
FORMALIZED MATHEMATICS

Volume 13, Number 2, Pages 295–304

University of Bia lystok, 2005

Correctness of Dijkstra’s Shortest Path

and Prim’s Minimum Spanning

Tree Algorithms1

Gilbert Lee2

University of Victoria

Victoria, Canada

Piotr Rudnicki

University of Alberta

Edmonton, Canada

Summary. We prove correctness for Dijkstra’s shortest path algorithm

and Prim’s minimum weight spanning tree algorithm at the level of graph ma-

nipulations.

MML identifier: GLIB 004, version: 7.5.01 4.39.921

The notation and terminology used in this paper are introduced in the following

articles: [25], [11], [24], [22], [28], [23], [13], [30], [10], [7], [4], [6], [14], [1], [26],

[29], [8], [3], [27], [21], [19], [12], [2], [5], [9], [18], [16], [15], [20], and [17].

1. Preliminaries

One can prove the following propositions:

(1) For all functions f , g holds support(f+·g) ⊆ support f ∪ support g.

(2) For every function f and for all sets x, y holds support(f+·(x7−→. y)) ⊆

support f ∪ {x}.

(3) Let A, B be sets, b be a real bag over A, b1 be a real bag over B, and b2

be a real bag over A \ B. If b = b1+·b2, then
∑

b =
∑

b1 +
∑

b2.

(4) For all sets X, x and for every real bag b over X such that dom b = {x}

holds
∑

b = b(x).

1This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.

295
c© 2005 University of Bia lystok

ISSN 1426–2630

296 gilbert lee and piotr rudnicki

(5) For every set A and for all real bags b1, b2 over A such that for every set

x such that x ∈ A holds b1(x) ≤ b2(x) holds
∑

b1 ≤
∑

b2.

(6) For every set A and for all real bags b1, b2 over A such that for every set

x such that x ∈ A holds b1(x) = b2(x) holds
∑

b1 =
∑

b2.

(7) For all sets A1, A2 and for every real bag b1 over A1 and for every real

bag b2 over A2 such that b1 = b2 holds
∑

b1 =
∑

b2.

(8) For all sets X, x and for every real bag b over X and for every real

number y such that b = EmptyBag X+·(x7−→. y) holds
∑

b = y.

(9) Let X, x be sets, b1, b2 be real bags over X, and y be a real number. If

b2 = b1+·(x7−→. y), then
∑

b2 = (
∑

b1 + y) − b1(x).

2. Dijkstra’s Shortest Path Algorithm: definitions

Let G1 be a real-weighted w-graph, let G2 be a w-subgraph of G1, and let

v be a set. We say that G2 is mincost d-tree rooted at v if and only if the

conditions (Def. 1) are satisfied.

(Def. 1)(i) G2 is tree-like, and

(ii) for every vertex x of G2 there exists a dpath W2 of G2 such that W2

is walk from v to x and for every dpath W1 of G1 such that W1 is walk

from v to x holds W2.cost() ≤ W1.cost().

Let G be a real-weighted w-graph, let W be a dpath of G, and let x, y be

sets. We say that W is mincost d-path from x to y if and only if:

(Def. 2) W is walk from x to y and for every dpath W2 of G such that W2 is walk

from x to y holds W.cost() ≤ W2.cost().

Let G be a finite real-weighted w-graph and let x, y be sets. The G .mincost-

d-path(x, y) yielding a real number is defined as follows:

(Def. 3)(i) There exists a dpath W of G such that W is mincost d-path from x

to y and the G.mincost-d-path(x, y) = W.cost() if there exists a dwalk

of G which is walk from x to y,

(ii) the G.mincost-d-path(x, y) = 0, otherwise.

Let G be a real-wev wev-graph. The functor DIJK : NextBestEdges(G)

yielding a subset of the edges of G is defined by the condition (Def. 4).

