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Summary. We define walks for graphs introduced in [9], introduce walk

attributes and functors for walk creation and modification of walks. Subwalks of

a walk are also defined. In our rendition, walks are alternating finite sequences

of vertices and edges.

MML identifier: GLIB 001, version: 7.5.01 4.39.921

The notation and terminology used here are introduced in the following papers:

[14], [12], [16], [13], [18], [6], [4], [5], [1], [10], [17], [7], [3], [19], [15], [8], [2], [9],

and [11].

1. Preliminaries

The following propositions are true:

(1) For all odd natural numbers x, y holds x < y iff x + 2 ≤ y.

(2) Let X be a set and k be a natural number. Suppose X ⊆ Seg k. Let

m, n be natural numbers. If m ∈ dom Sgm X and n = (SgmX)(m), then

m ≤ n.

(3) For every set X and for every finite sequence f2 of elements of X and

for every FinSubsequence f1 of f2 holds len Seq f1 ≤ len f2.

(4) Let X be a set, f2 be a finite sequence of elements of X, f1 be a Fin-

Subsequence of f2, and m be a natural number. Suppose m ∈ dom Seq f1.

Then there exists a natural number n such that n ∈ dom f2 and m ≤ n

and (Seq f1)(m) = f2(n).

1This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.
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(5) For every set X and for every finite sequence f2 of elements of X and

for every FinSubsequence f1 of f2 holds len Seq f1 = card f1.

(6) Let X be a set, f2 be a finite sequence of elements of X, and f1 be a

FinSubsequence of f2. Then dom Seq f1 = dom Sgm dom f1.

2. Walk Definitions

Let G be a graph. A finite sequence of elements of the vertices of G is said

to be a vertex sequence of G if:

(Def. 1) For every natural number n such that 1 ≤ n and n < len it there exists

a set e such that e joins it(n) and it(n + 1) in G.

Let G be a graph. A finite sequence of elements of the edges of G is said to

be a edge sequence of G if it satisfies the condition (Def. 2).

(Def. 2) There exists a finite sequence v1 of elements of the vertices of G such

that len v1 = len it + 1 and for every natural number n such that 1 ≤ n

and n ≤ len it holds it(n) joins v1(n) and v1(n + 1) in G.

Let G be a graph. A finite sequence of elements of (the vertices of G)∪ (the

edges of G) is said to be a walk of G if it satisfies the conditions (Def. 3).

(Def. 3)(i) len it is odd,

(ii) it(1) ∈ the vertices of G, and

(iii) for every odd natural number n such that n < len it holds it(n + 1)

joins it(n) and it(n + 2) in G.

Let G be a graph and let W be a walk of G. One can verify that lenW is

odd and non empty.

Let G be a graph and let v be a vertex of G. The functor G.walkOf(v)

yielding a walk of G is defined as follows:

(Def. 4) G.walkOf(v) = 〈v〉.

Let G be a graph and let x, y, e be sets. The functor G.walkOf(x, e, y)

yielding a walk of G is defined as follows:

(Def. 5) G.walkOf(x, e, y) =

{

〈x, e, y〉, if e joins x and y in G,

G.walkOf(choose(the vertices of G)), otherwise.

Let G be a graph and let W be a walk of G. The functor W.first() yields a

vertex of G and is defined as follows:

(Def. 6) W.first() = W (1).

The functor W.last() yields a vertex of G and is defined by:

(Def. 7) W.last() = W (lenW ).

Let G be a graph, let W be a walk of G, and let n be a natural number.

The functor W.vertexAt(n) yielding a vertex of G is defined as follows:
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(Def. 8) W.vertexAt(n) =

{

W (n), if n is odd and n ≤ len W,

W.first(), otherwise.

Let G be a graph and let W be a walk of G. The functor W.reverse() yielding

a walk of G is defined as follows:

(Def. 9) W.reverse() = Rev(W ).

Let G be a graph and let W1, W2 be walks of G. The functor W1.append(W2)

yields a walk of G and is defined by:

(Def. 10) W1.append(W2) =

{

W1 aa W2, if W1.last() = W2.first(),

W1, otherwise.

Let G be a graph, let W be a walk of G, and let m, n be natural numbers.

The functor W.cut(m,n) yields a walk of G and is defined by:

(Def. 11) W.cut(m,n) =







〈W (m), . . . ,W (n)〉, if m is odd and n is odd and

m ≤ n and n ≤ len W,

W, otherwise.

Let G be a graph, let W be a walk of G, and let m, n be natural numbers.

The functor W.remove(m,n) yielding a walk of G is defined by:

(Def. 12) W.remove(m,n) =















(W.cut(1,m)).append((W.cut(n, len W ))),

if m is odd and n is odd and m ≤ n and

n ≤ len W and W (m) = W (n),

W, otherwise.

