FORMALIZED MATHEMATICS
Volume 13, Number 2, Pages 253-269
University of Bialystok, 2005

Walks in Graphs'

Gilbert Lee?
University of Victoria, Victoria, Canada

Summary. We define walks for graphs introduced in [9], introduce walk
attributes and functors for walk creation and modification of walks. Subwalks of
a walk are also defined. In our rendition, walks are alternating finite sequences
of vertices and edges.

MML identifier: GLIB_001, version: 7.5.01 4.39.921

The notation and terminology used here are introduced in the following papers:

H4L[U?L [16], [13], [18], [6], [4], [5], [1], [10], [17], [7], [3], [19], [15], [8], [2], (9],
and [11].

1. PRELIMINARIES

The following propositions are true:

(1) For all odd natural numbers x, y holds x < y iff z +2 < y.

(2) Let X be a set and k be a natural number. Suppose X C Segk. Let
m, n be natural numbers. If m € dom Sgm X and n = (Sgm X)(m), then
m < n.

(3) For every set X and for every finite sequence fy of elements of X and
for every FinSubsequence f; of f2 holds len Seq fi < len f5.

(4) Let X be a set, fo be a finite sequence of elements of X, f; be a Fin-

Subsequence of fy, and m be a natural number. Suppose m € dom Seq f7.
Then there exists a natural number n such that n € dom fo and m < n

and (Seq f1)(m) = fa(n).

!This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.

(© 2005 University of Bialystok
253 ISSN 1426-2630

254 GILBERT LEE

(5) For every set X and for every finite sequence fo of elements of X and
for every FinSubsequence f1 of fs holds len Seq f1 = card fi.

(6) Let X be a set, fo be a finite sequence of elements of X, and f; be a
FinSubsequence of fs. Then dom Seq fi = dom Sgm dom f.

2. WALK DEFINITIONS

Let G be a graph. A finite sequence of elements of the vertices of G is said
to be a vertex sequence of G if:

(Def. 1) For every natural number n such that 1 < n and n < lenit there exists
a set e such that e joins it(n) and it(n + 1) in G.
Let G be a graph. A finite sequence of elements of the edges of G is said to
be a edge sequence of G if it satisfies the condition (Def. 2).

(Def. 2) There exists a finite sequence vy of elements of the vertices of G such
that lenv; = lenit + 1 and for every natural number n such that 1 < n
and n < lenit holds it(n) joins v1(n) and vi(n+ 1) in G.
Let G be a graph. A finite sequence of elements of (the vertices of G) U (the
edges of G) is said to be a walk of G if it satisfies the conditions (Def. 3).
(Def. 3)(i) lenit is odd,
(ii) it(1) € the vertices of G, and
(iii) for every odd natural number n such that n < lenit holds it(n + 1)
joins it(n) and it(n + 2) in G.
Let G be a graph and let W be a walk of G. One can verify that len W is
odd and non empty.
Let G be a graph and let v be a vertex of G. The functor G.walkOf(v)
yielding a walk of G is defined as follows:
(Def. 4) G.walkOf(v) = (v).
Let G be a graph and let z, y, e be sets. The functor G.walkOf(z,e,y)
yielding a walk of G is defined as follows:
(x,e,y), if e joins x and y in G,
G .walkOf (choose(the vertices of G)), otherwise.
Let G be a graph and let W be a walk of G. The functor W first() yields a
vertex of G and is defined as follows:
(Def. 6) W first() = W(1).
The functor W.last() yields a vertex of G and is defined by:
(Def. 7) W.last() = W(len W).

Let G be a graph, let W be a walk of G, and let n be a natural number.
The functor W.vertexAt(n) yielding a vertex of G is defined as follows:

(Def. 5) G.walkOf(x,e,y) = {

WALKS IN GRAPHS 255

W(n), if n is odd and n < len W,
W .first(), otherwise.
Let G be a graph and let W be a walk of G. The functor W .reverse() yielding
a walk of GG is defined as follows:
(Def. 9) W.reverse() = Rev(W).
Let G be a graph and let Wy, W5 be walks of G. The functor Wj.append(W3)
yields a walk of G and is defined by:
W1~ Who, if Wl.last() = WQ.ﬁrSt(),
W1, otherwise.

(Def. 8) W.vertexAt(n) = {

(Def. 10) Wj.append(Ws) = {

Let G be a graph, let W be a walk of GG, and let m, n be natural numbers.
The functor W.cut(m,n) yields a walk of G and is defined by:
(W(m),...,W(n)), if m is odd and n is odd and
(Def. 11) W.cut(m,n) = m <mnandn <lenW,
W, otherwise.
Let G be a graph, let W be a walk of GG, and let m, n be natural numbers.
The functor W.remove(m,n) yielding a walk of G is defined by:
(W.cut(1,m)).append((W.cut(n,len W))),
if m is odd and n is odd and m < n and
n <lenW and W(m) = W(n),
W, otherwise.
Let G be a graph, let W be a walk of G, and let e be a set. The functor
W.addEdge(e) yields a walk of G and is defined as follows:
(Def. 13) W.addEdge(e) = W.append((G.walkOf(W last(), e, W.last().adj(e)))).
Let G be a graph and let W be a walk of G. The functor W .vertexSeq()
yielding a vertex sequence of GG is defined by:

(Def. 14) lenW 4+ 1 = 2 - len(W.vertexSeq()) and for every natural number n
such that 1 < n and n < len(W .vertexSeq()) holds W .vertexSeq()(n) =
W(2-n-1).