(Def. 4) Let e1 be a set. Then e1 ∈ DIJK : NextBestEdges(G) if and only if the

following conditions are satisfied:

(i) e1 joins a vertex from G.labeledV() to a vertex from (the vertices of

G) \ G.labeledV() in G, and

(ii) for every set e2 such that e2 joins a vertex from G.labeledV() to a

vertex from (the vertices of G) \ G.labeledV() in G holds (the vlabel of

G)((the source of G)(e1))+ (the weight of G)(e1) ≤ (the vlabel of G)((the

source of G)(e2)) + (the weight of G)(e2).

correctness of dijkstra’s shortest path . . . 297

Let G be a real-wev wev-graph. The functor DIJK : Step(G) yields a real-

wev wev-graph and is defined by:

(Def. 5) DIJK : Step(G) =















G, if DIJK : NextBestEdges(G) = ∅,

(G.labelEdge(e, 1)).labelVertex((the target of G)(e),

(the vlabel of G)((the source of G)(e))+

(the weight of G)(e)), otherwise.

Let G be a finite real-wev wev-graph. One can verify that DIJK : Step(G)

is finite.

Let G be a nonnegative-weighted real-wev wev-graph. Observe that

DIJK : Step(G) is nonnegative-weighted.

Let G be a real-weighted w-graph and let s1 be a vertex of G. The functor

DIJK : Init(G, s1) yielding a real-wev wev-graph is defined by:

(Def. 6) DIJK : Init(G, s1) = G.set(ELabelSelector, ∅).set(VLabelSelector, s1 7−→
. 0).

Let G be a real-weighted w-graph and let s1 be a vertex of G. The functor

DIJK : CompSeq(G, s1) yielding a real-wev wev-graph sequence is defined as

follows:

(Def. 7) DIJK : CompSeq(G, s1).→0 = DIJK : Init(G, s1) and for every natural

number n holds DIJK : CompSeq(G, s1).→(n + 1) =

DIJK : Step((DIJK : CompSeq(G, s1).→n)).

Let G be a finite real-weighted w-graph and let s1 be a vertex of G. Observe

that DIJK : CompSeq(G, s1) is finite.

Let G be a nonnegative-weighted w-graph and let s1 be a vertex of G. One

can verify that DIJK : CompSeq(G, s1) is nonnegative-weighted.

Let G be a real-weighted w-graph and let s1 be a vertex of G. The functor

DIJK : SSSP(G, s1) yields a real-wev wev-graph and is defined by:

(Def. 8) DIJK : SSSP(G, s1) = (DIJK : CompSeq(G, s1)).Result().

Let G be a finite real-weighted w-graph and let s1 be a vertex of G. One

can check that DIJK : SSSP(G, s1) is finite.

3. Dijkstra’s Shortest Path Algorithm: theorems

The following propositions are true:

(10) Let G be a finite nonnegative-weighted w-graph, W be a dpath of G, x, y

be sets, and m, n be natural numbers. Suppose W is mincost d-path from

x to y. Then W.cut(m,n) is mincost d-path from (W.cut(m,n)).first() to

(W.cut(m,n)).last().

(11) Let G be a finite real-weighted w-graph, W1, W2 be dpaths of G, and x,

y be sets. Suppose W1 is mincost d-path from x to y and W2 is mincost

d-path from x to y. Then W1.cost() = W2.cost().

298 gilbert lee and piotr rudnicki

(12) Let G be a finite real-weighted w-graph, W be a dpath of G, and x, y

be sets. Suppose W is mincost d-path from x to y. Then the G.mincost-

d-path(x, y) = W.cost().

(13) Let G be a finite real-wev wev-graph. Then

(i) card((DIJK : Step(G)).labeledV()) = card(G.labeledV()) iff

DIJK : NextBestEdges(G) = ∅, and

(ii) card((DIJK : Step(G)).labeledV()) = card(G.labeledV()) + 1 iff

DIJK : NextBestEdges(G) 6= ∅.