Let G be a graph, let W be a walk of G, and let e be a set. The functor

W.addEdge(e) yields a walk of G and is defined as follows:

(Def. 13) W.addEdge(e) = W.append((G.walkOf(W.last(), e, W .last().adj(e)))).

Let G be a graph and let W be a walk of G. The functor W.vertexSeq()

yielding a vertex sequence of G is defined by:

(Def. 14) lenW + 1 = 2 · len(W.vertexSeq()) and for every natural number n

such that 1 ≤ n and n ≤ len(W.vertexSeq()) holds W.vertexSeq()(n) =

W (2 · n − 1).

Let G be a graph and let W be a walk of G. The functor W.edgeSeq() yields

a edge sequence of G and is defined by:

(Def. 15) lenW = 2 · len(W.edgeSeq()) + 1 and for every natural number n such

that 1 ≤ n and n ≤ len(W.edgeSeq()) holds W.edgeSeq()(n) = W (2 · n).

Let G be a graph and let W be a walk of G. The functor W.vertices() yields

a finite subset of the vertices of G and is defined as follows:

(Def. 16) W.vertices() = rng(W.vertexSeq()).

Let G be a graph and let W be a walk of G. The functor W.edges() yields

a finite subset of the edges of G and is defined by:

(Def. 17) W.edges() = rng(W.edgeSeq()).

Let G be a graph and let W be a walk of G. The functor W.length() yielding

a natural number is defined by:
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(Def. 18) W.length() = len(W.edgeSeq()).

Let G be a graph, let W be a walk of G, and let v be a set. The functor

W.find(v) yields an odd natural number and is defined by:

(Def. 19)(i) W.find(v) ≤ len W and W (W.find(v)) = v and for every odd natural

number n such that n ≤ len W and W (n) = v holds W.find(v) ≤ n if

v ∈ W.vertices(),

(ii) W.find(v) = lenW, otherwise.

Let G be a graph, let W be a walk of G, and let n be a natural number.

The functor W.find(n) yielding an odd natural number is defined by:

(Def. 20)(i) W.find(n) ≤ len W and W (W.find(n)) = W (n) and for every

odd natural number k such that k ≤ len W and W (k) = W (n) holds

W.find(n) ≤ k if n is odd and n ≤ len W,

(ii) W.find(n) = len W, otherwise.

Let G be a graph, let W be a walk of G, and let v be a set. The functor

W.rfind(v) yields an odd natural number and is defined as follows:

(Def. 21)(i) W.rfind(v) ≤ len W and W (W.rfind(v)) = v and for every odd natu-

ral number n such that n ≤ len W and W (n) = v holds n ≤ W.rfind(v) if

v ∈ W.vertices(),

(ii) W.rfind(v) = len W, otherwise.

Let G be a graph, let W be a walk of G, and let n be a natural number.

The functor W.rfind(n) yields an odd natural number and is defined by:

(Def. 22)(i) W.rfind(n) ≤ len W and W (W.rfind(n)) = W (n) and for every odd

natural number k such that k ≤ len W and W (k) = W (n) holds k ≤

W.rfind(n) if n is odd and n ≤ len W,

(ii) W.rfind(n) = len W, otherwise.

Let G be a graph, let u, v be sets, and let W be a walk of G. We say that

W is walk from u to v if and only if:

(Def. 23) W.first() = u and W.last() = v.

Let G be a graph and let W be a walk of G. We say that W is closed if and

only if:

(Def. 24) W.first() = W.last().

We say that W is directed if and only if:

(Def. 25) For every odd natural number n such that n < len W holds (the source

of G)(W (n + 1)) = W (n).

We say that W is trivial if and only if:

(Def. 26) W.length() = 0.

We say that W is trail-like if and only if:

(Def. 27) W.edgeSeq() is one-to-one.
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Let G be a graph and let W be a walk of G. We introduce W is open as an

antonym of W is closed.

Let G be a graph and let W be a walk of G. We say that W is path-like if

and only if the conditions (Def. 28) are satisfied.

(Def. 28)(i) W is trail-like, and

(ii) for all odd natural numbers m, n such that m < n and n ≤ len W holds

if W (m) = W (n), then m = 1 and n = lenW.

Let G be a graph and let W be a walk of G. We say that W is vertex-distinct

if and only if:

(Def. 29) For all odd natural numbers m, n such that m ≤ len W and n ≤ len W

and W (m) = W (n) holds m = n.

Let G be a graph and let W be a walk of G. We say that W is circuit-like

if and only if:

(Def. 30) W is closed, trail-like, and non trivial.

We say that W is cycle-like if and only if:

(Def. 31) W is closed, path-like, and non trivial.

