
FORMALIZED MATHEMATICS

Volume 13, Number 2, Pages 253–269

University of Bia lystok, 2005

Walks in Graphs1

Gilbert Lee2

University of Victoria, Victoria, Canada

Summary. We define walks for graphs introduced in [9], introduce walk

attributes and functors for walk creation and modification of walks. Subwalks of

a walk are also defined. In our rendition, walks are alternating finite sequences

of vertices and edges.

MML identifier: GLIB 001, version: 7.5.01 4.39.921

The notation and terminology used here are introduced in the following papers:

[14], [12], [16], [13], [18], [6], [4], [5], [1], [10], [17], [7], [3], [19], [15], [8], [2], [9],

and [11].

1. Preliminaries

The following propositions are true:

(1) For all odd natural numbers x, y holds x < y iff x + 2 ≤ y.

(2) Let X be a set and k be a natural number. Suppose X ⊆ Seg k. Let

m, n be natural numbers. If m ∈ dom Sgm X and n = (SgmX)(m), then

m ≤ n.

(3) For every set X and for every finite sequence f2 of elements of X and

for every FinSubsequence f1 of f2 holds len Seq f1 ≤ len f2.

(4) Let X be a set, f2 be a finite sequence of elements of X, f1 be a Fin-

Subsequence of f2, and m be a natural number. Suppose m ∈ dom Seq f1.

Then there exists a natural number n such that n ∈ dom f2 and m ≤ n

and (Seq f1)(m) = f2(n).

1This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.

253
c© 2005 University of Bia lystok

ISSN 1426–2630



254 gilbert lee

(5) For every set X and for every finite sequence f2 of elements of X and

for every FinSubsequence f1 of f2 holds len Seq f1 = card f1.

(6) Let X be a set, f2 be a finite sequence of elements of X, and f1 be a

FinSubsequence of f2. Then dom Seq f1 = dom Sgm dom f1.

2. Walk Definitions

Let G be a graph. A finite sequence of elements of the vertices of G is said

to be a vertex sequence of G if:

(Def. 1) For every natural number n such that 1 ≤ n and n < len it there exists

a set e such that e joins it(n) and it(n + 1) in G.

Let G be a graph. A finite sequence of elements of the edges of G is said to

be a edge sequence of G if it satisfies the condition (Def. 2).

(Def. 2) There exists a finite sequence v1 of elements of the vertices of G such

that len v1 = len it + 1 and for every natural number n such that 1 ≤ n

and n ≤ len it holds it(n) joins v1(n) and v1(n + 1) in G.

Let G be a graph. A finite sequence of elements of (the vertices of G)∪ (the

edges of G) is said to be a walk of G if it satisfies the conditions (Def. 3).

(Def. 3)(i) len it is odd,

(ii) it(1) ∈ the vertices of G, and

(iii) for every odd natural number n such that n < len it holds it(n + 1)

joins it(n) and it(n + 2) in G.

Let G be a graph and let W be a walk of G. One can verify that lenW is

odd and non empty.

Let G be a graph and let v be a vertex of G. The functor G.walkOf(v)

yielding a walk of G is defined as follows:

(Def. 4) G.walkOf(v) = 〈v〉.

Let G be a graph and let x, y, e be sets. The functor G.walkOf(x, e, y)

yielding a walk of G is defined as follows:

(Def. 5) G.walkOf(x, e, y) =

{

〈x, e, y〉, if e joins x and y in G,

G.walkOf(choose(the vertices of G)), otherwise.

Let G be a graph and let W be a walk of G. The functor W.first() yields a

vertex of G and is defined as follows:

(Def. 6) W.first() = W (1).

The functor W.last() yields a vertex of G and is defined by:

(Def. 7) W.last() = W (lenW ).

Let G be a graph, let W be a walk of G, and let n be a natural number.

The functor W.vertexAt(n) yielding a vertex of G is defined as follows:



walks in graphs 255

(Def. 8) W.vertexAt(n) =

{

W (n), if n is odd and n ≤ len W,

W.first(), otherwise.

Let G be a graph and let W be a walk of G. The functor W.reverse() yielding

a walk of G is defined as follows:

(Def. 9) W.reverse() = Rev(W ).

Let G be a graph and let W1, W2 be walks of G. The functor W1.append(W2)

yields a walk of G and is defined by:

(Def. 10) W1.append(W2) =

{

W1 aa W2, if W1.last() = W2.first(),

W1, otherwise.

Let G be a graph, let W be a walk of G, and let m, n be natural numbers.

The functor W.cut(m,n) yields a walk of G and is defined by:

(Def. 11) W.cut(m,n) =







〈W (m), . . . ,W (n)〉, if m is odd and n is odd and

m ≤ n and n ≤ len W,

W, otherwise.

Let G be a graph, let W be a walk of G, and let m, n be natural numbers.