Let G be a graph and let W be a walk of G. The functor W.edgeSeq() yields
a edge sequence of G and is defined by:

(Def. 15) lenW = 2 -len(W.edgeSeq()) + 1 and for every natural number n such

that 1 <n and n < len(W.edgeSeq()) holds W .edgeSeq()(n) = W (2 - n).
Let G be a graph and let W be a walk of G. The functor W .vertices() yields
a finite subset of the vertices of G and is defined as follows:

(Def. 16) W .vertices() = rng(W .vertexSeq()).

Let G be a graph and let W be a walk of G. The functor W.edges() yields
a finite subset of the edges of G and is defined by:

(Def. 17) W .edges() = rng(W .edgeSeq()).

Let G be a graph and let W be a walk of G. The functor W .length() yielding
a natural number is defined by:

(Def. 12) W.remove(m,n) =

256 GILBERT LEE

(Def. 18) W .length() = len(W .edgeSeq()).
Let G be a graph, let W be a walk of (G, and let v be a set. The functor
W .find(v) yields an odd natural number and is defined by:

(Def. 19)(i) W.find(v) <lenW and W (W .find(v)) = v and for every odd natural
number n such that n < len W and W(n) = v holds W.find(v) < n if
v € W.vertices(),
(i) W.ind(v) = len W, otherwise.
Let G be a graph, let W be a walk of G, and let n be a natural number.
The functor W .find(n) yielding an odd natural number is defined by:

(Def. 20)(i) Wi.ind(n) < lenW and W(W.find(n)) = W(n) and for every
odd natural number k such that k¥ < lenW and W (k) = W(n) holds
W .find(n) < k if n is odd and n < len W,
(i) W.ind(n) = len W, otherwise.
Let G be a graph, let W be a walk of GG, and let v be a set. The functor
W .rfind(v) yields an odd natural number and is defined as follows:
(Def. 21)(i) W.rfind(v) <len W and W (W .rfind(v)) = v and for every odd natu-
ral number n such that n <len W and W (n) = v holds n < W.rfind(v) if
v € W.vertices(),
(i) W.rfind(v) = len W, otherwise.
Let G be a graph, let W be a walk of GG, and let n be a natural number.
The functor W.rfind(n) yields an odd natural number and is defined by:

(Def. 22)(1) W.rfind(n) < len W and W (W .rfind(n)) = W(n) and for every odd
natural number k such that £ < len W and W (k) = W(n) holds k <
W .rfind(n) if n is odd and n < len W,
(i) W.rfind(n) = len W, otherwise.

Let G be a graph, let u, v be sets, and let W be a walk of G. We say that
W is walk from u to v if and only if:

(Def. 23) W first() = u and W .last() = v.
Let G be a graph and let W be a walk of G. We say that W is closed if and
only if:
(Def. 24) W first() = W .last().
We say that W is directed if and only if:
(Def. 25) For every odd natural number n such that n < len W holds (the source
of G)(W(n+1)) =W(n).
We say that W is trivial if and only if:
(Def. 26) W .length() = 0.
We say that W is trail-like if and only if:
(Def. 27) W .edgeSeq() is one-to-one.

WALKS IN GRAPHS 257

Let G be a graph and let W be a walk of G. We introduce W is open as an
antonym of W is closed.
Let G be a graph and let W be a walk of G. We say that W is path-like if
and only if the conditions (Def. 28) are satisfied.
(Def. 28)(1) W is trail-like, and
(ii) for all odd natural numbers m, n such that m < n and n < len W holds
if W(m) =W (n), then m =1 and n = len W.
Let G be a graph and let W be a walk of G. We say that W is vertex-distinct
if and only if:
(Def. 29) For all odd natural numbers m, n such that m <len W and n <len W
and W(m) = W(n) holds m = n.
Let G be a graph and let W be a walk of G. We say that W is circuit-like
if and only if:
(Def. 30) W is closed, trail-like, and non trivial.
We say that W is cycle-like if and only if:
(Def. 31) W is closed, path-like, and non trivial.
Let G be a graph. One can verify the following observations:
x every walk of G which is path-like is also trail-like,
x every walk of G which is trivial is also path-like,
* every walk of G which is trivial is also vertex-distinct,
x every walk of G which is vertex-distinct is also path-like,
x every walk of G which is circuit-like is also closed, trail-like, and non
trivial, and
x every walk of G which is cycle-like is also closed, path-like, and non
trivial.
Let G be a graph. Observe that there exists a walk of G which is closed,
directed, and trivial.
Let G be a graph. Observe that there exists a walk of G which is vertex-
distinct.
Let G be a graph. A trail of G is a trail-like walk of G. A path of G is a
path-like walk of G.
Let G be a graph. A dwalk of G is a directed walk of G. A dtrail of G is a
directed trail of G. A dpath of G is a directed path of G.
Let G be a graph and let v be a vertex of G. Note that G.walkOf(v) is
closed, directed, and trivial.
Let G be a graph and let z, e, y be sets. One can check that G.walkOf(z, e, y)
is path-like.
Let G be a graph and let x, e be sets. Note that G.walkOf(z, e, z) is closed.
Let G be a graph and let W be a closed walk of G. One can check that
W .reverse() is closed.