Let G be a graph. One can verify the following observations:

∗ every walk of G which is path-like is also trail-like,

∗ every walk of G which is trivial is also path-like,

∗ every walk of G which is trivial is also vertex-distinct,

∗ every walk of G which is vertex-distinct is also path-like,

∗ every walk of G which is circuit-like is also closed, trail-like, and non

trivial, and

∗ every walk of G which is cycle-like is also closed, path-like, and non

trivial.

Let G be a graph. Observe that there exists a walk of G which is closed,

directed, and trivial.

Let G be a graph. Observe that there exists a walk of G which is vertex-

distinct.

Let G be a graph. A trail of G is a trail-like walk of G. A path of G is a

path-like walk of G.

Let G be a graph. A dwalk of G is a directed walk of G. A dtrail of G is a

directed trail of G. A dpath of G is a directed path of G.

Let G be a graph and let v be a vertex of G. Note that G.walkOf(v) is

closed, directed, and trivial.

Let G be a graph and let x, e, y be sets. One can check that G.walkOf(x, e, y)

is path-like.

Let G be a graph and let x, e be sets. Note that G.walkOf(x, e, x) is closed.

Let G be a graph and let W be a closed walk of G. One can check that

W.reverse() is closed.
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Let G be a graph and let W be a trivial walk of G. One can verify that

W.reverse() is trivial.

Let G be a graph and let W be a trail of G. Note that W.reverse() is

trail-like.

Let G be a graph and let W be a path of G. Observe that W.reverse() is

path-like.

Let G be a graph and let W1, W2 be closed walks of G. Note that W1.append(W2)

is closed.

Let G be a graph and let W1, W2 be dwalks of G. One can verify that

W1.append(W2) is directed.

Let G be a graph and let W1, W2 be trivial walks of G. Observe that

W1.append(W2) is trivial.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers.

Note that W.cut(m,n) is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural

numbers. Observe that W.cut(m,n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers.

Note that W.cut(m,n) is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers.

Note that W.cut(m,n) is path-like.

Let G be a graph, let W be a vertex-distinct walk of G, and let m, n be

natural numbers. One can verify that W.cut(m,n) is vertex-distinct.

Let G be a graph, let W be a closed walk of G, and let m, n be natural

numbers. One can verify that W.remove(m,n) is closed.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers.

Note that W.remove(m,n) is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural

numbers. One can check that W.remove(m, n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers.

Observe that W.remove(m,n) is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers.

Observe that W.remove(m,n) is path-like.

Let G be a graph and let W be a walk of G. A walk of G is called a subwalk

of W if:

(Def. 32) It is walk from W.first() to W.last() and there exists a FinSubsequence

e1 of W.edgeSeq() such that it.edgeSeq() = Seq e1.

Let G be a graph, let W be a walk of G, and let m, n be natural numbers.

Then W.remove(m,n) is a subwalk of W .

Let G be a graph and let W be a walk of G. Note that there exists a subwalk

of W which is trail-like and path-like.
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Let G be a graph and let W be a walk of G. A trail of W is a trail-like

subwalk of W . A path of W is a path-like subwalk of W .

Let G be a graph and let W be a dwalk of G. One can verify that there

exists a path of W which is directed.

Let G be a graph and let W be a dwalk of G. A dwalk of W is a directed

subwalk of W . A dtrail of W is a directed trail of W . A dpath of W is a directed

path of W .

Let G be a graph. The functor G.allWalks() yields a non empty subset of

((the vertices of G) ∪ (the edges of G))∗ and is defined by:

(Def. 33) G.allWalks() = {W : W ranges over walks of G}.

Let G be a graph. The functor G.allTrails() yielding a non empty subset of

G.allWalks() is defined by:

(Def. 34) G.allTrails() = {W : W ranges over trails of G}.

Let G be a graph. The functor G.allPaths() yields a non empty subset of

G.allTrails() and is defined as follows:

(Def. 35) G.allPaths() = {W : W ranges over paths of G}.

Let G be a graph. The functor G.allDWalks() yields a non empty subset of

G.allWalks() and is defined by:

(Def. 36) G.allDWalks() = {W : W ranges over dwalks of G}.

Let G be a graph. The functor G.allDTrails() yields a non empty subset of

G.allTrails() and is defined as follows:

(Def. 37) G.allDTrails() = {W : W ranges over dtrails of G}.

Let G be a graph. The functor G.allDPaths() yields a non empty subset of

G.allDTrails() and is defined by:

(Def. 38) G.allDPaths() = {W : W ranges over directed paths of G}.

Let G be a finite graph. One can check that G.allTrails() is finite.

Let G be a graph and let X be a non empty subset of G.allWalks(). We see

that the element of X is a walk of G.