The functor W.remove(m,n) yielding a walk of G is defined by:

(Def. 12) W.remove(m,n) =















(W.cut(1,m)).append((W.cut(n, len W ))),

if m is odd and n is odd and m ≤ n and

n ≤ len W and W (m) = W (n),

W, otherwise.

Let G be a graph, let W be a walk of G, and let e be a set. The functor

W.addEdge(e) yields a walk of G and is defined as follows:

(Def. 13) W.addEdge(e) = W.append((G.walkOf(W.last(), e, W .last().adj(e)))).

Let G be a graph and let W be a walk of G. The functor W.vertexSeq()

yielding a vertex sequence of G is defined by:

(Def. 14) lenW + 1 = 2 · len(W.vertexSeq()) and for every natural number n

such that 1 ≤ n and n ≤ len(W.vertexSeq()) holds W.vertexSeq()(n) =

W (2 · n − 1).

Let G be a graph and let W be a walk of G. The functor W.edgeSeq() yields

a edge sequence of G and is defined by:

(Def. 15) lenW = 2 · len(W.edgeSeq()) + 1 and for every natural number n such

that 1 ≤ n and n ≤ len(W.edgeSeq()) holds W.edgeSeq()(n) = W (2 · n).

Let G be a graph and let W be a walk of G. The functor W.vertices() yields

a finite subset of the vertices of G and is defined as follows:

(Def. 16) W.vertices() = rng(W.vertexSeq()).

Let G be a graph and let W be a walk of G. The functor W.edges() yields

a finite subset of the edges of G and is defined by:

(Def. 17) W.edges() = rng(W.edgeSeq()).

Let G be a graph and let W be a walk of G. The functor W.length() yielding

a natural number is defined by:



256 gilbert lee

(Def. 18) W.length() = len(W.edgeSeq()).

Let G be a graph, let W be a walk of G, and let v be a set. The functor

W.find(v) yields an odd natural number and is defined by:

(Def. 19)(i) W.find(v) ≤ len W and W (W.find(v)) = v and for every odd natural

number n such that n ≤ len W and W (n) = v holds W.find(v) ≤ n if

v ∈ W.vertices(),

(ii) W.find(v) = lenW, otherwise.

Let G be a graph, let W be a walk of G, and let n be a natural number.

The functor W.find(n) yielding an odd natural number is defined by:

(Def. 20)(i) W.find(n) ≤ len W and W (W.find(n)) = W (n) and for every

odd natural number k such that k ≤ len W and W (k) = W (n) holds

W.find(n) ≤ k if n is odd and n ≤ len W,

(ii) W.find(n) = len W, otherwise.

Let G be a graph, let W be a walk of G, and let v be a set. The functor

W.rfind(v) yields an odd natural number and is defined as follows:

(Def. 21)(i) W.rfind(v) ≤ len W and W (W.rfind(v)) = v and for every odd natu-

ral number n such that n ≤ len W and W (n) = v holds n ≤ W.rfind(v) if

v ∈ W.vertices(),

(ii) W.rfind(v) = len W, otherwise.

Let G be a graph, let W be a walk of G, and let n be a natural number.

The functor W.rfind(n) yields an odd natural number and is defined by:

(Def. 22)(i) W.rfind(n) ≤ len W and W (W.rfind(n)) = W (n) and for every odd

natural number k such that k ≤ len W and W (k) = W (n) holds k ≤

W.rfind(n) if n is odd and n ≤ len W,

(ii) W.rfind(n) = len W, otherwise.

Let G be a graph, let u, v be sets, and let W be a walk of G. We say that

W is walk from u to v if and only if:

(Def. 23) W.first() = u and W.last() = v.

Let G be a graph and let W be a walk of G. We say that W is closed if and

only if:

(Def. 24) W.first() = W.last().

We say that W is directed if and only if:

(Def. 25) For every odd natural number n such that n < len W holds (the source

of G)(W (n + 1)) = W (n).

We say that W is trivial if and only if:

(Def. 26) W.length() = 0.

We say that W is trail-like if and only if:

(Def. 27) W.edgeSeq() is one-to-one.



walks in graphs 257

Let G be a graph and let W be a walk of G. We introduce W is open as an

antonym of W is closed.

Let G be a graph and let W be a walk of G. We say that W is path-like if

and only if the conditions (Def. 28) are satisfied.

(Def. 28)(i) W is trail-like, and

(ii) for all odd natural numbers m, n such that m < n and n ≤ len W holds

if W (m) = W (n), then m = 1 and n = lenW.

Let G be a graph and let W be a walk of G. We say that W is vertex-distinct

if and only if:

(Def. 29) For all odd natural numbers m, n such that m ≤ len W and n ≤ len W

and W (m) = W (n) holds m = n.

Let G be a graph and let W be a walk of G. We say that W is circuit-like

if and only if:

(Def. 30) W is closed, trail-like, and non trivial.