258 GILBERT LEE

Let G be a graph and let W be a trivial walk of G. One can verify that
W .reverse() is trivial.

Let G be a graph and let W be a trail of G. Note that W.reverse() is
trail-like.

Let G be a graph and let W be a path of G. Observe that W .reverse() is
path-like.

Let G be a graph and let W7, W5 be closed walks of G. Note that W;.append(W5)
is closed.

Let G be a graph and let Wi, Wy be dwalks of G. One can verify that
Wi.append(Ws) is directed.

Let G be a graph and let Wi, Wy be trivial walks of G. Observe that
Wi.append(Ws) is trivial.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers.
Note that W.cut(m,n) is directed.

Let G be a graph, let W be a trivial walk of GG, and let m, n be natural
numbers. Observe that W.cut(m,n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers.
Note that W.cut(m,n) is trail-like.

Let G be a graph, let W be a path of GG, and let m, n be natural numbers.
Note that W.cut(m,n) is path-like.

Let G be a graph, let W be a vertex-distinct walk of GG, and let m, n be
natural numbers. One can verify that W.cut(m,n) is vertex-distinct.

Let G be a graph, let W be a closed walk of G, and let m, n be natural
numbers. One can verify that W.remove(m,n) is closed.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers.
Note that W .remove(m,n) is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural
numbers. One can check that W.remove(m,n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers.
Observe that W.remove(m, n) is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers.
Observe that W .remove(m,n) is path-like.

Let G be a graph and let W be a walk of G. A walk of GG is called a subwalk
of W if:

(Def. 32) It is walk from W first() to W .last() and there exists a FinSubsequence
e1 of W.edgeSeq() such that it.edgeSeq() = Seqe;.

Let G be a graph, let W be a walk of (G, and let m, n be natural numbers.
Then W.remove(m,n) is a subwalk of W.

Let G be a graph and let W be a walk of G. Note that there exists a subwalk
of W which is trail-like and path-like.

WALKS IN GRAPHS

Let G be a graph and let W be a walk of G. A trail of W is a trail-like
subwalk of W. A path of W is a path-like subwalk of W.

Let G be a graph and let W be a dwalk of G. One can verify that there
exists a path of W which is directed.

Let G be a graph and let W be a dwalk of G. A dwalk of W is a directed
subwalk of W. A dtrail of W is a directed trail of W. A dpath of W is a directed
path of W.

Let G be a graph. The functor G.allWalks() yields a non empty subset of
((the vertices of G) U (the edges of G))* and is defined by:

(Def. 33) G.allWalks() = {W : W ranges over walks of G}.

Let G be a graph. The functor G.allTrails() yielding a non empty subset of
G.allWalks() is defined by:

(Def. 34) G.allTrails() = {WW : W ranges over trails of G}.

Let G be a graph. The functor G.allPaths() yields a non empty subset of
G.allTrails() and is defined as follows:

(Def. 35) G.allPaths() = {WW : W ranges over paths of G}.

Let G be a graph. The functor G.allDWalks() yields a non empty subset of
G.allWalks() and is defined by:

(Def. 36) G.allDWalks() = {WW : W ranges over dwalks of G}.

Let G be a graph. The functor G.allDTrails() yields a non empty subset of
G.allTrails() and is defined as follows:

(Def. 37) G.allDTrails() = {W : W ranges over dtrails of G}.

Let G be a graph. The functor G.allDPaths() yields a non empty subset of
G.allDTrails() and is defined by:

(Def. 38) G.allDPaths() = {W : W ranges over directed paths of G}.

Let G be a finite graph. One can check that G.allTrails() is finite.

Let G be a graph and let X be a non empty subset of G.allWalks(). We see
that the element of X is a walk of G.

Let G be a graph and let X be a non empty subset of G.allTrails(). We see
that the element of X is a trail of G.

Let G be a graph and let X be a non empty subset of G.allPaths(). We see
that the element of X is a path of G.