Let G be a graph and let X be a non empty subset of G.allTrails(). We see

that the element of X is a trail of G.

Let G be a graph and let X be a non empty subset of G.allPaths(). We see

that the element of X is a path of G.

Let G be a graph and let X be a non empty subset of G.allDWalks(). We

see that the element of X is a dwalk of G.

Let G be a graph and let X be a non empty subset of G.allDTrails(). We

see that the element of X is a dtrail of G.

Let G be a graph and let X be a non empty subset of G.allDPaths(). We

see that the element of X is a dpath of G.
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3. Walk Theorems

For simplicity, we adopt the following rules: G, G1, G2 are graphs, W , W1,

W2 are walks of G, e, x, y, z are sets, v is a vertex of G, and n, m are natural

numbers.

We now state a number of propositions:

(8)3 For every odd natural number n such that n ≤ len W holds W (n) ∈ the

vertices of G.

(9) For every even natural number n such that n ∈ domW holds W (n) ∈ the

edges of G.

(10) Let n be an even natural number. Suppose n ∈ domW. Then there

exists an odd natural number n1 such that n1 = n−1 and n−1 ∈ domW

and n + 1 ∈ domW and W (n) joins W (n1) and W (n + 1) in G.

(11) For every odd natural number n such that n < len W holds W (n + 1) ∈

(W.vertexAt(n)).edgesInOut().

(12) For every odd natural number n such that 1 < n and n ≤ len W holds

W (n − 1) ∈ (W.vertexAt(n)).edgesInOut().

(13) For every odd natural number n such that n < len W holds n ∈ domW

and n + 1 ∈ domW and n + 2 ∈ domW.

(14) len(G.walkOf(v)) = 1 and (G.walkOf(v))(1) = v and

(G.walkOf(v)).first() = v and (G.walkOf(v)).last() = v and G.walkOf(v)

is walk from v to v.

(15) If e joins x and y in G, then len(G.walkOf(x, e, y)) = 3.

(16) If e joins x and y in G, then (G.walkOf(x, e, y)).first() = x and

(G.walkOf(x, e, y)).last() = y and G.walkOf(x, e, y) is walk from x to y.

(17) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.first() = W2.first() and W1.last() = W2.last().

(18) W is walk from x to y iff W (1) = x and W (lenW ) = y.

(19) If W is walk from x to y, then x is a vertex of G and y is a vertex of G.

(20) Let W1 be a walk of G1 and W2 be a walk of G2. If W1 = W2, then W1

is walk from x to y iff W2 is walk from x to y.

(21) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

and for every natural number n holds W1.vertexAt(n) = W2.vertexAt(n).

(22) lenW = len(W.reverse()) and domW = dom(W.reverse()) and rng W =

rng(W.reverse()).

(23) W.first() = W.reverse().last() and W.last() = W.reverse().first().

(24) W is walk from x to y iff W.reverse() is walk from y to x.

3The proposition (7) has been removed.
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(25) If n ∈ domW, then W (n) = W.reverse()((len W − n) + 1) and (lenW −

n) + 1 ∈ dom(W.reverse()).

(26) If n ∈ dom(W.reverse()), then W.reverse()(n) = W ((lenW −n)+1) and

(lenW − n) + 1 ∈ domW.

(27) W.reverse().reverse() = W.

(28) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.reverse() = W2.reverse().

(29) If W1.last() = W2.first(), then len(W1.append(W2)) + 1 = lenW1 +

len W2.

(30) If W1.last() = W2.first(), then lenW1 ≤ len(W1.append(W2)) and

len W2 ≤ len(W1.append(W2)).

(31) If W1.last() = W2.first(), then (W1.append(W2)).first() = W1.first() and

(W1.append(W2)).last() = W2.last() and W1.append(W2) is walk from

W1.first() to W2.last().

(32) If W1 is walk from x to y and W2 is walk from y to z, then

W1.append(W2) is walk from x to z.

(33) If n ∈ domW1, then (W1.append(W2))(n) = W1(n) and n ∈

dom(W1.append(W2)).

(34) If W1.last() = W2.first(), then for every natural number n such that n <

len W2 holds (W1.append(W2))(lenW1 +n) = W2(n+1) and lenW1 +n ∈

dom(W1.append(W2)).

(35) If n ∈ dom(W1.append(W2)), then n ∈ domW1 or there exists a natural

number k such that k < len W2 and n = lenW1 + k.

(36) For all walks W3, W4 of G1 and for all walks W5, W6 of G2 such that

W3 = W5 and W4 = W6 holds W3.append(W4) = W5.append(W6).

(37) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ len W.

Then len(W.cut(m,n)) + m = n + 1 and for every natural number i such

that i < len(W.cut(m, n)) holds (W.cut(m,n))(i + 1) = W (m + i) and

m + i ∈ domW.

