The Fashoda Meet Theorem for Rectangles

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Andrzej Trybulec
Institute of Computer Science
University of Białystok
Sosnowa 64, 15-887 Bialystok
Poland

Summary. Here, the so called Fashoda Meet Theorem is proven in the case of rectangles. All cases of proper location of arcs are listed up, and it is shown that the theorem is valid in each case. Such a list of cases will be useful when one wants to apply the theorem.

MML identifier: JGRAPH_7, version: 7.5.01 4.39.921

The articles [1], [6], [15], [17], [5], [2], [3], [16], [7], [14], [13], [10], [11], [8], [4], [9], and [12] provide the notation and terminology for this paper.

One can prove the following propositions:
(1) For all real numbers a, b, d and for every point p of \mathcal{E}_{T}^{2} such that $a<b$ and $p_{2}=d$ and $a \leq p_{1}$ and $p_{1} \leq b$ holds $p \in \mathcal{L}([a, d],[b, d])$.
(2) Let n be a natural number, P be a subset of \mathcal{E}_{T}^{n}, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose P is an arc from p_{1} to p_{2}. Then there exists a map f from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{n}$ such that f is continuous and one-to-one and $\operatorname{rng} f=P$ and $f(0)=p_{1}$ and $f(1)=p_{2}$.
(3) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and b, c, d be real numbers. If $\left(p_{1}\right)_{\mathbf{1}}<b$ and $\left(p_{1}\right)_{\mathbf{1}}=\left(p_{2}\right)_{\mathbf{1}}$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$, then $p_{1} \leq_{\left.\text {Rectangle }\left(p_{1}\right)_{1}, b, c, d\right)} p_{2}$.
(4) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and b, c be real numbers. Suppose $\left(p_{1}\right)_{1}<b$ and $c<\left(p_{2}\right)_{\mathbf{2}}$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{1} \leq b$. Then $p_{1} \leq \operatorname{Rectangle}\left(\left(p_{1}\right)_{1}, b, c,\left(p_{2}\right)_{2}\right) p_{2}$.
(5) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and c, d be real numbers. Suppose $\left(p_{1}\right)_{1}<$ $\left(p_{2}\right)_{\mathbf{1}}$ and $c<d$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$. Then $p_{1} \leq_{\left.\text {Rectangle }\left(p_{1}\right)_{1},\left(p_{2}\right)_{1}, c, d\right)} p_{2}$.
(6) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and b, d be real numbers. If $\left(p_{2}\right)_{2}<d$ and $\left(p_{2}\right)_{\mathbf{2}} \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$, then $p_{1} \leq_{\text {Rectangle }\left(\left(p_{1}\right)_{\mathbf{1}}, b,\left(p_{2}\right)_{\mathbf{2}}, d\right)} p_{2}$.
(7) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$. Then $p_{1} \leq_{\operatorname{Rectangle}(a, b, c, d)} p_{2}$.
(8) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$. Then $p_{1} \leq_{\text {Rectangle }(a, b, c, d)} p_{2}$.
(9) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{2}\right)_{1}$ and $\left(p_{2}\right)_{1} \leq b$. Then $p_{1} \leq_{\text {Rectangle }(a, b, c, d)} p_{2}$.
(10) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{2} \leq d$. Then $p_{1} \leq_{\operatorname{Rectangle}(a, b, c, d)} p_{2}$.
(11) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{2}\right)_{1}$ and $\left(p_{2}\right)_{1} \leq b$. Then $p_{1} \leq_{\text {Rectangle }(a, b, c, d)} p_{2}$.
(12) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=c$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $a<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$. Then $p_{1} \leq_{\operatorname{Rectangle}(a, b, c, d)} p_{2}$.
(13) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$. Then $p_{1} \leq_{\text {Rectangle }(a, b, c, d)} p_{2}$.
(14) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{1}}=a$ and $c \leq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}}<\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{2} \leq d$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on $\operatorname{Rectangle}(a, b, c, d)$.
