FORMALIZED MATHEMATICS Volume 13, Number 2, Pages 253-269 University of Białystok, 2005

Walks in Graphs¹

Gilbert Lee² University of Victoria, Victoria, Canada

Summary. We define walks for graphs introduced in [9], introduce walk attributes and functors for walk creation and modification of walks. Subwalks of a walk are also defined. In our rendition, walks are alternating finite sequences of vertices and edges.

MML identifier: $GLIB_001$, version: 7.5.01 4.39.921

The notation and terminology used here are introduced in the following papers: [14], [12], [16], [13], [18], [6], [4], [5], [1], [10], [17], [7], [3], [19], [15], [8], [2], [9], and [11].

1. Preliminaries

The following propositions are true:

- (1) For all odd natural numbers x, y holds x < y iff $x + 2 \le y$.
- (2) Let X be a set and k be a natural number. Suppose $X \subseteq \text{Seg } k$. Let m, n be natural numbers. If $m \in \text{dom Sgm } X$ and n = (Sgm X)(m), then $m \leq n$.
- (3) For every set X and for every finite sequence f_2 of elements of X and for every FinSubsequence f_1 of f_2 holds len Seq $f_1 \leq \text{len } f_2$.
- (4) Let X be a set, f_2 be a finite sequence of elements of X, f_1 be a Fin-Subsequence of f_2 , and m be a natural number. Suppose $m \in \text{dom Seq } f_1$. Then there exists a natural number n such that $n \in \text{dom } f_2$ and $m \leq n$ and $(\text{Seq } f_1)(m) = f_2(n)$.

¹This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE. ²Part of author's MSc work.

- (5) For every set X and for every finite sequence f_2 of elements of X and for every FinSubsequence f_1 of f_2 holds len Seq $f_1 = \operatorname{card} f_1$.
- (6) Let X be a set, f_2 be a finite sequence of elements of X, and f_1 be a FinSubsequence of f_2 . Then dom Seq $f_1 = \text{dom Sgm dom } f_1$.

2. WALK DEFINITIONS

Let G be a graph. A finite sequence of elements of the vertices of G is said to be a vertex sequence of G if:

(Def. 1) For every natural number n such that $1 \le n$ and n < len it there existsa set e such that e joins it(n) and it(n+1) in G.

Let G be a graph. A finite sequence of elements of the edges of G is said to be a edge sequence of G if it satisfies the condition (Def. 2).

(Def. 2) There exists a finite sequence v_1 of elements of the vertices of G such that $\operatorname{len} v_1 = \operatorname{len} \operatorname{it} + 1$ and for every natural number n such that $1 \leq n$ and $n \leq \operatorname{len} \operatorname{it}$ holds $\operatorname{it}(n)$ joins $v_1(n)$ and $v_1(n+1)$ in G.

Let G be a graph. A finite sequence of elements of (the vertices of G) \cup (the edges of G) is said to be a walk of G if it satisfies the conditions (Def. 3).

(Def. 3)(i) len it is odd,

- (ii) $it(1) \in the vertices of G, and$
- (iii) for every odd natural number n such that n < len it holds it(n+1) joins it(n) and it(n+2) in G.

Let G be a graph and let W be a walk of G. One can verify that $\operatorname{len} W$ is odd and non empty.

Let G be a graph and let v be a vertex of G. The functor G.walkOf(v) yielding a walk of G is defined as follows:

(Def. 4) $G.walkOf(v) = \langle v \rangle.$

Let G be a graph and let x, y, e be sets. The functor G.walkOf(x, e, y) yielding a walk of G is defined as follows:

(Def. 5) G.walkOf $(x, e, y) = \begin{cases} \langle x, e, y \rangle, \text{ if } e \text{ joins } x \text{ and } y \text{ in } G, \\ G.$ walkOf $(\text{choose}(\text{the vertices of } G)), \text{ otherwise.} \end{cases}$

Let G be a graph and let W be a walk of G. The functor W.first() yields a vertex of G and is defined as follows:

(Def. 6) W.first() = W(1).

The functor W.last() yields a vertex of G and is defined by:

(Def. 7) W.last() = W(len W).