(38) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ len W.

Then (W.cut(m,n)).first() = W (m) and (W.cut(m,n)).last() = W (n)

and W.cut(m,n) is walk from W (m) to W (n).

(39) For all odd natural numbers m, n, o such that m ≤ n and n ≤ o and

o ≤ len W holds (W.cut(m,n)).append((W.cut(n, o))) = W.cut(m, o).

(40) W.cut(1, len W ) = W.

(41) For every odd natural number n such that n < len W holds

G.walkOf(W (n),W (n + 1),W (n + 2)) = W.cut(n, n + 2).

(42) For all odd natural numbers m, n such that m ≤ n and n < len W holds

(W.cut(m,n)).addEdge(W (n + 1)) = W.cut(m,n + 2).
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(43) For every odd natural number n such that n ≤ len W holds

W.cut(n, n) = 〈W.vertexAt(n)〉.

(44) If m is odd and m ≤ n, then W.cut(1, n).cut(1,m) = W.cut(1,m).

(45) For all odd natural numbers m, n such that m ≤ n and n ≤ len W1 and

W1.last() = W2.first() holds (W1.append(W2)).cut(m,n) = W1.cut(m,n).

(46) For every odd natural number m such that m ≤ len W holds

len(W.cut(1,m)) = m.

(47) For every odd natural number m and for every natural number x such

that x ∈ dom(W.cut(1,m)) and m ≤ len W holds (W.cut(1,m))(x) =

W (x).

(48) Let m, n be odd natural numbers and i be a natural number. If m ≤

n and n ≤ len W and i ∈ dom(W.cut(m,n)), then (W.cut(m,n))(i) =

W ((m + i) − 1) and (m + i) − 1 ∈ domW.

(49) For every walk W1 of G1 and for every walk W2 of G2 and for all natural

numbers m, n such that W1 = W2 holds W1.cut(m,n) = W2.cut(m,n).

(50) For all odd natural numbers m, n such that m ≤ n and n ≤ len W and

W (m) = W (n) holds len(W.remove(m,n)) + n = lenW + m.

(51) If W is walk from x to y, then W.remove(m,n) is walk from x to y.

(52) len(W.remove(m,n)) ≤ len W.

(53) W.remove(m,m) = W.

(54) For all odd natural numbers m, n such that m ≤ n and n ≤ len W and

W (m) = W (n) holds (W.cut(1,m)).last() = (W.cut(n, len W )).first().

(55) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ len W

and W (m) = W (n). Let x be a natural number. If x ∈ Seg m, then

(W.remove(m,n))(x) = W (x).

(56) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ len W

and W (m) = W (n). Let x be a natural number. Suppose m ≤ x and

x ≤ len(W.remove(m,n)). Then (W.remove(m,n))(x) = W ((x − m) + n)

and (x − m) + n is a natural number and (x − m) + n ≤ len W.

(57) For all odd natural numbers m, n such that m ≤ n and n ≤ len W and

W (m) = W (n) holds len(W.remove(m,n)) = (lenW + m) − n.

(58) For every natural number m such that W (m) = W.last() holds

W.remove(m, len W ) = W.cut(1,m).

(59) For every natural number m such that W.first() = W (m) holds

W.remove(1,m) = W.cut(m, len W ).

(60) (W.remove(m,n)).first() = W.first() and (W.remove(m,n)).last() =

W.last().

(61) Let m, n be odd natural numbers and x be a natural number. Suppose

m ≤ n and n ≤ len W and W (m) = W (n) and x ∈ dom(W.remove(m,n)).
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Then x ∈ Seg m or m ≤ x and x ≤ len(W.remove(m,n)).

(62) For every walk W1 of G1 and for every walk W2 of G2 and for all

natural numbers m, n such that W1 = W2 holds W1.remove(m,n) =

W2.remove(m,n).

(63) If e joins W.last() and x in G, then W.addEdge(e) = W a 〈e, x〉.

(64) If e joins W.last() and x in G, then (W.addEdge(e)).first() = W.first()

and (W.addEdge(e)).last() = x and W.addEdge(e) is walk from W.first()

to x.

(65) If e joins W.last() and x in G, then len(W.addEdge(e)) = lenW + 2.

(66) Suppose e joins W.last() and x in G. Then (W.addEdge(e))(lenW+1) =

e and (W.addEdge(e))(lenW + 2) = x and for every natural number n

such that n ∈ domW holds (W.addEdge(e))(n) = W (n).

(67) If W is walk from x to y and e joins y and z in G, then W.addEdge(e)

is walk from x to z.

(68) 1 ≤ len(W.vertexSeq()).