(15) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(16) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{4}\right)_{2}$ and $\left(p_{4}\right)_{2} \leq d$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(17) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and
$\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(18) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\text {T }}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(19) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{2}<\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2} \leq d$ and $a \leq\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}} \leq d$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(20) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{1} \leq b$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(21) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{1}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{2}<\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{2} \leq d$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(22) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(23) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=a$ and $\left(p_{2}\right)_{1}=a$ and $\left(p_{3}\right)_{2}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(24) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=a$ and $\left(p_{2}\right)_{2}=d$ and $\left(p_{3}\right)_{2}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{1}<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(25) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and
$\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}} \leq d$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(26) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(27) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(28) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $\left(p_{1}\right)_{\mathbf{1}} \neq\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{2}} \neq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}} \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{2}} \leq\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{1}}<$ $\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq\left(p_{3}\right)_{\mathbf{1}}$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle $\left(\left(p_{1}\right)_{\mathbf{1}},\left(p_{3}\right)_{\mathbf{1}},\left(p_{4}\right)_{\mathbf{2}},\left(p_{2}\right)_{\mathbf{2}}\right)$.
(29) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=a$ and $\left(p_{2}\right)_{2}=d$ and $\left(p_{3}\right)_{2}=c$ and $\left(p_{4}\right)_{2}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1}<\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(30) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{2} \leq d$ and $d \geq\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2}>\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{\mathbf{2}}>\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}} \geq c$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(31) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $d \geq\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2}>\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \geq c$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(32) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=a$ and $\left(p_{2}\right)_{1}=b$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{2}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1}<\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(33) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{2}=c$ and $\left(p_{4}\right)_{2}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on

Rectangle (a, b, c, d).
(34) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{2}=d$ and $\left(p_{2}\right)_{2}=d$ and $\left(p_{3}\right)_{2}=d$ and $\left(p_{4}\right)_{2}=d$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on $\operatorname{Rectangle}(a, b, c, d)$.
(35) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{2}$ and $\left(p_{4}\right)_{2} \leq d$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(36) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{2}=d$ and $\left(p_{2}\right)_{2}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(37) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(38) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(39) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(40) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $d \geq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}>\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}}>\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}} \geq c$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(41) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $d \geq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}>\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{2} \geq c$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(42) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(43) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{2}=d$ and $\left(p_{2}\right)_{2}=c$ and $\left(p_{3}\right)_{2}=c$ and $\left(p_{4}\right)_{2}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(44) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $d \geq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{2}>\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2}>\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{2}>\left(p_{4}\right)_{2}$ and $\left(p_{4}\right)_{\mathbf{2}} \geq c$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on $\operatorname{Rectangle}(a, b, c, d)$.
(45) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=$ c and $d \geq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{2}>\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2}>\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{2} \geq c$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(46) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $d \geq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}>\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \geq c$ and $b \geq\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}>\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}>a$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(47) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=b$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $b \geq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}>\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}>\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}>a$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on Rectangle (a, b, c, d).
(48) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=c$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $b \geq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}>\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}>\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}>\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1}>a$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on $\operatorname{Rectangle}(a, b, c, d)$.
(49) Let A, B, C, D be real numbers and h, g be maps from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $A>0$ and $C>0$ and $h=\operatorname{AffineMap}(A, B, C, D)$ and $g=$ AffineMap $\left(\frac{1}{A},-\frac{B}{A}, \frac{1}{C},-\frac{D}{C}\right)$. Then $g=h^{-1}$ and $h=g^{-1}$.
(50) Let A, B, C, D be real numbers and h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $A>0$ and $C>0$ and $h=\operatorname{AffineMap}(A, B, C, D)$. Then h is a homeomorphism and for all points p_{1}, p_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ holds $h\left(p_{1}\right)_{\mathbf{1}}<h\left(p_{2}\right)_{\mathbf{1}}$.
(51) Let A, B, C, D be real numbers and h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $A>0$ and $C>0$ and $h=\operatorname{AffineMap}(A, B, C, D)$. Then h is a homeomorphism and for all points p_{1}, p_{2} of $\mathcal{E}_{\text {T }}^{2}$ such that $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ holds $h\left(p_{1}\right)_{\mathbf{2}}<h\left(p_{2}\right)_{\mathbf{2}}$.
(52) Let $a, b, \quad c, d$ be real numbers, h be a map from $\mathcal{E}_{\text {T }}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $a<$ b and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $\operatorname{rng} f \subseteq \operatorname{ClosedInsideOfRectangle}(a, b, c, d)$. Then $\operatorname{rng}(h \cdot f) \subseteq$ ClosedInsideOfRectangle $(-1,1,-1,1)$.
(53) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from \mathbb{I} into \mathcal{E}_{T}^{2}. Suppose $a<b$ and $c<d$ and $h=$ AffineMap $\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and f is continuous and one-to-one. Then $h \cdot f$ is continuous and one-to-one.
(54) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O be a point of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=$ $\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $f(O)_{\mathbf{1}}=a$. Then $(h \cdot f)(O)_{\mathbf{1}}=-1$.