We say that W is cycle-like if and only if:

(Def. 31) W is closed, path-like, and non trivial.

Let G be a graph. One can verify the following observations:

∗ every walk of G which is path-like is also trail-like,

∗ every walk of G which is trivial is also path-like,

∗ every walk of G which is trivial is also vertex-distinct,

∗ every walk of G which is vertex-distinct is also path-like,

∗ every walk of G which is circuit-like is also closed, trail-like, and non

trivial, and

∗ every walk of G which is cycle-like is also closed, path-like, and non

trivial.

Let G be a graph. Observe that there exists a walk of G which is closed,

directed, and trivial.

Let G be a graph. Observe that there exists a walk of G which is vertex-

distinct.

Let G be a graph. A trail of G is a trail-like walk of G. A path of G is a

path-like walk of G.

Let G be a graph. A dwalk of G is a directed walk of G. A dtrail of G is a

directed trail of G. A dpath of G is a directed path of G.

Let G be a graph and let v be a vertex of G. Note that G.walkOf(v) is

closed, directed, and trivial.

Let G be a graph and let x, e, y be sets. One can check that G.walkOf(x, e, y)

is path-like.

Let G be a graph and let x, e be sets. Note that G.walkOf(x, e, x) is closed.

Let G be a graph and let W be a closed walk of G. One can check that

W.reverse() is closed.



258 gilbert lee

Let G be a graph and let W be a trivial walk of G. One can verify that

W.reverse() is trivial.

Let G be a graph and let W be a trail of G. Note that W.reverse() is

trail-like.

Let G be a graph and let W be a path of G. Observe that W.reverse() is

path-like.

Let G be a graph and let W1, W2 be closed walks of G. Note that W1.append(W2)

is closed.

Let G be a graph and let W1, W2 be dwalks of G. One can verify that

W1.append(W2) is directed.

Let G be a graph and let W1, W2 be trivial walks of G. Observe that

W1.append(W2) is trivial.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers.

Note that W.cut(m,n) is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural

numbers. Observe that W.cut(m,n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers.

Note that W.cut(m,n) is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers.

Note that W.cut(m,n) is path-like.

Let G be a graph, let W be a vertex-distinct walk of G, and let m, n be

natural numbers. One can verify that W.cut(m,n) is vertex-distinct.

Let G be a graph, let W be a closed walk of G, and let m, n be natural

numbers. One can verify that W.remove(m,n) is closed.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers.

Note that W.remove(m,n) is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural

numbers. One can check that W.remove(m, n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers.

Observe that W.remove(m,n) is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers.

Observe that W.remove(m,n) is path-like.

Let G be a graph and let W be a walk of G. A walk of G is called a subwalk

of W if:

(Def. 32) It is walk from W.first() to W.last() and there exists a FinSubsequence

e1 of W.edgeSeq() such that it.edgeSeq() = Seq e1.

Let G be a graph, let W be a walk of G, and let m, n be natural numbers.

Then W.remove(m,n) is a subwalk of W .

Let G be a graph and let W be a walk of G. Note that there exists a subwalk

of W which is trail-like and path-like.



walks in graphs 259

Let G be a graph and let W be a walk of G. A trail of W is a trail-like

subwalk of W . A path of W is a path-like subwalk of W .

Let G be a graph and let W be a dwalk of G. One can verify that there

exists a path of W which is directed.

Let G be a graph and let W be a dwalk of G. A dwalk of W is a directed

subwalk of W . A dtrail of W is a directed trail of W . A dpath of W is a directed

path of W .

Let G be a graph. The functor G.allWalks() yields a non empty subset of

((the vertices of G) ∪ (the edges of G))∗ and is defined by:

(Def. 33) G.allWalks() = {W : W ranges over walks of G}.

Let G be a graph. The functor G.allTrails() yielding a non empty subset of

G.allWalks() is defined by:

(Def. 34) G.allTrails() = {W : W ranges over trails of G}.

Let G be a graph. The functor G.allPaths() yields a non empty subset of

G.allTrails() and is defined as follows:

(Def. 35) G.allPaths() = {W : W ranges over paths of G}.

Let G be a graph. The functor G.allDWalks() yields a non empty subset of

G.allWalks() and is defined by:

(Def. 36) G.allDWalks() = {W : W ranges over dwalks of G}.

Let G be a graph. The functor G.allDTrails() yields a non empty subset of

G.allTrails() and is defined as follows:

(Def. 37) G.allDTrails() = {W : W ranges over dtrails of G}.

Let G be a graph. The functor G.allDPaths() yields a non empty subset of

G.allDTrails() and is defined by:

(Def. 38) G.allDPaths() = {W : W ranges over directed paths of G}.

Let G be a finite graph. One can check that G.allTrails() is finite.

Let G be a graph and let X be a non empty subset of G.allWalks(). We see

that the element of X is a walk of G.