(69) For every odd natural number n such that n ≤ len W holds 2 · ((n+1)÷

2) − 1 = n and 1 ≤ (n + 1) ÷ 2 and (n + 1) ÷ 2 ≤ len(W.vertexSeq()).

(70) (G.walkOf(v)).vertexSeq() = 〈v〉.

(71) If e joins x and y in G, then (G.walkOf(x, e, y)).vertexSeq() = 〈x, y〉.

(72) W.first() = W.vertexSeq()(1) and W.last() =

W.vertexSeq()(len(W.vertexSeq())).

(73) For every odd natural number n such that n ≤ len W holds

W.vertexAt(n) = W.vertexSeq()((n + 1) ÷ 2).

(74) n ∈ dom(W.vertexSeq()) iff 2 · n − 1 ∈ domW.

(75) (W.cut(1, n)).vertexSeq() ⊆ W.vertexSeq().

(76) If e joins W.last() and x in G, then (W.addEdge(e)).vertexSeq() =

W.vertexSeq() a 〈x〉.

(77) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.vertexSeq() = W2.vertexSeq().

(78) For every even natural number n such that 1 ≤ n and n ≤ len W holds

n ÷ 2 ∈ dom(W.edgeSeq()) and W (n) = W.edgeSeq()(n ÷ 2).

(79) n ∈ dom(W.edgeSeq()) iff 2 · n ∈ domW.

(80) For every natural number n such that n ∈ dom(W.edgeSeq()) holds

W.edgeSeq()(n) ∈ the edges of G.

(81) There exists an even natural number l1 such that l1 = len W − 1 and

len(W.edgeSeq()) = l1 ÷ 2.

(82) (W.cut(1, n)).edgeSeq() ⊆ W.edgeSeq().

(83) If e joins W.last() and x in G, then (W.addEdge(e)).edgeSeq() =

W.edgeSeq() a 〈e〉.
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(84) e joins x and y in G iff (G.walkOf(x, e, y)).edgeSeq() = 〈e〉.

(85) W.reverse().edgeSeq() = Rev(W.edgeSeq()).

(86) If W1.last() = W2.first(), then (W1.append(W2)).edgeSeq() =

W1.edgeSeq() a W2.edgeSeq().

(87) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.edgeSeq() = W2.edgeSeq().

(88) x ∈ W.vertices() iff there exists an odd natural number n such that

n ≤ len W and W (n) = x.

(89) W.first() ∈ W.vertices() and W.last() ∈ W.vertices().

(90) For every odd natural number n such that n ≤ len W holds

W.vertexAt(n) ∈ W.vertices().

(91) (G.walkOf(v)).vertices() = {v}.

(92) If e joins x and y in G, then (G.walkOf(x, e, y)).vertices() = {x, y}.

(93) W.vertices() = W.reverse().vertices().

(94) If W1.last() = W2.first(), then (W1.append(W2)).vertices() =

W1.vertices() ∪ W2.vertices().

(95) For all odd natural numbers m, n such that m ≤ n and n ≤ len W holds

(W.cut(m,n)).vertices() ⊆ W.vertices().

(96) If e joins W.last() and x in G, then (W.addEdge(e)).vertices() =

W.vertices() ∪ {x}.

(97) Let G be a finite graph, W be a walk of G, and e, x be

sets. If e joins W.last() and x in G and x /∈ W.vertices(), then

card((W.addEdge(e)).vertices()) = card(W.vertices()) + 1.

(98) If x ∈ W.vertices() and y ∈ W.vertices(), then there exists a walk of G

which is walk from x to y.

(99) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.vertices() = W2.vertices().

(100) e ∈ W.edges() iff there exists an even natural number n such that 1 ≤ n

and n ≤ len W and W (n) = e.

(101) e ∈ W.edges() iff there exists an odd natural number n such that n <

len W and W (n + 1) = e.

(102) rng W = W.vertices() ∪ W.edges().

(103) If W1.last() = W2.first(), then (W1.append(W2)).edges() = W1.edges()∪

W2.edges().

(104) Suppose e ∈ W.edges(). Then there exist vertices v2, v3 of G and there

exists an odd natural number n such that n + 2 ≤ len W and v2 = W (n)

and e = W (n + 1) and v3 = W (n + 2) and e joins v2 and v3 in G.

(105) e ∈ W.edges() iff there exists a natural number n such that n ∈

dom(W.edgeSeq()) and W.edgeSeq()(n) = e.



walks in graphs 265

(106) If e ∈ W.edges() and e joins x and y in G, then x ∈ W.vertices() and

y ∈ W.vertices().

(107) (W.cut(m,n)).edges() ⊆ W.edges().

(108) W.edges() = W.reverse().edges().

(109) e joins x and y in G iff (G.walkOf(x, e, y)).edges() = {e}.

(110) W.edges() ⊆ G.edgesBetween(W.vertices()).