(14) For every real-wev wev-graph G holds G =G DIJK : Step(G)

and the weight of G = the weight of DIJK : Step(G) and

G.labeledE() ⊆ (DIJK : Step(G)).labeledE() and G.labeledV() ⊆

(DIJK : Step(G)).labeledV().

(15) For every real-weighted w-graph G and for every vertex s1 of G holds

(DIJK : Init(G, s1)).labeledV() = {s1}.

(16) Let G be a real-weighted w-graph, s1 be a vertex of G, and i, j be

natural numbers. If i ≤ j, then (DIJK : CompSeq(G, s1).→i).labeledV() ⊆

(DIJK : CompSeq(G, s1).→j).labeledV() and (DIJK : CompSeq(G, s1).→i)

.labeledE() ⊆ (DIJK : CompSeq(G, s1).→j).labeledE().

(17) Let G be a real-weighted w-graph, s1 be a vertex of G, and n be a

natural number. Then G =G DIJK : CompSeq(G, s1).→n and the weight

of G = the weight of DIJK : CompSeq(G, s1).→n.

(18) Let G be a finite real-weighted w-graph, s1 be a vertex of G, and n

be a natural number. Then (DIJK : CompSeq(G, s1).→n).labeledV() ⊆

G.reachableDFrom(s1).

(19) Let G be a finite real-weighted w-graph, s1 be a vertex of G, and n be

a natural number.

Then DIJK : NextBestEdges((DIJK : CompSeq(G, s1).→n)) = ∅ if and

only if (DIJK : CompSeq(G, s1).→n).labeledV() = G.reachableDFrom(s1).

(20) Let G be a finite real-weighted w-graph, s1 be a vertex of G, and n

be a natural number. Then (DIJK : CompSeq(G, s1).→n).labeledV() =

min(n + 1, card(G.reachableDFrom(s1))).

(21) Let G be a finite real-weighted w-graph, s1 be a vertex of G, and n

be a natural number. Then (DIJK : CompSeq(G, s1).→n).labeledE() ⊆

(DIJK : CompSeq(G, s1).→n).edgesBetween((DIJK : CompSeq(G, s1).→n)

.labeledV()).

(22) Let G be a finite nonnegative-weighted w-graph, s1 be a vertex of

G, n be a natural number, and G2 be a induced w-subgraph of G,

(DIJK : CompSeq(G, s1).→n).labeledV(), (DIJK : CompSeq(G, s1).→n)

.labeledE(). Then

(i) G2 is mincost d-tree rooted at s1, and

correctness of dijkstra’s shortest path . . . 299

(ii) for every vertex v of G such that v ∈ (DIJK : CompSeq(G, s1).→n)

.labeledV() holds the G.mincost-d-path(s1, v) =

(the vlabel of DIJK : CompSeq(G, s1).→n)(v).

(23) For every finite real-weighted w-graph G and for every vertex s1 of G

holds DIJK : CompSeq(G, s1) is halting.

Let G be a finite real-weighted w-graph and let s1 be a vertex of G. Observe

that DIJK : CompSeq(G, s1) is halting.

One can prove the following three propositions:

(24) For every finite real-weighted w-graph G and for every ver-

tex s1 of G holds (DIJK : CompSeq(G, s1)).Lifespan() + 1 =

card(G.reachableDFrom(s1)).

(25) For every finite real-weighted w-graph G and for every vertex s1 of G

holds (DIJK : SSSP(G, s1)).labeledV() = G.reachableDFrom(s1).

(26) Let G be a finite nonnegative-weighted w-graph, s1 be a vertex of G,

and G2 be a induced w-subgraph of G, (DIJK : SSSP(G, s1)).labeledV(),

(DIJK : SSSP(G, s1)).labeledE(). Then

(i) G2 is mincost d-tree rooted at s1, and

(ii) for every vertex v of G such that v ∈ G.reachableDFrom(s1) holds

v ∈ the vertices of G2 and the G.mincost-d-path(s1, v) = (the vlabel of

DIJK : SSSP(G, s1))(v).