Let G be a graph and let X be a non empty subset of G.allTrails(). We see

that the element of X is a trail of G.

Let G be a graph and let X be a non empty subset of G.allPaths(). We see

that the element of X is a path of G.

Let G be a graph and let X be a non empty subset of G.allDWalks(). We

see that the element of X is a dwalk of G.

Let G be a graph and let X be a non empty subset of G.allDTrails(). We

see that the element of X is a dtrail of G.

Let G be a graph and let X be a non empty subset of G.allDPaths(). We

see that the element of X is a dpath of G.



260 gilbert lee

3. Walk Theorems

For simplicity, we adopt the following rules: G, G1, G2 are graphs, W , W1,

W2 are walks of G, e, x, y, z are sets, v is a vertex of G, and n, m are natural

numbers.

We now state a number of propositions:

(8)3 For every odd natural number n such that n ≤ len W holds W (n) ∈ the

vertices of G.

(9) For every even natural number n such that n ∈ domW holds W (n) ∈ the

edges of G.

(10) Let n be an even natural number. Suppose n ∈ domW. Then there

exists an odd natural number n1 such that n1 = n−1 and n−1 ∈ domW

and n + 1 ∈ domW and W (n) joins W (n1) and W (n + 1) in G.

(11) For every odd natural number n such that n < len W holds W (n + 1) ∈

(W.vertexAt(n)).edgesInOut().

(12) For every odd natural number n such that 1 < n and n ≤ len W holds

W (n − 1) ∈ (W.vertexAt(n)).edgesInOut().

(13) For every odd natural number n such that n < len W holds n ∈ domW

and n + 1 ∈ domW and n + 2 ∈ domW.

(14) len(G.walkOf(v)) = 1 and (G.walkOf(v))(1) = v and

(G.walkOf(v)).first() = v and (G.walkOf(v)).last() = v and G.walkOf(v)

is walk from v to v.

(15) If e joins x and y in G, then len(G.walkOf(x, e, y)) = 3.

(16) If e joins x and y in G, then (G.walkOf(x, e, y)).first() = x and

(G.walkOf(x, e, y)).last() = y and G.walkOf(x, e, y) is walk from x to y.

(17) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.first() = W2.first() and W1.last() = W2.last().

(18) W is walk from x to y iff W (1) = x and W (lenW ) = y.

(19) If W is walk from x to y, then x is a vertex of G and y is a vertex of G.

(20) Let W1 be a walk of G1 and W2 be a walk of G2. If W1 = W2, then W1

is walk from x to y iff W2 is walk from x to y.

(21) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

and for every natural number n holds W1.vertexAt(n) = W2.vertexAt(n).

(22) lenW = len(W.reverse()) and domW = dom(W.reverse()) and rng W =

rng(W.reverse()).

(23) W.first() = W.reverse().last() and W.last() = W.reverse().first().

(24) W is walk from x to y iff W.reverse() is walk from y to x.

3The proposition (7) has been removed.



walks in graphs 261

(25) If n ∈ domW, then W (n) = W.reverse()((len W − n) + 1) and (lenW −

n) + 1 ∈ dom(W.reverse()).

(26) If n ∈ dom(W.reverse()), then W.reverse()(n) = W ((lenW −n)+1) and

(lenW − n) + 1 ∈ domW.

(27) W.reverse().reverse() = W.

(28) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.reverse() = W2.reverse().

(29) If W1.last() = W2.first(), then len(W1.append(W2)) + 1 = lenW1 +

len W2.

(30) If W1.last() = W2.first(), then lenW1 ≤ len(W1.append(W2)) and

len W2 ≤ len(W1.append(W2)).

(31) If W1.last() = W2.first(), then (W1.append(W2)).first() = W1.first() and

(W1.append(W2)).last() = W2.last() and W1.append(W2) is walk from

W1.first() to W2.last().

(32) If W1 is walk from x to y and W2 is walk from y to z, then

W1.append(W2) is walk from x to z.

(33) If n ∈ domW1, then (W1.append(W2))(n) = W1(n) and n ∈

dom(W1.append(W2)).

(34) If W1.last() = W2.first(), then for every natural number n such that n <

len W2 holds (W1.append(W2))(lenW1 +n) = W2(n+1) and lenW1 +n ∈

dom(W1.append(W2)).

(35) If n ∈ dom(W1.append(W2)), then n ∈ domW1 or there exists a natural

number k such that k < len W2 and n = lenW1 + k.

(36) For all walks W3, W4 of G1 and for all walks W5, W6 of G2 such that

W3 = W5 and W4 = W6 holds W3.append(W4) = W5.append(W6).

(37) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ len W.

Then len(W.cut(m,n)) + m = n + 1 and for every natural number i such

that i < len(W.cut(m, n)) holds (W.cut(m,n))(i + 1) = W (m + i) and

m + i ∈ domW.

(38) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ len W.