(111) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.edges() = W2.edges().

(112) If e joins W.last() and x in G, then (W.addEdge(e)).edges() =

W.edges() ∪ {e}.

(113) lenW = 2 · W.length() + 1.

(114) lenW1 = lenW2 iff W1.length() = W2.length().

(115) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.length() = W2.length().

(116) For every odd natural number n such that n ≤ len W holds

W.find(W (n)) ≤ n and W.rfind(W (n)) ≥ n.

(117) For every walk W1 of G1 and for every walk W2 of G2 and for every set

v such that W1 = W2 holds W1.find(v) = W2.find(v) and W1.rfind(v) =

W2.rfind(v).

(118) For every odd natural number n such that n ≤ len W holds W.find(n) ≤

n and W.rfind(n) ≥ n.

(119) W is closed iff W (1) = W (lenW ).

(120) W is closed iff there exists a set x such that W is walk from x to x.

(121) W is closed iff W.reverse() is closed.

(122) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

and W1 is closed holds W2 is closed.

(123) W is directed if and only if for every odd natural number n such that

n < len W holds W (n + 1) joins W (n) to W (n + 2) in G.

(124) Suppose W is directed and walk from x to y and e joins y to z in G.

Then W.addEdge(e) is directed and W.addEdge(e) is walk from x to z.

(125) For every dwalk W of G and for all natural numbers m, n holds

W.cut(m,n) is directed.

(126) W is non trivial iff 3 ≤ len W.

(127) W is non trivial iff lenW 6= 1.

(128) If W.first() 6= W.last(), then W is non trivial.

(129) W is trivial iff there exists a vertex v of G such that W = G.walkOf(v).

(130) W is trivial iff W.reverse() is trivial.

(131) If W2 is trivial, then W1.append(W2) = W1.
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(132) For all odd natural numbers m, n such that m ≤ n and n ≤ len W holds

W.cut(m, n) is trivial iff m = n.

(133) If e joins W.last() and x in G, then W.addEdge(e) is non trivial.

(134) If W is non trivial, then there exists an odd natural number l2 such that

l2 = lenW − 2 and (W.cut(1, l2)).addEdge(W (l2 + 1)) = W.

(135) If W2 is non trivial and W2.edges() ⊆ W1.edges(), then W2.vertices() ⊆

W1.vertices().

(136) If W is non trivial, then for every vertex v of G such that v ∈ W.vertices()

holds v is not isolated.

(137) W is trivial iff W.edges() = ∅.

(138) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

and W1 is trivial holds W2 is trivial.

(139) W is trail-like iff for all even natural numbers m, n such that 1 ≤ m and

m < n and n ≤ len W holds W (m) 6= W (n).

(140) If lenW ≤ 3, then W is trail-like.

(141) W is trail-like iff W.reverse() is trail-like.

(142) For every trail W of G and for all natural numbers m, n holds

W.cut(m,n) is trail-like.

(143) For every trail W of G and for every set e such that e ∈

W.last().edgesInOut() and e /∈ W.edges() holds W.addEdge(e) is trail-

like.

(144) For every trail W of G and for every vertex v of G such that v ∈

W.vertices() and v is endvertex holds v = W.first() or v = W.last().

(145) For every finite graph G and for every trail W of G holds

len(W.edgeSeq()) ≤ G.size().

(146) If lenW ≤ 3, then W is path-like.

(147) If for all odd natural numbers m, n such that m ≤ len W and n ≤ len W

and W (m) = W (n) holds m = n, then W is path-like.

(148) Let W be a path of G. Suppose W is open. Let m, n be odd natural

numbers. If m < n and n ≤ len W, then W (m) 6= W (n).

(149) W is path-like iff W.reverse() is path-like.

(150) For every path W of G and for all natural numbers m, n holds

W.cut(m,n) is path-like.

(151) Let W be a path of G and e, v be sets. Suppose that

(i) e joins W.last() and v in G,

(ii) e /∈ W.edges(),

(iii) W is trivial or open, and

(iv) for every odd natural number n such that 1 < n and n ≤ len W holds

W (n) 6= v.
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Then W.addEdge(e) is path-like.

(152) Let W be a path of G and e, v be sets. Suppose e joins W.last() and v

in G and v /∈ W.vertices() and W is trivial or open. Then W.addEdge(e)

is path-like.

(153) If for every odd natural number n such that n ≤ len W holds

W.find(W (n)) = W.rfind(W (n)), then W is path-like.

(154) If for every odd natural number n such that n ≤ len W holds

W.rfind(n) = n, then W is path-like.

(155) For every finite graph G and for every path W of G holds

len(W.vertexSeq()) ≤ G.order() + 1.