Let G be a graph and let X be a non empty subset of G.allDWalks(). We
see that the element of X is a dwalk of G.

Let G be a graph and let X be a non empty subset of G.allDTrails(). We
see that the element of X is a dtrail of G.

Let G be a graph and let X be a non empty subset of G.allDPaths(). We
see that the element of X is a dpath of G.

259

260 GILBERT LEE

3. WALK THEOREMS

For simplicity, we adopt the following rules: G, GGy, G2 are graphs, W, Wy,
Wy are walks of G, e, x, y, z are sets, v is a vertex of GG, and n, m are natural
numbers.

We now state a number of propositions:

(8) For every odd natural number n such that n < len W holds W (n) € the
vertices of G.

(9) For every even natural number n such that n € dom W holds W (n) € the
edges of G.

(10) Let n be an even natural number. Suppose n € dom W. Then there
exists an odd natural number ny such that ny =n—1andn—1 &€ dom W
and n+ 1 € dom W and W (n) joins W(ny) and W(n +1) in G.

(11) For every odd natural number n such that n < len W holds W(n+1) €
(W .vertexAt(n)).edgesInOut().

(12) For every odd natural number n such that 1 < n and n < len W holds
W(n —1) € (W.vertexAt(n)).edgesInOut().

(13) For every odd natural number n such that n < len W holds n € dom W
andn+1€ domW and n+2 € domW.

(14) len(G.walkOf(v)) =1 and (G.walkOf(v))(
(G.walkOf (v)).first() = v and (G.walkOf(v)

is walk from v to v.
(15) If e joins x and y in G, then len(G.walkOf(z,e,y)) = 3.

(16) If e joins x and y in G, then (G.walkOf(z,e,y)).first() = =z and
(G.walkOf(z, e,y)).last() = y and G.walkOf(x, e, y) is walk from z to y.

(17) For every walk W; of G and for every walk W5 of G such that W = Wy
holds Wi first() = Wa.first() and Wi last() = Wa.last().

(18) W is walk from = to y iff W (1) = and W(len W) = y.
(19) If W is walk from x to y, then z is a vertex of G and y is a vertex of G.

(20) Let W be a walk of G; and W5 be a walk of Go. If Wi = Ws, then W)
is walk from x to y iff W5 is walk from z to y.

(21) For every walk W; of G and for every walk Wy of G such that W; = Wy
and for every natural number n holds Wj.vertexAt(n) = Wa.vertexAt(n).

(22) lenW = len(W .reverse()) and dom W = dom(W .reverse()) and rng W =
rng(W .reverse()).

(23) W.first() = W.reverse().last() and W.last() = W .reverse().first().
(24) W is walk from z to y iff W.reverse() is walk from y to x.

) = v and

1
)last() = v and G.walkOf(v)

3The proposition (7) has been removed.

WALKS IN GRAPHS

(25) If n € dom W, then W(n) = W.reverse()((len W —n) + 1) and (len W —
n) + 1 € dom(W .reverse()).

(26) Ifn € dom(W .reverse()), then W.reverse()(n) = W((len W —n)+1) and
(lenW —n)+1 € dom W.

(27) W .reverse().reverse() = W.

(28) For every walk W; of Gy and for every walk W5 of G such that Wy = Wy
holds Wj.reverse() = Wa.reverse().

(29) If Wi.dast() = Who.first(), then len(Wi.append(Ws)) + 1 = lenW; +
len W5

(30) If Wilast() = Wha.first(), then lenW; < len(W;.append(Ws)) and
len Wy < len(W;.append(Ws)).

(31) If Wy.last() = Wa.first(), then (Wj.append(Ws)).first() = W first() and
(Wi.append(Ws)).last() = Wa.last() and Wi.append(Ws) is walk from
W first() to Wa.last().

(32) If W is walk from z to y and Wy is walk from y to z, then
Wi .append(Ws) is walk from z to z.

(33) If n € domWj, then (Wj.append(W3))(n) = Wi(n) and n €
dom(W7.append(W3)).

(34) If Wy.last() = Wa.first(), then for every natural number n such that n <
len W5 holds (W;.append(Ws))(len W1 +n) = Wa(n+1) and len Wi +n €
dom(W;.append(Ws)).

(35) If n € dom(W;.append(W2)), then n € dom Wi or there exists a natural
number k such that k < len W5 and n = len W7 + k.

(36) For all walks W3, Wy of G; and for all walks W5, Wy of Ga such that
W3 = W5 and Wy = Wg holds Ws.append(Wy) = Ws.append(Wg).

(37) Let m, n be odd natural numbers. Suppose m < n and n < len W.
Then len(W.cut(m,n)) +m = n + 1 and for every natural number i such
that i < len(W.cut(m,n)) holds (W.cut(m,n))(i + 1) = W(m + i) and
m+1 € domW.