Let G be a graph, let W be a walk of G, and let n be a natural number. The functor W.vertexAt(n) yielding a vertex of G is defined as follows: (Def. 8) $W.vertexAt(n) = \begin{cases} W(n), & \text{if } n \text{ is odd and } n \leq \ln W, \\ W.first(), & \text{otherwise.} \end{cases}$

Let G be a graph and let W be a walk of G. The functor W.reverse() yielding a walk of G is defined as follows:

(Def. 9) W.reverse() = Rev(W).

Let G be a graph and let W_1 , W_2 be walks of G. The functor W_1 .append (W_2) yields a walk of G and is defined by:

(Def. 10)
$$W_1$$
.append $(W_2) = \begin{cases} W_1 \frown W_2, \text{ if } W_1.\text{last}() = W_2.\text{first}(), \\ W_1, \text{ otherwise.} \end{cases}$

Let G be a graph, let W be a walk of G, and let m, n be natural numbers. The functor $W.\operatorname{cut}(m, n)$ yields a walk of G and is defined by:

(Def. 11)
$$W.\operatorname{cut}(m,n) = \begin{cases} \langle W(m), \dots, W(n) \rangle, & \text{if } m \text{ is odd and } n \text{ is odd and } \\ m \leq n \text{ and } n \leq \operatorname{len} W, \\ W, & \text{otherwise.} \end{cases}$$

Let G be a graph, let W be a walk of G, and let m, n be natural numbers. The functor W.remove(m, n) yielding a walk of G is defined by:

 $(\text{Def. 12}) \quad W.\text{remove}(m,n) = \begin{cases} (W.\text{cut}(1,m)).\text{append}((W.\text{cut}(n, \text{len}\,W))), \\ \text{if }m \text{ is odd and }n \text{ is odd and }m \leq n \text{ and} \\ n \leq \text{len}\,W \text{ and }W(m) = W(n), \\ W, \text{ otherwise.} \end{cases}$

Let G be a graph, let W be a walk of G, and let e be a set. The functor W.addEdge(e) yields a walk of G and is defined as follows:

- (Def. 13) W.addEdge(e) = W.append((G.walkOf(W.last(), e, W.last().adj(e)))).Let G be a graph and let W be a walk of G. The functor W.vertexSeq() yielding a vertex sequence of G is defined by:
- (Def. 14) $\operatorname{len} W + 1 = 2 \cdot \operatorname{len}(W.\operatorname{vertexSeq}())$ and for every natural number n such that $1 \leq n$ and $n \leq \operatorname{len}(W.\operatorname{vertexSeq}())$ holds $W.\operatorname{vertexSeq}()(n) = W(2 \cdot n 1)$.

Let G be a graph and let W be a walk of G. The functor W.edgeSeq() yields a edge sequence of G and is defined by:

(Def. 15) $\operatorname{len} W = 2 \cdot \operatorname{len}(W.\operatorname{edgeSeq}()) + 1$ and for every natural number n such that $1 \leq n$ and $n \leq \operatorname{len}(W.\operatorname{edgeSeq}())$ holds $W.\operatorname{edgeSeq}()(n) = W(2 \cdot n)$.

Let G be a graph and let W be a walk of G. The functor W.vertices() yields a finite subset of the vertices of G and is defined as follows:

(Def. 16) W.vertices() = rng(W.vertexSeq()).

Let G be a graph and let W be a walk of G. The functor W.edges() yields a finite subset of the edges of G and is defined by:

(Def. 17) W.edges() = rng(W.edgeSeq()).

Let G be a graph and let W be a walk of G. The functor W.length() yielding a natural number is defined by:

(Def. 18) W.length() = len(W.edgeSeq()).

Let G be a graph, let W be a walk of G, and let v be a set. The functor W.find(v) yields an odd natural number and is defined by:

- (Def. 19)(i) $W.\operatorname{find}(v) \leq \operatorname{len} W$ and $W(W.\operatorname{find}(v)) = v$ and for every odd natural number n such that $n \leq \operatorname{len} W$ and W(n) = v holds $W.\operatorname{find}(v) \leq n$ if $v \in W.\operatorname{vertices}()$,
 - (ii) $W.\operatorname{find}(v) = \operatorname{len} W$, otherwise.