4. Prim’s Algorithm: preliminaries

The non empty finite subset WGraphSelectors of N is defined as follows:

(Def. 9) WGraphSelectors =

{VertexSelector,EdgeSelector,SourceSelector,TargetSelector,

WeightSelector}.

Let G be a w-graph. One can check that G.strict(WGraphSelectors) is

graph-like and weighted.

Let G be a w-graph. The functor G.allWSubgraphs() yields a non empty

set and is defined as follows:

(Def. 10) For every set x holds x ∈ G.allWSubgraphs() iff there exists a w-

subgraph G2 of G such that x = G2 and domG2 = WGraphSelectors.

Let G be a finite w-graph. One can check that G.allWSubgraphs() is finite.

Let G be a w-graph and let X be a non empty subset of G.allWSubgraphs().

We see that the element of X is a w-subgraph of G.

Let G be a finite real-weighted w-graph. The functor G.cost() yields a real

number and is defined by:

(Def. 11) G.cost() =
∑

(the weight of G).

The following propositions are true:

300 gilbert lee and piotr rudnicki

(27) For every set x holds x ∈ WGraphSelectors iff x = VertexSelector or

x = EdgeSelector or x = SourceSelector or x = TargetSelector or x =

WeightSelector.

(28) For every w-graph G holds WGraphSelectors ⊆ domG.

(29) For every w-graph G holds G =G G.strict(WGraphSelectors) and the

weight of G = the weight of G.strict(WGraphSelectors).

(30) For every w-graph G holds dom(G.strict(WGraphSelectors)) =

WGraphSelectors.

(31) For every finite real-weighted w-graph G such that the edges of G = ∅

holds G.cost() = 0.

(32) Let G1, G2 be finite real-weighted w-graphs. Suppose the edges of G1 =

the edges of G2 and the weight of G1 = the weight of G2. Then G1.cost() =

G2.cost().

(33) Let G1 be a finite real-weighted w-graph, e be a set, and G2 be a weighted

subgraph of G1 with edge e removed inheriting weight. If e ∈ the edges of

G1, then G1.cost() = G2.cost() + (the weight of G1)(e).

(34) Let G be a finite real-weighted w-graph, V1 be a non empty subset of

the vertices of G, E1 be a subset of G.edgesBetween(V1), G1 be a induced

w-subgraph of G, V1, E1, e be a set, and G2 be a induced w-subgraph of G,

V1, E1 ∪{e}. If e /∈ E1 and e ∈ G.edgesBetween(V1), then G1.cost()+ (the

weight of G)(e) = G2.cost().

5. Prim’s Minimum Weight Spanning Tree Algorithm: definitions

Let G be a real-weighted wv-graph. The functor PRIM : NextBestEdges(G)

yields a subset of the edges of G and is defined by the condition (Def. 12).

(Def. 12) Let e1 be a set. Then e1 ∈ PRIM : NextBestEdges(G) if and only if the

following conditions are satisfied:

(i) e1 joins a vertex from G.labeledV() and a vertex from (the vertices of

G) \ G.labeledV() in G, and

(ii) for every set e2 such that e2 joins a vertex from G.labeledV() and a

vertex from (the vertices of G) \ G.labeledV() in G holds (the weight of

G)(e1) ≤ (the weight of G)(e2).

Let G be a real-weighted w-graph. The functor PRIM : Init(G) yields a

real-wev wev-graph and is defined by:

(Def. 13) PRIM : Init(G) = G.set(VLabelSelector, choose(the vertices of G)

7−→. 1).set(ELabelSelector, ∅).

Let G be a real-wev wev-graph. The functor PRIM : Step(G) yielding a

real-wev wev-graph is defined by:

correctness of dijkstra’s shortest path . . . 301

(Def. 14) PRIM : Step(G) =



































G, if PRIM : NextBestEdges(G) = ∅,

(G.labelEdge(e, 1)).labelVertex((the target of G)

(e), 1), if PRIM : NextBestEdges(G) 6= ∅ and

(the source of G)(e) ∈ G.labeledV(),

(G.labelEdge(e, 1)).labelVertex((the source of G)

(e), 1), otherwise.