(38) Let m, n be odd natural numbers. Suppose m < n and n < len W.
Then (W.cut(m,n)).first() = W(m) and (W.cut(m,n)).last() = W(n)
and W.cut(m,n) is walk from W (m) to W(n).

(39) For all odd natural numbers m, n, o such that m < n and n < o and
o <len W holds (W .cut(m,n)).append((W .cut(n,o0))) = W.cut(m,o).

(40) W.cut(1l,len W) = W.

(41) For every odd natural number n such that n < lenW holds
G.walkOf (W (n), W(n+1),W(n+2)) = W.cut(n,n + 2).

(42) For all odd natural numbers m, n such that m < n and n < len W holds
(W.cut(m,n)).addEdge(W (n + 1)) = W.cut(m,n + 2).

261

262 GILBERT LEE

(43) For every odd natural number n such that n < lenW holds
W.cut(n,n) = (W.vertexAt(n)).

(44) If m is odd and m < n, then W.cut(1,n).cut(1,m) = W.cut(1, m).

(45) For all odd natural numbers m, n such that m < n and n < len W; and
Wi last() = Wa first() holds (W;.append(Ws2)).cut(m,n) = Wi.cut(m,n).

(46) For every odd natural number m such that m < lenW holds
len(W.cut(1,m)) = m.

(47) For every odd natural number m and for every natural number x such
that = € dom(W.cut(1,m)) and m < len W holds (W.cut(1l,m))(x) =

(48) Let m, n be odd natural numbers and ¢ be a natural number. If m <
n and n < lenW and i € dom(W.cut(m,n)), then (W.cut(m,n))(i) =
W((m+i)—1)and (m+i) —1 € dom W.

(49) For every walk W of G; and for every walk Wy of G2 and for all natural
numbers m, n such that Wi = Wy holds Wj.cut(m,n) = Wa.cut(m,n).

(50) For all odd natural numbers m, n such that m < n and n < len W and
W(m) = W(n) holds len(W .remove(m,n)) +n =len W + m.

(51) If W is walk from x to y, then W.remove(m,n) is walk from z to y.

(52) len(W.remove(m,n)) < len W.

(563) W.remove(m,m) = W.

(54) For all odd natural numbers m, n such that m <n and n < len W and

W(m) = W(n) holds (W.cut(1,m)).last() = (W.cut(n,len W)).first().

(55) Let m, n be odd natural numbers. Suppose m < n and n < len W
and W(m) = W(n). Let = be a natural number. If z € Segm, then
(W.remove(m,n))(x) = W(x).

(56) Let m, n be odd natural numbers. Suppose m < n and n < len W
and W(m) = W(n). Let be a natural number. Suppose m < z and
x < len(W.remove(m,n)). Then (W.remove(m,n))(x) = W((x —m) + n)
and (z —m) + n is a natural number and (r — m) +n < len W.

(57) For all odd natural numbers m, n such that m <n and n <len W and
W(m) = W(n) holds len(W .remove(m,n)) = (len W +m) — n.

(58) For every natural number m such that W(m) = W.last() holds
W .remove(m,len W) = W.cut(1, m).

(59) For every natural number m such that W.first() = W(m) holds
W .remove(1,m) = W.cut(m,len W).

(60) (W.remove(m,n)).first() = W.first() and (W.remove(m,n))last() =
W last().

(61) Let m, n be odd natural numbers and x be a natural number. Suppose
m <nandn <lenW and W(m) = W(n) and z € dom(W .remove(m,n)).

WALKS IN GRAPHS

Then x € Segm or m < z and x < len(W .remove(m,n)).

(62) For every walk Wp of G; and for every walk Wy of Gy and for all
natural numbers m, n such that W3 = Wy holds Wj.remove(m,n) =
Wy.remove(m, n).

(63) If e joins W.last() and x in G, then W.addEdge(e) = W ™ (e, z).

(64) 1If e joins W.last() and = in G, then (W.addEdge(e)).first() = W .first()
and (W.addEdge(e)).last() = z and W.addEdge(e) is walk from W first()

to x.
(65) 1If e joins W.last() and x in G, then len(W.addEdge(e)) = len W + 2.

(66) Suppose e joins W .last() and z in G. Then (W.addEdge(e))(len W+1) =
e and (W.addEdge(e))(len W + 2) = z and for every natural number n
such that n € dom W holds (W.addEdge(e))(n) = W (n).

(67) If W is walk from z to y and e joins y and z in G, then W.addEdge(e)
is walk from z to z.

(68) 1 < len(W .vertexSeq()).

(69) For every odd natural number n such that n < len W holds 2- ((n+1) +
2)—1l=nand1<(n+1)+2and (n+ 1)+ 2 < len(W.vertexSeq()).

(70) (G.walkOf(v)).vertexSeq() = (v).

(71) 1If e joins x and y in G, then (G.walkOf(z, e, y)).vertexSeq() = (x,y).