Let G be a graph, let W be a walk of G, and let n be a natural number. The functor $W.\operatorname{find}(n)$ yielding an odd natural number is defined by:

- (Def. 20)(i) $W.\operatorname{find}(n) \leq \operatorname{len} W$ and $W(W.\operatorname{find}(n)) = W(n)$ and for every odd natural number k such that $k \leq \operatorname{len} W$ and W(k) = W(n) holds $W.\operatorname{find}(n) \leq k$ if n is odd and $n \leq \operatorname{len} W$,
 - (ii) $W.\operatorname{find}(n) = \operatorname{len} W$, otherwise.

Let G be a graph, let W be a walk of G, and let v be a set. The functor W.rfind(v) yields an odd natural number and is defined as follows:

- (Def. 21)(i) $W.rfind(v) \leq \operatorname{len} W$ and W(W.rfind(v)) = v and for every odd natural number n such that $n \leq \operatorname{len} W$ and W(n) = v holds $n \leq W.rfind(v)$ if $v \in W.vertices()$,
 - (ii) W.rfind(v) = len W, otherwise.

Let G be a graph, let W be a walk of G, and let n be a natural number. The functor W.rfind(n) yields an odd natural number and is defined by:

- (Def. 22)(i) $W.rfind(n) \leq \operatorname{len} W$ and W(W.rfind(n)) = W(n) and for every odd natural number k such that $k \leq \operatorname{len} W$ and W(k) = W(n) holds $k \leq W.rfind(n)$ if n is odd and $n \leq \operatorname{len} W$,
 - (ii) W.rfind(n) = len W, otherwise.

Let G be a graph, let u, v be sets, and let W be a walk of G. We say that W is walk from u to v if and only if:

(Def. 23) W.first() = u and W.last() = v.

Let G be a graph and let W be a walk of G. We say that W is closed if and only if:

(Def. 24) W.first() = W.last().

We say that W is directed if and only if:

(Def. 25) For every odd natural number n such that $n < \operatorname{len} W$ holds (the source of G)(W(n+1)) = W(n).

We say that W is trivial if and only if:

(Def. 26) W.length() = 0.

We say that W is trail-like if and only if:

(Def. 27) W.edgeSeq() is one-to-one.

Let G be a graph and let W be a walk of G. We introduce W is open as an antonym of W is closed.

Let G be a graph and let W be a walk of G. We say that W is path-like if and only if the conditions (Def. 28) are satisfied.

(Def. 28)(i) W is trail-like, and

(ii) for all odd natural numbers m, n such that m < n and $n \le \text{len } W$ holds if W(m) = W(n), then m = 1 and n = len W.

Let G be a graph and let W be a walk of G. We say that W is vertex-distinct if and only if:

(Def. 29) For all odd natural numbers m, n such that $m \leq \operatorname{len} W$ and $n \leq \operatorname{len} W$ and W(m) = W(n) holds m = n.

Let G be a graph and let W be a walk of G. We say that W is circuit-like if and only if:

(Def. 30) W is closed, trail-like, and non trivial.

We say that W is cycle-like if and only if:

(Def. 31) W is closed, path-like, and non trivial.

Let G be a graph. One can verify the following observations:

- * every walk of G which is path-like is also trail-like,
- * every walk of G which is trivial is also path-like,
- * every walk of G which is trivial is also vertex-distinct,
- * every walk of G which is vertex-distinct is also path-like,
- $\ast~$ every walk of G which is circuit-like is also closed, trail-like, and non trivial, and
- * every walk of G which is cycle-like is also closed, path-like, and non trivial.

Let G be a graph. Observe that there exists a walk of G which is closed, directed, and trivial.

Let G be a graph. Observe that there exists a walk of G which is vertexdistinct.

Let G be a graph. A trail of G is a trail-like walk of G. A path of G is a path-like walk of G.

Let G be a graph. A dwalk of G is a directed walk of G. A dtrail of G is a directed trail of G. A dpath of G is a directed path of G.

Let G be a graph and let v be a vertex of G. Note that G.walkOf(v) is closed, directed, and trivial.

Let G be a graph and let x, e, y be sets. One can check that G.walkOf(x, e, y) is path-like.

Let G be a graph and let x, e be sets. Note that G.walkOf(x, e, x) is closed.