Let G be a real-weighted w-graph. The functor PRIM : CompSeq(G) yields

a real-wev wev-graph sequence and is defined by:

(Def. 15) PRIM : CompSeq(G).→0 = PRIM : Init(G) and for every natural num-

ber n holds PRIM : CompSeq(G).→(n + 1) =

PRIM : Step((PRIM : CompSeq(G).→n)).

Let G be a finite real-weighted w-graph. One can check that

PRIM : CompSeq(G) is finite.

Let G be a real-weighted w-graph. The functor PRIM : MST(G) yielding a

real-wev wev-graph is defined as follows:

(Def. 16) PRIM : MST(G) = (PRIM : CompSeq(G)).Result().

Let G be a finite real-weighted w-graph. Observe that PRIM : MST(G) is

finite.

Let G1 be a finite real-weighted w-graph and let n be a natural number. Ob-

serve that every subgraph of G1 induced by (PRIM : CompSeq(G1).→n).labeledV()

is connected.

Let G1 be a finite real-weighted w-graph and let n be a natural number. Note

that every subgraph of G1 induced by (PRIM : CompSeq(G1).→n).labeledV()

and (PRIM : CompSeq(G1).→n).labeledE() is connected.

Let G be a finite connected real-weighted w-graph. Observe that there exists

a w-subgraph of G which is spanning and tree-like.

Let G1 be a finite connected real-weighted w-graph and let G2 be a spanning

tree-like w-subgraph of G1. We say that G2 is min-cost if and only if:

(Def. 17) For every spanning tree-like w-subgraph G3 of G1 holds G2.cost() ≤

G3.cost().

Let G1 be a finite connected real-weighted w-graph. One can check that

there exists a spanning tree-like w-subgraph of G1 which is min-cost.

Let G be a finite connected real-weighted w-graph. A minimum spanning

tree of G is a min-cost spanning tree-like w-subgraph of G.

6. Prim’s Minimum Weight Spanning Tree Algorithm: theorems

One can prove the following propositions:

(35) Let G1, G2 be finite connected real-weighted w-graphs and G3 be a

w-subgraph of G1. Suppose G3 is a minimum spanning tree of G1 and

302 gilbert lee and piotr rudnicki

G1 =G G2 and the weight of G1 = the weight of G2. Then G3 is a

minimum spanning tree of G2.

(36) Let G be a finite connected real-weighted w-graph, G1 be a minimum

spanning tree of G, and G2 be a w-graph. Suppose G1 =G G2 and the

weight of G1 = the weight of G2. Then G2 is a minimum spanning tree of

G.

(37) Let G be a real-weighted w-graph. Then

(i) G =G PRIM : Init(G),

(ii) the weight of G = the weight of PRIM : Init(G),

(iii) the elabel of PRIM : Init(G) = ∅, and

(iv) the vlabel of PRIM : Init(G) = choose(the vertices of G)7−→. 1.

(38) For every real-weighted w-graph G holds (PRIM : Init(G)).labeledV() =

{choose(the vertices of G)} and (PRIM : Init(G)).labeledE() = ∅.

(39) For every real-wev wev-graph G such that PRIM : NextBestEdges(G) 6=

∅ there exists a vertex v of G such that v /∈ G.labeledV() and

PRIM : Step(G) =

(G.labelEdge(choose(PRIM : NextBestEdges(G)), 1)).labelVertex(v, 1).

(40) For every real-wev wev-graph G holds G =G PRIM : Step(G)

and the weight of G = the weight of PRIM : Step(G) and

G.labeledE() ⊆ (PRIM : Step(G)).labeledE() and G.labeledV() ⊆

(PRIM : Step(G)).labeledV().

(41) Let G be a finite real-weighted w-graph and n be a natural

number. Then G =G PRIM : CompSeq(G).→n and the weight of

PRIM : CompSeq(G).→n = the weight of G.