(72) W first() = W.vertexSeq()(1) and W .last() =
W .vertexSeq() (len(W .vertexSeq())).

(73) For every odd natural number n such that n < lenW holds
W .vertexAt(n) = W.vertexSeq()((n + 1) + 2).

(74) n € dom(W .vertexSeq()) iff 2-n — 1 € dom W.
(75) (W.cut(1,n)).vertexSeq() C W.vertexSeq().

(76) 1If e joins W.last() and = in G, then (W.addEdge(e)).vertexSeq() =
W .vertexSeq() ™~ (x).

(77) For every walk Wj of G and for every walk W5 of G such that Wy = Wy
holds Wi.vertexSeq() = Wa.vertexSeq().

(78) For every even natural number n such that 1 <n and n < len W holds
n <+ 2 € dom(W.edgeSeq()) and W (n) = W.edgeSeq()(n + 2).

(79) n € dom(W .edgeSeq()) iff 2-n € dom W.

(80) For every natural number n such that n € dom(W.edgeSeq()) holds
W .edgeSeq()(n) € the edges of G.

(81) There exists an even natural number /; such that {; = len W — 1 and
len(W.edgeSeq()) = I1 + 2.

(82) (W.cut(1,n)).edgeSeq() C W.edgeSeq().

(83) If e joins W.last() and =z in G, then (W.addEdge(e)).edgeSeq() =
W .edgeSeq() ~ (e).

263

264 GILBERT LEE

(84) e joins x and y in G iff (G.walkOf(z,e,y)).edgeSeq() = (e).

(85) W .reverse().edgeSeq() = Rev (W .edgeSeq()).

(86) If Wh.dast() = Wa.first(), then (Wj.append(Ws)).edgeSeq() =
Wi.edgeSeq() ~ Wa.edgeSeq().

(87) For every walk W; of G and for every walk Wy of G such that W; = Wy
holds Wj.edgeSeq() = Wa.edgeSeq().

(88) = € W.vertices() iff there exists an odd natural number n such that
n <lenW and W(n) = .

(89) W .first() € W.vertices() and W .last() € W.vertices().

(90) For every odd natural number n such that n < lenW holds
W .vertexAt(n) € W.vertices().

(91) (G.walkOf(v)).vertices() = {v}.

(92) 1If e joins z and y in G, then (G.walkOf(x,e,y)).vertices() = {z, y}.
(93) W .vertices() = W .reverse().vertices().

(94) If Whlast() = Walfirst(), then (Wj.append(Ws)).vertices() =

Wy .vertices() U Wa.vertices().

(95) For all odd natural numbers m, n such that m < n and n < len W holds
(W .cut(m,n)).vertices() C W.vertices().

(96) If e joins W.ast() and z in G, then (W.addEdge(e)).vertices() =
W .vertices() U {z}.

(97) Let G be a finite graph, W be a walk of G, and e, = be
sets. If e joins W.last() and = in G and x ¢ W.vertices(), then
card((W.addEdge(e)).vertices()) = card(W .vertices()) + 1.

(98) If x € W.vertices() and y € W.vertices(), then there exists a walk of G
which is walk from z to y.

(99) For every walk W; of G1 and for every walk W5 of G such that Wy = Wy
holds Wj.vertices() = Wa.vertices().

(100) e € W.edges() iff there exists an even natural number n such that 1 <n
and n <lenW and W(n) =e.

(101) e € W.edges() iff there exists an odd natural number n such that n <
len W and W(n+1) =e.

(102) rng W = W.vertices() U W.edges().

(103) If Wy.last() = Wa.first(), then (W7.append(W3)).edges() = Wi.edges()U
Wo.edges().

(104) Suppose e € W.edges(). Then there exist vertices va, vs of G and there
exists an odd natural number n such that n + 2 <len W and vy = W(n)
and e = W(n + 1) and v3 = W(n + 2) and e joins v2 and v3 in G.

(105) e € W.edges() iff there exists a natural number n such that n €
dom (W .edgeSeq()) and W .edgeSeq()(n) = e.

WALKS IN GRAPHS

(106) If e € W.edges() and e joins = and y in G, then x € W.vertices() and
y € W.vertices().

(107) (W.cut(m,n)).edges() C W.edges().

(108) W .edges() = W.reverse().edges().

(109) e joins x and y in G iff (G.walkOf(x,e,y)).edges() = {e}.

(110) W.edges() C G.edgesBetween(W .vertices()).

(111) For every walk W1 of G; and for every walk Wj of Go such that Wy = Ws

holds W.edges() = Wa.edges().

(112) If e joins W.last() and z in G, then (W.addEdge(e)).edges() =
W .edges() U {e}.

(113) lenW =2- W .length() + 1.

(114) lenW; = len Wy iff Wi .length() = Wa.length().

(115) For every walk W of G and for every walk Wy of Go such that W, = Wy

holds Wj.length() = Wa.length().