Let G be a graph and let W be a closed walk of G. One can check that W.reverse() is closed.

Let G be a graph and let W be a trivial walk of G. One can verify that W.reverse() is trivial.

Let G be a graph and let W be a trail of G. Note that W.reverse() is trail-like.

Let G be a graph and let W be a path of G. Observe that W.reverse() is path-like.

Let G be a graph and let W_1 , W_2 be closed walks of G. Note that W_1 .append (W_2) is closed.

Let G be a graph and let W_1 , W_2 be dwalks of G. One can verify that W_1 .append (W_2) is directed.

Let G be a graph and let W_1 , W_2 be trivial walks of G. Observe that W_1 .append (W_2) is trivial.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers. Note that $W.\operatorname{cut}(m, n)$ is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural numbers. Observe that $W.\operatorname{cut}(m, n)$ is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers. Note that $W.\operatorname{cut}(m, n)$ is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers. Note that $W.\operatorname{cut}(m, n)$ is path-like.

Let G be a graph, let W be a vertex-distinct walk of G, and let m, n be natural numbers. One can verify that $W.\operatorname{cut}(m,n)$ is vertex-distinct.

Let G be a graph, let W be a closed walk of G, and let m, n be natural numbers. One can verify that W.remove(m, n) is closed.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers. Note that W.remove(m, n) is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural numbers. One can check that W.remove(m, n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers. Observe that W.remove(m, n) is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers. Observe that W.remove(m, n) is path-like.

Let G be a graph and let W be a walk of G. A walk of G is called a subwalk of W if:

(Def. 32) It is walk from W.first() to W.last() and there exists a FinSubsequence e_1 of W.edgeSeq() such that it.edgeSeq() = Seq e_1 .

Let G be a graph, let W be a walk of G, and let m, n be natural numbers. Then W.remove(m, n) is a subwalk of W.

Let G be a graph and let W be a walk of G. Note that there exists a subwalk of W which is trail-like and path-like.

Let G be a graph and let W be a walk of G. A trail of W is a trail-like subwalk of W. A path of W is a path-like subwalk of W.

Let G be a graph and let W be a dwalk of G. One can verify that there exists a path of W which is directed.

Let G be a graph and let W be a dwalk of G. A dwalk of W is a directed subwalk of W. A dtrail of W is a directed trail of W. A dpath of W is a directed path of W.

Let G be a graph. The functor G.allWalks() yields a non empty subset of ((the vertices of G) \cup (the edges of G))^{*} and is defined by:

(Def. 33) G.allWalks() = {W : W ranges over walks of G}.

Let G be a graph. The functor G.allTrails() yielding a non empty subset of G.allWalks() is defined by:

(Def. 34) G.allTrails() = {W : W ranges over trails of G}.

Let G be a graph. The functor G.allPaths() yields a non empty subset of G.allTrails() and is defined as follows:

(Def. 35) G.allPaths() = {W : W ranges over paths of G}.

Let G be a graph. The functor G.allDWalks() yields a non empty subset of G.allWalks() and is defined by:

(Def. 36) G.allDWalks() = {W : W ranges over dwalks of G}.

Let G be a graph. The functor G.allDTrails() yields a non empty subset of G.allTrails() and is defined as follows:

(Def. 37) G.allDTrails() = {W : W ranges over dtrails of G}.

Let G be a graph. The functor G.allDPaths() yields a non empty subset of G.allDTrails() and is defined by:

(Def. 38) G.allDPaths() = {W : W ranges over directed paths of G }.

Let G be a finite graph. One can check that G.allTrails() is finite.

Let G be a graph and let X be a non empty subset of G.allWalks(). We see that the element of X is a walk of G.

Let G be a graph and let X be a non empty subset of G.allTrails(). We see that the element of X is a trail of G.

Let G be a graph and let X be a non empty subset of G.allPaths(). We see that the element of X is a path of G.

Let G be a graph and let X be a non empty subset of G.allDWalks(). We see that the element of X is a dwalk of G.

Let G be a graph and let X be a non empty subset of G.allDTrails(). We see that the element of X is a dtrail of G.

Let G be a graph and let X be a non empty subset of G.allDPaths(). We see that the element of X is a dpath of G.