(55) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and I be a point of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=$ AffineMap $\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $f(I)_{\mathbf{2}}=d$. Then $(h \cdot f)(I)_{\mathbf{2}}=1$.
(56) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and I be a point of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=$ AffineMap $\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $f(I)_{\mathbf{1}}=b$. Then $(h \cdot f)(I)_{\mathbf{1}}=1$.
(57) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and I be a point of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=$ $\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $f(I)_{\mathbf{2}}=c$. Then $(h \cdot f)(I)_{\mathbf{2}}=-1$.
(58) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $c \leq f(O)_{\mathbf{2}}$ and $f(O)_{\mathbf{2}}<f(I)_{\mathbf{2}}$ and $f(I)_{\mathbf{2}} \leq d$. Then $-1 \leq(h \cdot f)(O)_{\mathbf{2}}$ and $(h \cdot f)(O)_{\mathbf{2}}<(h \cdot f)(I)_{\mathbf{2}}$ and $(h \cdot f)(I)_{\mathbf{2}} \leq 1$.
(59) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $c \leq f(O)_{\mathbf{2}}$ and $f(O)_{\mathbf{2}} \leq d$ and $a \leq f(I)_{1}$ and $f(I)_{\mathbf{1}} \leq b$. Then $-1 \leq(h \cdot f)(O)_{\mathbf{2}}$ and $(h \cdot f)(O)_{\mathbf{2}} \leq 1$ and $-1 \leq(h \cdot f)(I)_{\mathbf{1}}$ and $(h \cdot f)(I)_{\mathbf{1}} \leq 1$.
(60) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $c \leq f(O)_{\mathbf{2}}$ and $f(O)_{\mathbf{2}} \leq d$ and $c \leq f(I)_{\mathbf{2}}$ and $f(I)_{\mathbf{2}} \leq d$. Then $-1 \leq(h \cdot f)(O)_{\mathbf{2}}$ and $(h \cdot f)(O)_{\mathbf{2}} \leq 1$ and $-1 \leq(h \cdot f)(I)_{2}$ and $(h \cdot f)(I)_{2} \leq 1$.
(61) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $c \leq f(O)_{\mathbf{2}}$ and $f(O)_{\mathbf{2}} \leq d$ and $a<f(I)_{\mathbf{1}}$ and $f(I)_{\mathbf{1}} \leq b$. Then $-1 \leq(h \cdot f)(O)_{\mathbf{2}}$ and $(h \cdot f)(O)_{\mathbf{2}} \leq 1$ and $-1<(h \cdot f)(I)_{\mathbf{1}}$ and $(h \cdot f)(I)_{\mathbf{1}} \leq 1$.
(62) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $a \leq f(O)_{\mathbf{1}}$ and $f(O)_{\mathbf{1}}<f(I)_{\mathbf{1}}$ and $f(I)_{\mathbf{1}} \leq b$. Then $-1 \leq(h \cdot f)(O)_{\mathbf{1}}$ and $(h \cdot f)(O)_{\mathbf{1}}<(h \cdot f)(I)_{\mathbf{1}}$ and $(h \cdot f)(I)_{\mathbf{1}} \leq 1$.
(63) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $a \leq f(O)_{\mathbf{1}}$ and $f(O)_{\mathbf{1}} \leq b$ and $c \leq f(I)_{\mathbf{2}}$ and $f(I)_{\mathbf{2}} \leq d$. Then $-1 \leq(h \cdot f)(O)_{\mathbf{1}}$ and $(h \cdot f)(O)_{\mathbf{1}} \leq 1$ and $-1 \leq(h \cdot f)(I)_{\mathbf{2}}$ and $(h \cdot f)(I)_{\mathbf{2}} \leq 1$.
(64) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $a \leq f(O)_{\mathbf{1}}$ and $f(O)_{\mathbf{1}} \leq b$ and $a<f(I)_{\mathbf{1}}$ and $f(I)_{\mathbf{1}} \leq b$. Then $-1 \leq(h \cdot f)(O)_{\mathbf{1}}$ and $(h \cdot f)(O)_{\mathbf{1}} \leq 1$ and $-1<(h \cdot f)(I)_{1}$ and $(h \cdot f)(I)_{\mathbf{1}} \leq 1$.
(65) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $d \geq f(O)_{\mathbf{2}}$ and $f(O)_{\mathbf{2}}>f(I)_{\mathbf{2}}$ and $f(I)_{\mathbf{2}} \geq c$. Then $1 \geq(h \cdot f)(O)_{\mathbf{2}}$ and $(h \cdot f)(O)_{\mathbf{2}}>(h \cdot f)(I)_{\mathbf{2}}$ and $(h \cdot f)(I)_{2} \geq-1$.