(116) For every odd natural number n such that n < lenW holds
W find(W(n)) < n and W.rfind(W(n)) > n.

(117) For every walk Wj of Gy and for every walk Wy of G5 and for every set
v such that W; = W holds Wi.find(v) = Wa.find(v) and Wi.rfind(v) =
Wa.rfind(v).

(118) For every odd natural number n such that n < len W holds W .find(n) <
n and W.rfind(n) > n.

(119) W is closed iff W (1) = W (len W).

(120) W is closed iff there exists a set x such that W is walk from z to .
(121) W is closed iff W.reverse() is closed.

(122) For every walk W1 of G; and for every walk Wj of Go such that W, = Ws

and W7 is closed holds Wy is closed.

(123) W is directed if and only if for every odd natural number n such that
n < len W holds W(n + 1) joins W(n) to W(n + 2) in G.

(124) Suppose W is directed and walk from z to y and e joins y to z in G.
Then W.addEdge(e) is directed and W.addEdge(e) is walk from x to z.

(125) For every dwalk W of G and for all natural numbers m, n holds
W .cut(m,n) is directed.

W is non trivial iff 3 <len W.

W is non trivial iff len W # 1.

If W first() # W.last(), then W is non trivial.

W is trivial iff there exists a vertex v of G such that W = G.walkOf(v).
W is trivial iff W.reverse() is trivial.

If Wy is trivial, then Wj.append(Ws) = Wi.

265

266 GILBERT LEE

(132) For all odd natural numbers m, n such that m < n and n < len W holds
W.cut(m,n) is trivial iff m = n.

(133) 1If e joins W.last() and x in G, then W.addEdge(e) is non trivial.

(134) If W is non trivial, then there exists an odd natural number /3 such that
lo =len W — 2 and (W.cut(1,l2)).addEdge(W (la + 1)) = W.

(135) If Wy is non trivial and Wy.edges() C Wi.edges(), then Wa.vertices() C
Wi .vertices().

(136) If W is non trivial, then for every vertex v of G such that v € W .vertices()
holds v is not isolated.

(137) W is trivial iff W.edges() = 0.
(138) For every walk W7 of G and for every walk Wj of Go such that W = Ws
and W7 is trivial holds Wy is trivial.

(139) W is trail-like iff for all even natural numbers m, n such that 1 < m and
m < n and n <len W holds W (m) # W (n).

(140) If len W < 3, then W is trail-like.

(141) W is trail-like iff W.reverse() is trail-like.

(142) For every traill W of G and for all natural numbers m, n holds
W .cut(m,n) is trail-like.

(143) For every trail W of G and for every set e such that e €

W last().edgesInOut() and e ¢ W.edges() holds W.addEdge(e) is trail-
like.

(144) For every trail W of G and for every vertex v of G such that v €
W .vertices() and v is endvertex holds v = W first() or v = W last().
(145) For every finite graph G and for every trail W of G holds
len(W.edgeSeq()) < G.size().

(146) If len W < 3, then W is path-like.

(147) If for all odd natural numbers m, n such that m <len W and n < len W
and W(m) = W(n) holds m = n, then W is path-like.

(148) Let W be a path of G. Suppose W is open. Let m, n be odd natural
numbers. If m < n and n <len W, then W(m) # W (n).

(149) W is path-like iff W.reverse() is path-like.

(150) For every path W of G and for all natural numbers m, n holds
W .cut(m,n) is path-like.

(151) Let W be a path of G and e, v be sets. Suppose that

(i) e joins W.last() and v in G,

(ii)) e ¢ W.edges(),

(ili) W is trivial or open, and

) for every odd natural number n such that 1 < n and n <len W holds

(iv

WALKS IN GRAPHS 267

Then W.addEdge(e) is path-like.

(152) Let W be a path of G and e, v be sets. Suppose e joins W .last() and v
in G and v ¢ W.vertices() and W is trivial or open. Then W.addEdge(e)
is path-like.

(153) If for every odd natural number n such that n < lenW holds
W . find(W(n)) = W.rfind(W (n)), then W is path-like.

(154) If for every odd natural number n such that n < lenW holds
W .rfind(n) = n, then W is path-like.

(155) For every finite graph G and for every path W of G holds
len(W .vertexSeq()) < G.order() + 1.

(156) Let G be a graph, W be a vertex-distinct walk of G, and e, v be sets. If
e joins W.last() and v in G and v ¢ W.vertices(), then W.addEdge(e) is
vertex-distinct.

(157) If e joins x and =z in G, then G.walkOf(z, e, z) is cycle-like.

(158) Suppose e joins z and y in G and e € Wi.edges() and W is cycle-like.
Then there exists a walk Wy of G such that W5 is walk from x to y and
e ¢ W.edges().

(159) W is a subwalk of W.