3. Walk Theorems

For simplicity, we adopt the following rules: G, G_1 , G_2 are graphs, W, W_1 , W_2 are walks of G, e, x, y, z are sets, v is a vertex of G, and n, m are natural numbers.

We now state a number of propositions:

- $(8)^3$ For every odd natural number n such that $n \leq \text{len } W$ holds $W(n) \in \text{the vertices of } G$.
- (9) For every even natural number n such that $n \in \text{dom } W$ holds $W(n) \in \text{the}$ edges of G.
- (10) Let n be an even natural number. Suppose $n \in \text{dom } W$. Then there exists an odd natural number n_1 such that $n_1 = n 1$ and $n 1 \in \text{dom } W$ and $n + 1 \in \text{dom } W$ and W(n) joins $W(n_1)$ and W(n + 1) in G.
- (11) For every odd natural number n such that n < len W holds $W(n+1) \in (W.\text{vertexAt}(n)).\text{edgesInOut}().$
- (12) For every odd natural number n such that 1 < n and $n \leq \text{len } W$ holds $W(n-1) \in (W.\text{vertexAt}(n)).\text{edgesInOut}().$
- (13) For every odd natural number n such that $n < \operatorname{len} W$ holds $n \in \operatorname{dom} W$ and $n + 1 \in \operatorname{dom} W$ and $n + 2 \in \operatorname{dom} W$.
- (14) $\operatorname{len}(G.\operatorname{walkOf}(v)) = 1$ and $(G.\operatorname{walkOf}(v))(1) = v$ and $(G.\operatorname{walkOf}(v)).\operatorname{first}() = v$ and $(G.\operatorname{walkOf}(v)).\operatorname{last}() = v$ and $G.\operatorname{walkOf}(v)$ is walk from v to v.
- (15) If e joins x and y in G, then len(G.walkOf(x, e, y)) = 3.
- (16) If e joins x and y in G, then (G.walkOf(x, e, y)).first() = x and (G.walkOf(x, e, y)).last() = y and G.walkOf(x, e, y) is walk from x to y.
- (17) For every walk W_1 of G_1 and for every walk W_2 of G_2 such that $W_1 = W_2$ holds W_1 .first() = W_2 .first() and W_1 .last() = W_2 .last().
- (18) W is walk from x to y iff W(1) = x and $W(\operatorname{len} W) = y$.
- (19) If W is walk from x to y, then x is a vertex of G and y is a vertex of G.
- (20) Let W_1 be a walk of G_1 and W_2 be a walk of G_2 . If $W_1 = W_2$, then W_1 is walk from x to y iff W_2 is walk from x to y.
- (21) For every walk W_1 of G_1 and for every walk W_2 of G_2 such that $W_1 = W_2$ and for every natural number n holds W_1 .vertexAt $(n) = W_2$.vertexAt(n).
- (22) $\operatorname{len} W = \operatorname{len}(W.\operatorname{reverse}())$ and $\operatorname{dom} W = \operatorname{dom}(W.\operatorname{reverse}())$ and $\operatorname{rng} W = \operatorname{rng}(W.\operatorname{reverse}())$.
- (23) W.first() = W.reverse().last() and W.last() = W.reverse().first().
- (24) W is walk from x to y iff W.reverse() is walk from y to x.

³The proposition (7) has been removed.

