{it}_{n}\right) \leq \inf \left(\mathrm{it}_{n+2}\right)$,
(iv) if $[r, s] \in F$, then it $=\langle[r, s]\rangle$, and
(v) if $[r, s] \notin F$, then there exists a real number p such that $r<p$ and $p \leq s$ and $\operatorname{it}(1)=[r, p[$ and there exists a real number p such that $r \leq p$ and $p<s$ and $\operatorname{it}($ len it $)=] p, s]$ and for every natural number n such that $1<n$ and $n<$ len it there exist real numbers p, q such that $r \leq p$ and $p<q$ and $q \leq s$ and it $(n)=] p, q[$.
We now state the proposition
(63) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$ and $[r, s] \in F$, then $\langle[r, s]\rangle$ is an interval cover of F.
In the sequel C denotes an interval cover of F.
One can prove the following propositions:
(64) Let F be a family of subsets of $[r, r]_{\mathrm{T}}$ and C be an interval cover of F. If F is a cover of $[r, r]_{\mathrm{T}}$, open, and connected, then $C=\langle[r, r]\rangle$.
(65) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$, then $1 \leq \operatorname{len} C$.
(66) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$ and len $C=1$, then $C=\langle[r, s]\rangle$.
(67) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$ and $n \in \operatorname{dom} C$ and $m \in \operatorname{dom} C$ and $n<m$, then $\inf \left(C_{n}\right) \leq \inf \left(C_{m}\right)$.
(68) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$ and $n \in \operatorname{dom} C$ and $m \in \operatorname{dom} C$ and $n<m$, then $\sup \left(C_{n}\right) \leq \sup \left(C_{m}\right)$.
(69) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$ and $1 \leq n$ and $n+1 \leq \operatorname{len} C$, then $] \inf \left(C_{n+1}\right), \sup \left(C_{n}\right)[$ is non empty.
(70) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$, then $\inf \left(C_{1}\right)=r$.
(71) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$, then $r \in C_{1}$.
(72) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$, then $\sup \left(C_{\text {len } C}\right)=s$.
(73) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$, then $s \in C_{\operatorname{len} C}$.

Let r, s be real numbers, let F be a family of subsets of $[r, s]_{\mathrm{T}}$, and let C be an interval cover of F. Let us assume that F is a cover of $[r, s]_{\mathrm{T}} F$ is open F is connected and $r \leq s$. A finite sequence of elements of \mathbb{R} is said to be a chain of rivets in interval cover C if it satisfies the conditions (Def. 3).
(Def. 3)(i) len it $=\operatorname{len} C+1$,
(ii) $\mathrm{it}(1)=r$,
(iii) $\quad \mathrm{it}($ len it $)=s$, and
(iv) for every natural number n such that $1 \leq n$ and $n+1<$ len it holds $\operatorname{it}(n+1) \in] \inf \left(C_{n+1}\right), \sup \left(C_{n}\right)[$.
In the sequel G denotes a chain of rivets in interval cover C.
One can prove the following propositions:
(74) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$, then $2 \leq \operatorname{len} G$.
(75) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$ and len $C=1$, then $G=\langle r, s\rangle$.
(76) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$ and $1 \leq n$ and $n+1<\operatorname{len} G$, then $G(n+1)<\sup \left(C_{n}\right)$.
(77) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$ and $1<n$ and $n \leq \operatorname{len} C$, then $\inf \left(C_{n}\right)<G(n)$.
(78) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$ and $1 \leq n$ and $n<\operatorname{len} C$, then $G(n) \leq \inf \left(C_{n+1}\right)$.
(79) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r<s$, then G is increasing.
(80) If F is a cover of $[r, s]_{\mathrm{T}}$, open, and connected and $r \leq s$ and $1 \leq n$ and $n<$ len G, then $[G(n), G(n+1)] \subseteq C(n)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[5] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, $1(2): 265-267,1990$.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Józef Białas. Properties of fields. Formalized Mathematics, 1(5):807-812, 1990.
[8] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[12] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[13] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[15] Agata Darmochwal and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[16] Adam Grabowski and Artur Korniłowicz. Algebraic properties of homotopies. Formalized Mathematics, 12(3):251-260, 2004.
[17] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[18] Zbigniew Karno. On discrete and almost discrete topological spaces. Formalized Mathematics, 3(2):305-310, 1992.
[19] Artur Korniłowicz. The fundamental group of convex subspaces of $\mathcal{E}_{\mathrm{T}}^{n}$. Formalized Mathematics, 12(3):295-299, 2004.
[20] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[21] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[22] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathemat$i c s, 1(2): 269-272,1990$.
[23] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[24] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics, 10(1):21-22, 2002.
[25] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[26] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[27] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[28] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[29] Konrad Raczkowski and Pawet Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[30] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[31] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[32] Andrzej Trybulec. Some lemmas for the Jordan curve theorem. Formalized Mathematics, 9(3):481-484, 2001.
[33] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[34] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[35] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[36] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[37] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[38] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[39] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.
[40] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

[^0]: ${ }^{1}$ The paper was written during the author's post-doctoral fellowship granted by Shinshu University, Japan.