(160) For every walk W; of G and for every subwalk W5 of W holds every
subwalk of W5 is a subwalk of Wj.

(161) If Wy is a subwalk of Wy, then W) is walk from x to y iff Wy is walk
from x to y.

(162) If Wy is a subwalk of Wo, then Wi .first() = Wa.first() and Wi.last() =
Wy last().

(163) 1If W7 is a subwalk of W5, then len Wy < len W.
(164) If Wy is a subwalk of Wy, then Wj.edges() C Whas.edges() and
Wi .vertices() C Wa.vertices().

(165) Suppose W is a subwalk of Ws. Let m be an odd natural number.
Suppose m < len Wy. Then there exists an odd natural number n such
that m <n and n <len Wy and Wi(m) = Wa(n).

(166) Suppose Wj is a subwalk of Wa. Let m be an even natural number.
Suppose 1 < m and m < len W7. Then there exists an even natural number
n such that m < n and n <len Wy and Wj(m) = Wa(n).

(167) For every trail W; of G such that Wj is non trivial holds there exists a
path of W7 which is non trivial.

(168) For every graph G; and for every subgraph Gy of G holds every walk
of G5 is a walk of GG5.

(169) Let G be a graph, G2 be a subgraph of G, and W be a walk of G;. If
W is trivial and W .first() € the vertices of Ga, then W is a walk of G.

268 GILBERT LEE

(170) Let G be a graph, G be a subgraph of G, and W be a walk of G;. If
W is non trivial and W.edges() C the edges of Gg, then W is a walk of
Gs.

(171) Let G; be a graph, G5 be a subgraph of Gy, and W be a walk of Gj.
Suppose W .vertices() C the vertices of G and W.edges() C the edges of
Go. Then W is a walk of Gs.

(172) Let G7 be a non trivial graph, W be a walk of G1, v be a vertex of Gy,
and G2 be a subgraph of G} with vertex v removed. If v ¢ W.vertices(),
then W is a walk of Gs.

(173) Let G1 be a graph, W be a walk of G1, e be a set, and G2 be a subgraph
of G1 with edge e removed. If e ¢ W.edges(), then W is a walk of Gs.

(174) Let G; be a graph, G5 be a subgraph of G1, and z, y, e be sets. If e
joins = and y in Go, then G1.walkOf(z, e,y) = Ga2.walkOf(z, e, y).

(175) Let G; be a graph, G2 be a subgraph of G, W; be a walk of G1, W5 be
a walk of G, and e be a set. If W; = Wy and e € Wa.last().edgesInOut(),
then Wi.addEdge(e) = Wa.addEdge(e).

(176) Let G be a graph, Gy be a subgraph of G1, and W be a walk of Gs.
Then

(i) if W is closed, then W is a closed walk of G,
(ii) if W is directed, then W is a directed walk of G,
(iii) if W is trivial, then W is a trivial walk of Gy,
(iv) if W is trail-like, then W is a trail-like walk of G,
(v) if W is path-like, then W is a path-like walk of G, and
(vi) if W is vertex-distinct, then W is a vertex-distinct walk of G;.

(177) Let G1 be a graph, G5 be a subgraph of Gy, W be a walk of G, and
W5 be a walk of G such that W7 = W5. Then
) Wy is closed iff Wy is closed,
) W is directed iff Wy is directed,
(iii) W7 is trivial iff Wh is trivial,
) W is trail-like iff Wy is trail-like,
) Wi is path-like iff W5 is path-like, and
) W is vertex-distinct iff Wy is vertex-distinct.

(178) If G1 =g G2 and z is a vertex sequence of Gp, then x is a vertex sequence
of GQ.

(179) If G; =¢ G2 and x is a edge sequence of G1, then x is a edge sequence
of GQ.

(180) If G; =¢ G2 and x is a walk of Gy, then x is a walk of Gs.

(181) If Gy =¢ Ga, then G1.walkOf(x, e,y) = Ga.walkOf(z, e, y).

(182) Let W; be a walk of G; and Wy be a walk of G such that G; =g G»
and Wy, = Ws. Then

WALKS IN GRAPHS 269

W1 is closed iff Wy is closed,
W1 is directed iff W5 is directed,

W1 is trail-like iff W5 is trail-like,
W1 is path-like iff W5 is path-like, and
Wi is vertex-distinct iff W5 is vertex-distinct.

)
)
ii) Wi is trivial iff Wy is trivial,
)
)
)

REFERENCES

Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czestaw Byliniski. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529-536, 1990.

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Byliniski. Some properties of restrictions of finite sequences. Formalized Mathe-
matics, 5(2):241-245, 1996.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,
13(2):235-252, 2005.

Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized
Mathematics, 5(3):297-304, 1996.

Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335-338, 1997.

Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97-105, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Josef Urban. Basic facts about inaccessible and measurable cardinals. Formalized Math-
ematics, 9(2):323-329, 2001.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,
1990.

Received February 22, 2005