Then (W.cut(m,n)).first() = W (m) and (W.cut(m,n)).last() = W (n)

and W.cut(m,n) is walk from W (m) to W (n).

(39) For all odd natural numbers m, n, o such that m ≤ n and n ≤ o and

o ≤ len W holds (W.cut(m,n)).append((W.cut(n, o))) = W.cut(m, o).

(40) W.cut(1, len W ) = W.

(41) For every odd natural number n such that n < len W holds

G.walkOf(W (n),W (n + 1),W (n + 2)) = W.cut(n, n + 2).

(42) For all odd natural numbers m, n such that m ≤ n and n < len W holds

(W.cut(m,n)).addEdge(W (n + 1)) = W.cut(m,n + 2).



262 gilbert lee

(43) For every odd natural number n such that n ≤ len W holds

W.cut(n, n) = 〈W.vertexAt(n)〉.

(44) If m is odd and m ≤ n, then W.cut(1, n).cut(1,m) = W.cut(1,m).

(45) For all odd natural numbers m, n such that m ≤ n and n ≤ len W1 and

W1.last() = W2.first() holds (W1.append(W2)).cut(m,n) = W1.cut(m,n).

(46) For every odd natural number m such that m ≤ len W holds

len(W.cut(1,m)) = m.

(47) For every odd natural number m and for every natural number x such

that x ∈ dom(W.cut(1,m)) and m ≤ len W holds (W.cut(1,m))(x) =

W (x).

(48) Let m, n be odd natural numbers and i be a natural number. If m ≤

n and n ≤ len W and i ∈ dom(W.cut(m,n)), then (W.cut(m,n))(i) =

W ((m + i) − 1) and (m + i) − 1 ∈ domW.

(49) For every walk W1 of G1 and for every walk W2 of G2 and for all natural

numbers m, n such that W1 = W2 holds W1.cut(m,n) = W2.cut(m,n).

(50) For all odd natural numbers m, n such that m ≤ n and n ≤ len W and

W (m) = W (n) holds len(W.remove(m,n)) + n = lenW + m.

(51) If W is walk from x to y, then W.remove(m,n) is walk from x to y.

(52) len(W.remove(m,n)) ≤ len W.

(53) W.remove(m,m) = W.

(54) For all odd natural numbers m, n such that m ≤ n and n ≤ len W and

W (m) = W (n) holds (W.cut(1,m)).last() = (W.cut(n, len W )).first().

(55) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ len W

and W (m) = W (n). Let x be a natural number. If x ∈ Seg m, then

(W.remove(m,n))(x) = W (x).

(56) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ len W

and W (m) = W (n). Let x be a natural number. Suppose m ≤ x and

x ≤ len(W.remove(m,n)). Then (W.remove(m,n))(x) = W ((x − m) + n)

and (x − m) + n is a natural number and (x − m) + n ≤ len W.

(57) For all odd natural numbers m, n such that m ≤ n and n ≤ len W and

W (m) = W (n) holds len(W.remove(m,n)) = (lenW + m) − n.

(58) For every natural number m such that W (m) = W.last() holds

W.remove(m, len W ) = W.cut(1,m).

(59) For every natural number m such that W.first() = W (m) holds

W.remove(1,m) = W.cut(m, len W ).

(60) (W.remove(m,n)).first() = W.first() and (W.remove(m,n)).last() =

W.last().

(61) Let m, n be odd natural numbers and x be a natural number. Suppose

m ≤ n and n ≤ len W and W (m) = W (n) and x ∈ dom(W.remove(m,n)).



walks in graphs 263

Then x ∈ Seg m or m ≤ x and x ≤ len(W.remove(m,n)).

(62) For every walk W1 of G1 and for every walk W2 of G2 and for all

natural numbers m, n such that W1 = W2 holds W1.remove(m,n) =

W2.remove(m,n).

(63) If e joins W.last() and x in G, then W.addEdge(e) = W a 〈e, x〉.

(64) If e joins W.last() and x in G, then (W.addEdge(e)).first() = W.first()

and (W.addEdge(e)).last() = x and W.addEdge(e) is walk from W.first()

to x.

(65) If e joins W.last() and x in G, then len(W.addEdge(e)) = lenW + 2.

(66) Suppose e joins W.last() and x in G. Then (W.addEdge(e))(lenW+1) =

e and (W.addEdge(e))(lenW + 2) = x and for every natural number n

such that n ∈ domW holds (W.addEdge(e))(n) = W (n).

(67) If W is walk from x to y and e joins y and z in G, then W.addEdge(e)

is walk from x to z.

(68) 1 ≤ len(W.vertexSeq()).

(69) For every odd natural number n such that n ≤ len W holds 2 · ((n+1)÷

2) − 1 = n and 1 ≤ (n + 1) ÷ 2 and (n + 1) ÷ 2 ≤ len(W.vertexSeq()).

(70) (G.walkOf(v)).vertexSeq() = 〈v〉.