- (25) If $n \in \text{dom } W$, then W(n) = W.reverse()((len W n) + 1) and (len W n) + 1 $\in \text{dom}(W$.reverse()).
- (26) If $n \in \text{dom}(W.\text{reverse}())$, then W.reverse()(n) = W((len W n) + 1) and $(\text{len } W n) + 1 \in \text{dom } W.$
- (27) W.reverse().reverse() = W.
- (28) For every walk W_1 of G_1 and for every walk W_2 of G_2 such that $W_1 = W_2$ holds W_1 .reverse() = W_2 .reverse().
- (29) If $W_1.last() = W_2.first()$, then $len(W_1.append(W_2)) + 1 = len W_1 + len W_2$.
- (30) If $W_1.last() = W_2.first()$, then $len W_1 \leq len(W_1.append(W_2))$ and $len W_2 \leq len(W_1.append(W_2))$.
- (31) If $W_1.last() = W_2.first()$, then $(W_1.append(W_2)).first() = W_1.first()$ and $(W_1.append(W_2)).last() = W_2.last()$ and $W_1.append(W_2)$ is walk from $W_1.first()$ to $W_2.last()$.
- (32) If W_1 is walk from x to y and W_2 is walk from y to z, then W_1 .append (W_2) is walk from x to z.
- (33) If $n \in \operatorname{dom} W_1$, then $(W_1.\operatorname{append}(W_2))(n) = W_1(n)$ and $n \in \operatorname{dom}(W_1.\operatorname{append}(W_2))$.
- (34) If W_1 .last() = W_2 .first(), then for every natural number n such that n <len W_2 holds $(W_1.append(W_2))(\text{len } W_1 + n) = W_2(n+1)$ and $\text{len } W_1 + n \in$ dom $(W_1.append(W_2))$.
- (35) If $n \in \text{dom}(W_1.\text{append}(W_2))$, then $n \in \text{dom} W_1$ or there exists a natural number k such that $k < \text{len } W_2$ and $n = \text{len } W_1 + k$.
- (36) For all walks W_3 , W_4 of G_1 and for all walks W_5 , W_6 of G_2 such that $W_3 = W_5$ and $W_4 = W_6$ holds W_3 .append $(W_4) = W_5$.append (W_6) .
- (37) Let m, n be odd natural numbers. Suppose $m \le n$ and $n \le \operatorname{len} W$. Then $\operatorname{len}(W.\operatorname{cut}(m,n)) + m = n + 1$ and for every natural number i such that $i < \operatorname{len}(W.\operatorname{cut}(m,n))$ holds $(W.\operatorname{cut}(m,n))(i+1) = W(m+i)$ and $m+i \in \operatorname{dom} W$.
- (38) Let m, n be odd natural numbers. Suppose $m \le n$ and $n \le \text{len } W$. Then $(W.\operatorname{cut}(m,n)).\operatorname{first}() = W(m)$ and $(W.\operatorname{cut}(m,n)).\operatorname{last}() = W(n)$ and $W.\operatorname{cut}(m,n)$ is walk from W(m) to W(n).
- (39) For all odd natural numbers m, n, o such that $m \le n$ and $n \le o$ and $o \le \operatorname{len} W$ holds $(W.\operatorname{cut}(m, n)).\operatorname{append}((W.\operatorname{cut}(n, o))) = W.\operatorname{cut}(m, o).$
- (40) $W.\operatorname{cut}(1, \operatorname{len} W) = W.$
- (41) For every odd natural number n such that $n < \operatorname{len} W$ holds $G.\operatorname{walkOf}(W(n), W(n+1), W(n+2)) = W.\operatorname{cut}(n, n+2).$
- (42) For all odd natural numbers m, n such that $m \le n$ and $n < \operatorname{len} W$ holds $(W.\operatorname{cut}(m,n)).\operatorname{addEdge}(W(n+1)) = W.\operatorname{cut}(m,n+2).$