(66) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $c \leq f(O)_{\mathbf{2}}$ and $f(O)_{\mathbf{2}} \leq d$ and $a<f(I)_{1}$ and $f(I)_{1} \leq b$. Then $-1 \leq(h \cdot f)(O)_{\mathbf{2}}$ and $(h \cdot f)(O)_{\mathbf{2}} \leq 1$ and $-1<(h \cdot f)(I)_{\mathbf{1}}$ and $(h \cdot f)(I)_{\mathbf{1}} \leq 1$.
(67) Let a, b, c, d be real numbers, h be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose $a<b$ and $c<d$ and $h=\operatorname{AffineMap}\left(\frac{2}{b-a},-\frac{b+a}{b-a}, \frac{2}{d-c},-\frac{d+c}{d-c}\right)$ and $a<f(I)_{\mathbf{1}}$ and $f(I)_{\mathbf{1}}<f(O)_{\mathbf{1}}$ and $f(O)_{\mathbf{1}} \leq b$. Then $-1<(h \cdot f)(I)_{\mathbf{1}}$ and $(h \cdot f)(I)_{\mathbf{1}}<(h \cdot f)(O)_{\mathbf{1}}$ and $(h \cdot f)(O)_{\mathbf{1}} \leq 1$.
One can prove the following propositions:
(68) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{1}}=a$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}}<\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}} \leq d$ and $f(0)=p_{1}$ and $f(1)=$ p_{3} and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is
continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(69) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{1}}=a$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}}<\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}} \leq d$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(70) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(71) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(72) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{2} \leq d$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and rng $f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(73) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{2} \leq d$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(74) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$
and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(75) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=a$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(76) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(77) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(78) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{2}$ and $\left(p_{4}\right)_{2} \leq d$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(79) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{2}$ and $\left(p_{4}\right)_{2} \leq d$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(80) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\text {T }}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{2} \leq d$ and $a \leq\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(81) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=a$ and $\left(p_{2}\right)_{1}=a$ and $\left(p_{3}\right)_{2}=d$ and $\left(p_{4}\right)_{2}=c$ and $c \leq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(82) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{2} \leq d$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{2} \leq d$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(83) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{1}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(84) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{2}<\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2} \leq d$ and $c \leq\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{2} \leq d$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and rng $f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(85) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{2}<\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2} \leq d$ and $c \leq\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{2} \leq d$ and
$a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(86) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{2}<\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2} \leq d$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1}<\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(87) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=a$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1}<\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(88) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(89) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(90) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{2} \leq d$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and rng $g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(91) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P,
Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{2}$ and $\left(p_{4}\right)_{2} \leq d$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(92) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(93) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{2}=d$ and $\left(p_{3}\right)_{2}=d$ and $\left(p_{4}\right)_{2}=c$ and $c \leq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(94) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{2}<\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{2} \leq d$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(95) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{2}<\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{2} \leq d$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq \operatorname{ClosedInsideOfRectangle~}(a, b, c, d)$ and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(96) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{1}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{2} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a<$ $\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and
$g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(97) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{1}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(98) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(99) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a \leq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(100) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{2} \leq d$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(101) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(102) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and
$\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{2} \leq d$ and $c \leq\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{2}<\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(103) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{2} \leq d$ and $c \leq\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{2}<\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2} \leq d$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(104) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1}<\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(105) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{1}=a$ and $\left(p_{2}\right)_{1}=b$ and $\left(p_{3}\right)_{2}=c$ and $\left(p_{4}\right)_{2}=c$ and $c \leq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $c \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1}<\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(106) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
(107) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=a$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d)
and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(108) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{2}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
(109) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=d$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(110) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{2} \leq d$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(111) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{2} \leq d$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(112) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and rng $f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(113) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{2}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=d$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and
$\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(114) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{2} \leq d$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then $\operatorname{rng} f$ meets rng g.