(42) Let G be a finite real-weighted w-graph and n be a natural num-

ber. Then (PRIM : CompSeq(G).→n).labeledV() is a non empty sub-

set of the vertices of G and (PRIM : CompSeq(G).→n).labeledE() ⊆

G.edgesBetween((PRIM : CompSeq(G).→n).labeledV()).

(43) For every finite real-weighted w-graph G1 and for every natural number n

holds every subgraph of G1 induced by PRIM : CompSeq(G1).→n.labeledV()

and PRIM : CompSeq(G1).→n.labeledE() is connected.

(44) For every finite real-weighted w-graph G1 and for every natural number n

holds every subgraph of G1 induced by PRIM : CompSeq(G1).→n.labeledV()

is connected.

(45) For every finite real-weighted w-graph G and for every natural number n

holds (PRIM : CompSeq(G).→n).labeledV() ⊆ G.reachableFrom(choose(the

vertices of G)).

(46) Let G be a finite real-weighted w-graph and i, j be natural

numbers. If i ≤ j, then (PRIM : CompSeq(G).→i).labeledV() ⊆

(PRIM : CompSeq(G).→j).labeledV() and (PRIM : CompSeq(G).→i)

correctness of dijkstra’s shortest path . . . 303

.labeledE() ⊆ (PRIM : CompSeq(G).→j).labeledE().

(47) Let G be a finite real-weighted w-graph and n be a natural number.

Then PRIM : NextBestEdges((PRIM : CompSeq(G).→n)) = ∅ if and only

if (PRIM : CompSeq(G).→n).labeledV() = G.reachableFrom(choose(the

vertices of G)).

(48) Let G be a finite real-weighted w-graph and n be a natural num-

ber. Then card((PRIM : CompSeq(G).→n).labeledV()) = min(n +

1, card(G.reachableFrom(choose(the vertices of G)))).

(49) For every finite real-weighted w-graph G holds PRIM : CompSeq(G) is

halting and (PRIM : CompSeq(G)).Lifespan() + 1 =

card(G.reachableFrom(choose(the vertices of G))).

(50) For every finite real-weighted w-graph G1 and for every natural number n

holds every subgraph of G1 induced by PRIM : CompSeq(G1).→n.labeledV()

and PRIM : CompSeq(G1).→n.labeledE() is tree-like.

(51) For every finite connected real-weighted w-graph G holds

(PRIM : MST(G)).labeledV() = the vertices of G.

(52) For every finite connected real-weighted w-graph G and for ev-

ery natural number n holds (PRIM : CompSeq(G).→n).labeledE() ⊆

(PRIM : MST(G)).labeledE().

(53) For every finite connected real-weighted w-graph G1 holds every induced

w-subgraph of G1, PRIM : MST(G1).labeledV(),

PRIM : MST(G1).labeledE() is a minimum spanning tree of G1.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[6] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[9] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[10] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[11] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[12] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[14] Jaros law Kotowicz. Real sequences and basic operations on them. Formalized Mathemat-

ics, 1(2):269–272, 1990.

304 gilbert lee and piotr rudnicki

[15] Gilbert Lee. Trees and Graph Components. Formalized Mathematics, 13(2):271–277,
2005.

[16] Gilbert Lee. Walks in Graphs. Formalized Mathematics, 13(2):253–269, 2005.
[17] Gilbert Lee. Weighted and Labeled Graphs. Formalized Mathematics, 13(2):279–293,

2005.
[18] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,

13(2):235–252, 2005.
[19] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics,

12(1):49–58, 2004.
[20] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-

matics, 6(3):335–338, 1997.
[21] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number

of variables. Formalized Mathematics, 9(1):95–110, 2001.
[22] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[23] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[24] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[26] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[27] Andrzej Trybulec and Czes law Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[29] Josef Urban. Basic facts about inaccessible and measurable cardinals. Formalized Math-

ematics, 9(2):323–329, 2001.
[30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received February 22, 2005