(156) Let G be a graph, W be a vertex-distinct walk of G, and e, v be sets. If

e joins W.last() and v in G and v /∈ W.vertices(), then W.addEdge(e) is

vertex-distinct.

(157) If e joins x and x in G, then G.walkOf(x, e, x) is cycle-like.

(158) Suppose e joins x and y in G and e ∈ W1.edges() and W1 is cycle-like.

Then there exists a walk W2 of G such that W2 is walk from x to y and

e /∈ W2.edges().

(159) W is a subwalk of W .

(160) For every walk W1 of G and for every subwalk W2 of W1 holds every

subwalk of W2 is a subwalk of W1.

(161) If W1 is a subwalk of W2, then W1 is walk from x to y iff W2 is walk

from x to y.

(162) If W1 is a subwalk of W2, then W1.first() = W2.first() and W1.last() =

W2.last().

(163) If W1 is a subwalk of W2, then lenW1 ≤ len W2.

(164) If W1 is a subwalk of W2, then W1.edges() ⊆ W2.edges() and

W1.vertices() ⊆ W2.vertices().

(165) Suppose W1 is a subwalk of W2. Let m be an odd natural number.

Suppose m ≤ len W1. Then there exists an odd natural number n such

that m ≤ n and n ≤ len W2 and W1(m) = W2(n).

(166) Suppose W1 is a subwalk of W2. Let m be an even natural number.

Suppose 1 ≤ m and m ≤ len W1. Then there exists an even natural number

n such that m ≤ n and n ≤ len W2 and W1(m) = W2(n).

(167) For every trail W1 of G such that W1 is non trivial holds there exists a

path of W1 which is non trivial.

(168) For every graph G1 and for every subgraph G2 of G1 holds every walk

of G2 is a walk of G1.

(169) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G1. If

W is trivial and W.first() ∈ the vertices of G2, then W is a walk of G2.
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(170) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G1. If

W is non trivial and W.edges() ⊆ the edges of G2, then W is a walk of

G2.

(171) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G1.

Suppose W.vertices() ⊆ the vertices of G2 and W.edges() ⊆ the edges of

G2. Then W is a walk of G2.

(172) Let G1 be a non trivial graph, W be a walk of G1, v be a vertex of G1,

and G2 be a subgraph of G1 with vertex v removed. If v /∈ W.vertices(),

then W is a walk of G2.

(173) Let G1 be a graph, W be a walk of G1, e be a set, and G2 be a subgraph

of G1 with edge e removed. If e /∈ W.edges(), then W is a walk of G2.

(174) Let G1 be a graph, G2 be a subgraph of G1, and x, y, e be sets. If e

joins x and y in G2, then G1.walkOf(x, e, y) = G2.walkOf(x, e, y).

(175) Let G1 be a graph, G2 be a subgraph of G1, W1 be a walk of G1, W2 be

a walk of G2, and e be a set. If W1 = W2 and e ∈ W2.last().edgesInOut(),

then W1.addEdge(e) = W2.addEdge(e).

(176) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G2.

Then

(i) if W is closed, then W is a closed walk of G1,

(ii) if W is directed, then W is a directed walk of G1,

(iii) if W is trivial, then W is a trivial walk of G1,

(iv) if W is trail-like, then W is a trail-like walk of G1,

(v) if W is path-like, then W is a path-like walk of G1, and

(vi) if W is vertex-distinct, then W is a vertex-distinct walk of G1.

(177) Let G1 be a graph, G2 be a subgraph of G1, W1 be a walk of G1, and

W2 be a walk of G2 such that W1 = W2. Then

(i) W1 is closed iff W2 is closed,

(ii) W1 is directed iff W2 is directed,

(iii) W1 is trivial iff W2 is trivial,

(iv) W1 is trail-like iff W2 is trail-like,

(v) W1 is path-like iff W2 is path-like, and

(vi) W1 is vertex-distinct iff W2 is vertex-distinct.

(178) If G1 =G G2 and x is a vertex sequence of G1, then x is a vertex sequence

of G2.

(179) If G1 =G G2 and x is a edge sequence of G1, then x is a edge sequence

of G2.

(180) If G1 =G G2 and x is a walk of G1, then x is a walk of G2.

(181) If G1 =G G2, then G1.walkOf(x, e, y) = G2.walkOf(x, e, y).

(182) Let W1 be a walk of G1 and W2 be a walk of G2 such that G1 =G G2

and W1 = W2. Then
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(i) W1 is closed iff W2 is closed,

(ii) W1 is directed iff W2 is directed,

(iii) W1 is trivial iff W2 is trivial,

(iv) W1 is trail-like iff W2 is trail-like,

(v) W1 is path-like iff W2 is path-like, and

(vi) W1 is vertex-distinct iff W2 is vertex-distinct.
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