(71) If e joins x and y in G, then (G.walkOf(x, e, y)).vertexSeq() = 〈x, y〉.

(72) W.first() = W.vertexSeq()(1) and W.last() =

W.vertexSeq()(len(W.vertexSeq())).

(73) For every odd natural number n such that n ≤ len W holds

W.vertexAt(n) = W.vertexSeq()((n + 1) ÷ 2).

(74) n ∈ dom(W.vertexSeq()) iff 2 · n − 1 ∈ domW.

(75) (W.cut(1, n)).vertexSeq() ⊆ W.vertexSeq().

(76) If e joins W.last() and x in G, then (W.addEdge(e)).vertexSeq() =

W.vertexSeq() a 〈x〉.

(77) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.vertexSeq() = W2.vertexSeq().

(78) For every even natural number n such that 1 ≤ n and n ≤ len W holds

n ÷ 2 ∈ dom(W.edgeSeq()) and W (n) = W.edgeSeq()(n ÷ 2).

(79) n ∈ dom(W.edgeSeq()) iff 2 · n ∈ domW.

(80) For every natural number n such that n ∈ dom(W.edgeSeq()) holds

W.edgeSeq()(n) ∈ the edges of G.

(81) There exists an even natural number l1 such that l1 = len W − 1 and

len(W.edgeSeq()) = l1 ÷ 2.

(82) (W.cut(1, n)).edgeSeq() ⊆ W.edgeSeq().

(83) If e joins W.last() and x in G, then (W.addEdge(e)).edgeSeq() =

W.edgeSeq() a 〈e〉.



264 gilbert lee

(84) e joins x and y in G iff (G.walkOf(x, e, y)).edgeSeq() = 〈e〉.

(85) W.reverse().edgeSeq() = Rev(W.edgeSeq()).

(86) If W1.last() = W2.first(), then (W1.append(W2)).edgeSeq() =

W1.edgeSeq() a W2.edgeSeq().

(87) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.edgeSeq() = W2.edgeSeq().

(88) x ∈ W.vertices() iff there exists an odd natural number n such that

n ≤ len W and W (n) = x.

(89) W.first() ∈ W.vertices() and W.last() ∈ W.vertices().

(90) For every odd natural number n such that n ≤ len W holds

W.vertexAt(n) ∈ W.vertices().

(91) (G.walkOf(v)).vertices() = {v}.

(92) If e joins x and y in G, then (G.walkOf(x, e, y)).vertices() = {x, y}.

(93) W.vertices() = W.reverse().vertices().

(94) If W1.last() = W2.first(), then (W1.append(W2)).vertices() =

W1.vertices() ∪ W2.vertices().

(95) For all odd natural numbers m, n such that m ≤ n and n ≤ len W holds

(W.cut(m,n)).vertices() ⊆ W.vertices().

(96) If e joins W.last() and x in G, then (W.addEdge(e)).vertices() =

W.vertices() ∪ {x}.

(97) Let G be a finite graph, W be a walk of G, and e, x be

sets. If e joins W.last() and x in G and x /∈ W.vertices(), then

card((W.addEdge(e)).vertices()) = card(W.vertices()) + 1.

(98) If x ∈ W.vertices() and y ∈ W.vertices(), then there exists a walk of G

which is walk from x to y.

(99) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.vertices() = W2.vertices().

(100) e ∈ W.edges() iff there exists an even natural number n such that 1 ≤ n

and n ≤ len W and W (n) = e.

(101) e ∈ W.edges() iff there exists an odd natural number n such that n <

len W and W (n + 1) = e.

(102) rng W = W.vertices() ∪ W.edges().

(103) If W1.last() = W2.first(), then (W1.append(W2)).edges() = W1.edges()∪

W2.edges().

(104) Suppose e ∈ W.edges(). Then there exist vertices v2, v3 of G and there

exists an odd natural number n such that n + 2 ≤ len W and v2 = W (n)

and e = W (n + 1) and v3 = W (n + 2) and e joins v2 and v3 in G.

(105) e ∈ W.edges() iff there exists a natural number n such that n ∈

dom(W.edgeSeq()) and W.edgeSeq()(n) = e.



walks in graphs 265

(106) If e ∈ W.edges() and e joins x and y in G, then x ∈ W.vertices() and

y ∈ W.vertices().

(107) (W.cut(m,n)).edges() ⊆ W.edges().

(108) W.edges() = W.reverse().edges().

(109) e joins x and y in G iff (G.walkOf(x, e, y)).edges() = {e}.

(110) W.edges() ⊆ G.edgesBetween(W.vertices()).

(111) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.edges() = W2.edges().

(112) If e joins W.last() and x in G, then (W.addEdge(e)).edges() =

W.edges() ∪ {e}.

(113) lenW = 2 · W.length() + 1.

(114) lenW1 = lenW2 iff W1.length() = W2.length().