(115) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}}<\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(116) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(117) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{1}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{1} \leq b$ and $c \leq\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{2} \leq d$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(118) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq \operatorname{Closed}$ InsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(119) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=d$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1}<\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(120) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{1} \leq b$ and $d \geq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}>\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}}>\left(p_{4}\right)_{2}$ and $\left(p_{4}\right)_{2} \geq c$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(121) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{T}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{1}=b$ and $\left(p_{3}\right)_{1}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{1} \leq b$ and $d \geq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}>\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}}>\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}} \geq c$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(122) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{T}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{1} \leq b$ and $d \geq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{2}>\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{\mathbf{2}} \geq c$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(123) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{2}=d$ and $\left(p_{2}\right)_{1}=b$ and $\left(p_{3}\right)_{1}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{1} \leq b$ and $d \geq\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{2}>\left(p_{3}\right)_{2}$ and $\left(p_{3}\right)_{2} \geq c$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{1} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(124) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continu-
ous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(125) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{1}=b$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{2}=c$ and $a \leq\left(p_{1}\right)_{1}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $c \leq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \leq d$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1}<\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(126) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{2}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq \operatorname{ClosedInsideOfRectangle~}(a, b, c, d)$ and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(127) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=d$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $a \leq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \leq b$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}<\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(128) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{1}}=b$ and $d \geq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}>\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}>\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}}>\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}} \geq c$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and rng $f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets $\operatorname{rng} g$.
(129) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathbb{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{1}=b$ and $\left(p_{3}\right)_{1}=b$ and $\left(p_{4}\right)_{1}=b$ and $d \geq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{2}>\left(p_{2}\right)_{2}$ and $\left(p_{2}\right)_{\mathbf{2}}>\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}}>\left(p_{4}\right)_{\mathbf{2}}$ and $\left(p_{4}\right)_{\mathbf{2}} \geq c$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(130) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{1}}=b$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $d \geq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}>\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}>\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \geq c$ and $a<\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1} \leq b$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and
$g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(131) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{1}=b$ and $\left(p_{3}\right)_{1}=b$ and $\left(p_{4}\right)_{2}=c$ and $d \geq\left(p_{1}\right)_{2}$ and $\left(p_{1}\right)_{\mathbf{2}}>\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}}>\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \geq c$ and $a<\left(p_{4}\right)_{1}$ and $\left(p_{4}\right)_{\mathbf{1}} \leq b$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(132) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $d \geq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}>\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \geq c$ and $b \geq\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}>\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1}>a$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(133) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{1}}=b$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $d \geq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}}>\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{2}\right)_{\mathbf{2}} \geq c$ and $b \geq\left(p_{3}\right)_{1}$ and $\left(p_{3}\right)_{1}>\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}>a$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(134) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $b \geq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}>\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}>\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{1}>a$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets rng g.
(135) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{1}}=b$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $c \leq\left(p_{1}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \leq d$ and $b \geq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}>\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}>\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}>a$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.
(136) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{T}^{2}, a, b, c, d$ be real numbers, and f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=c$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $b \geq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}>\left(p_{2}\right)_{\mathbf{1}}$ and
$\left(p_{2}\right)_{\mathbf{1}}>\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}>\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}>a$ and $f(0)=p_{1}$ and $f(1)=$ p_{3} and $g(0)=p_{2}$ and $g(1)=p_{4}$ and f is continuous and one-to-one and g is continuous and one-to-one and $\operatorname{rng} f \subseteq \operatorname{ClosedInsideOfRectangle~}(a, b, c, d)$ and $\operatorname{rng} g \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then rng f meets $\operatorname{rng} g$.
(137) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $\left(p_{1}\right)_{\mathbf{2}}=c$ and $\left(p_{2}\right)_{\mathbf{2}}=c$ and $\left(p_{3}\right)_{\mathbf{2}}=c$ and $\left(p_{4}\right)_{\mathbf{2}}=c$ and $b \geq\left(p_{1}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}}>\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{2}\right)_{\mathbf{1}}>\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}}>\left(p_{4}\right)_{\mathbf{1}}$ and $\left(p_{4}\right)_{\mathbf{1}}>a$ and P is an arc from p_{1} to p_{3} and Q is an arc from p_{2} to p_{4} and $P \subseteq$ ClosedInsideOfRectangle (a, b, c, d) and $Q \subseteq$ ClosedInsideOfRectangle (a, b, c, d). Then P meets Q.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Bylinski and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[5] Agata Darmochwat. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[6] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Agata Darmochwal and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[8] Agata Darmochwat and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Artur Korniłowicz. The ordering of points on a curve. Part III. Formalized Mathematics, 10(3):169-171, 2002.
[11] Yatsuka Nakamura. On Outside Fashoda Meet Theorem. Formalized Mathematics, 9(4):697-704, 2001.
[12] Yatsuka Nakamura. General Fashoda meet theorem for unit circle and square. Formalized Mathematics, 11(3):213-224, 2003.
[13] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 3, 2005