(115) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.length() = W2.length().

(116) For every odd natural number n such that n ≤ len W holds

W.find(W (n)) ≤ n and W.rfind(W (n)) ≥ n.

(117) For every walk W1 of G1 and for every walk W2 of G2 and for every set

v such that W1 = W2 holds W1.find(v) = W2.find(v) and W1.rfind(v) =

W2.rfind(v).

(118) For every odd natural number n such that n ≤ len W holds W.find(n) ≤

n and W.rfind(n) ≥ n.

(119) W is closed iff W (1) = W (lenW ).

(120) W is closed iff there exists a set x such that W is walk from x to x.

(121) W is closed iff W.reverse() is closed.

(122) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

and W1 is closed holds W2 is closed.

(123) W is directed if and only if for every odd natural number n such that

n < len W holds W (n + 1) joins W (n) to W (n + 2) in G.

(124) Suppose W is directed and walk from x to y and e joins y to z in G.

Then W.addEdge(e) is directed and W.addEdge(e) is walk from x to z.

(125) For every dwalk W of G and for all natural numbers m, n holds

W.cut(m,n) is directed.

(126) W is non trivial iff 3 ≤ len W.

(127) W is non trivial iff lenW 6= 1.

(128) If W.first() 6= W.last(), then W is non trivial.

(129) W is trivial iff there exists a vertex v of G such that W = G.walkOf(v).

(130) W is trivial iff W.reverse() is trivial.

(131) If W2 is trivial, then W1.append(W2) = W1.



266 gilbert lee

(132) For all odd natural numbers m, n such that m ≤ n and n ≤ len W holds

W.cut(m, n) is trivial iff m = n.

(133) If e joins W.last() and x in G, then W.addEdge(e) is non trivial.

(134) If W is non trivial, then there exists an odd natural number l2 such that

l2 = lenW − 2 and (W.cut(1, l2)).addEdge(W (l2 + 1)) = W.

(135) If W2 is non trivial and W2.edges() ⊆ W1.edges(), then W2.vertices() ⊆

W1.vertices().

(136) If W is non trivial, then for every vertex v of G such that v ∈ W.vertices()

holds v is not isolated.

(137) W is trivial iff W.edges() = ∅.

(138) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

and W1 is trivial holds W2 is trivial.

(139) W is trail-like iff for all even natural numbers m, n such that 1 ≤ m and

m < n and n ≤ len W holds W (m) 6= W (n).

(140) If lenW ≤ 3, then W is trail-like.

(141) W is trail-like iff W.reverse() is trail-like.

(142) For every trail W of G and for all natural numbers m, n holds

W.cut(m,n) is trail-like.

(143) For every trail W of G and for every set e such that e ∈

W.last().edgesInOut() and e /∈ W.edges() holds W.addEdge(e) is trail-

like.

(144) For every trail W of G and for every vertex v of G such that v ∈

W.vertices() and v is endvertex holds v = W.first() or v = W.last().

(145) For every finite graph G and for every trail W of G holds

len(W.edgeSeq()) ≤ G.size().

(146) If lenW ≤ 3, then W is path-like.

(147) If for all odd natural numbers m, n such that m ≤ len W and n ≤ len W

and W (m) = W (n) holds m = n, then W is path-like.

(148) Let W be a path of G. Suppose W is open. Let m, n be odd natural

numbers. If m < n and n ≤ len W, then W (m) 6= W (n).

(149) W is path-like iff W.reverse() is path-like.

(150) For every path W of G and for all natural numbers m, n holds

W.cut(m,n) is path-like.

(151) Let W be a path of G and e, v be sets. Suppose that

(i) e joins W.last() and v in G,

(ii) e /∈ W.edges(),

(iii) W is trivial or open, and

(iv) for every odd natural number n such that 1 < n and n ≤ len W holds

W (n) 6= v.



walks in graphs 267

Then W.addEdge(e) is path-like.

(152) Let W be a path of G and e, v be sets. Suppose e joins W.last() and v

in G and v /∈ W.vertices() and W is trivial or open. Then W.addEdge(e)

is path-like.

(153) If for every odd natural number n such that n ≤ len W holds

W.find(W (n)) = W.rfind(W (n)), then W is path-like.

(154) If for every odd natural number n such that n ≤ len W holds

W.rfind(n) = n, then W is path-like.

(155) For every finite graph G and for every path W of G holds

len(W.vertexSeq()) ≤ G.order() + 1.

(156) Let G be a graph, W be a vertex-distinct walk of G, and e, v be sets. If

e joins W.last() and v in G and v /∈ W.vertices(), then W.addEdge(e) is

vertex-distinct.

(157) If e joins x and x in G, then G.walkOf(x, e, x) is cycle-like.

(158) Suppose e joins x and y in G and e ∈ W1.edges() and W1 is cycle-like.

Then there exists a walk W2 of G such that W2 is walk from x to y and

e /∈ W2.edges().

(159) W is a subwalk of W .

(160) For every walk W1 of G and for every subwalk W2 of W1 holds every

subwalk of W2 is a subwalk of W1.

(161) If W1 is a subwalk of W2, then W1 is walk from x to y iff W2 is walk

from x to y.

(162) If W1 is a subwalk of W2, then W1.first() = W2.first() and W1.last() =

W2.last().

(163) If W1 is a subwalk of W2, then lenW1 ≤ len W2.

(164) If W1 is a subwalk of W2, then W1.edges() ⊆ W2.edges() and

W1.vertices() ⊆ W2.vertices().

(165) Suppose W1 is a subwalk of W2. Let m be an odd natural number.

Suppose m ≤ len W1. Then there exists an odd natural number n such

that m ≤ n and n ≤ len W2 and W1(m) = W2(n).

(166) Suppose W1 is a subwalk of W2. Let m be an even natural number.

Suppose 1 ≤ m and m ≤ len W1. Then there exists an even natural number

n such that m ≤ n and n ≤ len W2 and W1(m) = W2(n).

(167) For every trail W1 of G such that W1 is non trivial holds there exists a

path of W1 which is non trivial.

(168) For every graph G1 and for every subgraph G2 of G1 holds every walk

of G2 is a walk of G1.

(169) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G1. If

W is trivial and W.first() ∈ the vertices of G2, then W is a walk of G2.



268 gilbert lee

(170) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G1. If

W is non trivial and W.edges() ⊆ the edges of G2, then W is a walk of

G2.

(171) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G1.

Suppose W.vertices() ⊆ the vertices of G2 and W.edges() ⊆ the edges of

G2. Then W is a walk of G2.

(172) Let G1 be a non trivial graph, W be a walk of G1, v be a vertex of G1,

and G2 be a subgraph of G1 with vertex v removed. If v /∈ W.vertices(),

then W is a walk of G2.

(173) Let G1 be a graph, W be a walk of G1, e be a set, and G2 be a subgraph

of G1 with edge e removed. If e /∈ W.edges(), then W is a walk of G2.

(174) Let G1 be a graph, G2 be a subgraph of G1, and x, y, e be sets. If e

joins x and y in G2, then G1.walkOf(x, e, y) = G2.walkOf(x, e, y).

(175) Let G1 be a graph, G2 be a subgraph of G1, W1 be a walk of G1, W2 be

a walk of G2, and e be a set. If W1 = W2 and e ∈ W2.last().edgesInOut(),

then W1.addEdge(e) = W2.addEdge(e).

(176) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G2.

Then

(i) if W is closed, then W is a closed walk of G1,

(ii) if W is directed, then W is a directed walk of G1,

(iii) if W is trivial, then W is a trivial walk of G1,

(iv) if W is trail-like, then W is a trail-like walk of G1,

(v) if W is path-like, then W is a path-like walk of G1, and

(vi) if W is vertex-distinct, then W is a vertex-distinct walk of G1.

(177) Let G1 be a graph, G2 be a subgraph of G1, W1 be a walk of G1, and

W2 be a walk of G2 such that W1 = W2. Then

(i) W1 is closed iff W2 is closed,

(ii) W1 is directed iff W2 is directed,

(iii) W1 is trivial iff W2 is trivial,

(iv) W1 is trail-like iff W2 is trail-like,

(v) W1 is path-like iff W2 is path-like, and

(vi) W1 is vertex-distinct iff W2 is vertex-distinct.

(178) If G1 =G G2 and x is a vertex sequence of G1, then x is a vertex sequence

of G2.

(179) If G1 =G G2 and x is a edge sequence of G1, then x is a edge sequence

of G2.

(180) If G1 =G G2 and x is a walk of G1, then x is a walk of G2.

(181) If G1 =G G2, then G1.walkOf(x, e, y) = G2.walkOf(x, e, y).

(182) Let W1 be a walk of G1 and W2 be a walk of G2 such that G1 =G G2

and W1 = W2. Then



walks in graphs 269

(i) W1 is closed iff W2 is closed,

(ii) W1 is directed iff W2 is directed,

(iii) W1 is trivial iff W2 is trivial,

(iv) W1 is trail-like iff W2 is trail-like,

(v) W1 is path-like iff W2 is path-like, and

(vi) W1 is vertex-distinct iff W2 is vertex-distinct.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
[6] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Czes law Byliński. Some properties of restrictions of finite sequences. Formalized Mathe-

matics, 5(2):241–245, 1996.
[8] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[9] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,

13(2):235–252, 2005.
[10] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized

Mathematics, 5(3):297–304, 1996.
[11] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-

matics, 6(3):335–338, 1997.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[17] Josef Urban. Basic facts about inaccessible and measurable cardinals. Formalized Math-

ematics, 9(2):323–329, 2001.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received February 22, 2005