- (43) For every odd natural number n such that $n \leq \operatorname{len} W$ holds $W.\operatorname{cut}(n,n) = \langle W.\operatorname{vertexAt}(n) \rangle.$
- (44) If m is odd and $m \le n$, then $W.\operatorname{cut}(1, n).\operatorname{cut}(1, m) = W.\operatorname{cut}(1, m)$.
- (45) For all odd natural numbers m, n such that $m \le n$ and $n \le \operatorname{len} W_1$ and $W_1.\operatorname{last}() = W_2.\operatorname{first}()$ holds $(W_1.\operatorname{append}(W_2)).\operatorname{cut}(m, n) = W_1.\operatorname{cut}(m, n).$
- (46) For every odd natural number m such that $m \leq \operatorname{len} W$ holds $\operatorname{len}(W.\operatorname{cut}(1,m)) = m$.
- (47) For every odd natural number m and for every natural number x such that $x \in \text{dom}(W.\text{cut}(1,m))$ and $m \leq \text{len } W$ holds (W.cut(1,m))(x) = W(x).
- (48) Let m, n be odd natural numbers and i be a natural number. If $m \le n$ and $n \le \operatorname{len} W$ and $i \in \operatorname{dom}(W.\operatorname{cut}(m,n))$, then $(W.\operatorname{cut}(m,n))(i) = W((m+i)-1)$ and $(m+i)-1 \in \operatorname{dom} W$.
- (49) For every walk W_1 of G_1 and for every walk W_2 of G_2 and for all natural numbers m, n such that $W_1 = W_2$ holds $W_1.cut(m, n) = W_2.cut(m, n)$.
- (50) For all odd natural numbers m, n such that $m \le n$ and $n \le \operatorname{len} W$ and W(m) = W(n) holds $\operatorname{len}(W.\operatorname{remove}(m, n)) + n = \operatorname{len} W + m$.
- (51) If W is walk from x to y, then W.remove(m, n) is walk from x to y.
- (52) $\operatorname{len}(W.\operatorname{remove}(m, n)) \leq \operatorname{len} W.$
- (53) W.remove(m,m) = W.
- (54) For all odd natural numbers m, n such that $m \le n$ and $n \le \operatorname{len} W$ and W(m) = W(n) holds $(W.\operatorname{cut}(1,m)).\operatorname{last}() = (W.\operatorname{cut}(n,\operatorname{len} W)).\operatorname{first}().$
- (55) Let m, n be odd natural numbers. Suppose $m \le n$ and $n \le \operatorname{len} W$ and W(m) = W(n). Let x be a natural number. If $x \in \operatorname{Seg} m$, then $(W.\operatorname{remove}(m, n))(x) = W(x)$.
- (56) Let m, n be odd natural numbers. Suppose $m \le n$ and $n \le \operatorname{len} W$ and W(m) = W(n). Let x be a natural number. Suppose $m \le x$ and $x \le \operatorname{len}(W.\operatorname{remove}(m, n))$. Then $(W.\operatorname{remove}(m, n))(x) = W((x - m) + n)$ and (x - m) + n is a natural number and $(x - m) + n \le \operatorname{len} W$.
- (57) For all odd natural numbers m, n such that $m \le n$ and $n \le \operatorname{len} W$ and W(m) = W(n) holds $\operatorname{len}(W.\operatorname{remove}(m, n)) = (\operatorname{len} W + m) n$.
- (58) For every natural number m such that W(m) = W.last() holds W.remove(m, len W) = W.cut(1, m).
- (59) For every natural number m such that W.first() = W(m) holds W.remove(1,m) = W.cut(m, len W).
- (60) (W.remove(m, n)).first() = W.first() and (W.remove(m, n)).last() = W.last().
- (61) Let m, n be odd natural numbers and x be a natural number. Suppose $m \le n$ and $n \le \text{len } W$ and W(m) = W(n) and $x \in \text{dom}(W.\text{remove}(m, n))$.

Then $x \in \text{Seg } m$ or $m \leq x$ and $x \leq \text{len}(W.\text{remove}(m, n))$.

- (62) For every walk W_1 of G_1 and for every walk W_2 of G_2 and for all natural numbers m, n such that $W_1 = W_2$ holds W_1 .remove $(m, n) = W_2$.remove(m, n).
- (63) If e joins W.last() and x in G, then W.addEdge(e) = $W \cap \langle e, x \rangle$.
- (64) If e joins W.last() and x in G, then (W.addEdge(e)).first() = W.first()and (W.addEdge(e)).last() = x and W.addEdge(e) is walk from W.first() to x.
- (65) If e joins W.last() and x in G, then len(W.addEdge(e)) = len W + 2.
- (66) Suppose e joins W.last() and x in G. Then $(W.addEdge(e))(\operatorname{len} W+1) = e$ and $(W.addEdge(e))(\operatorname{len} W+2) = x$ and for every natural number n such that $n \in \operatorname{dom} W$ holds (W.addEdge(e))(n) = W(n).
- (67) If W is walk from x to y and e joins y and z in G, then W.addEdge(e) is walk from x to z.
- (68) $1 \leq \operatorname{len}(W.\operatorname{vertexSeq}()).$
- (69) For every odd natural number n such that $n \leq \operatorname{len} W$ holds $2 \cdot ((n+1) \div 2) 1 = n$ and $1 \leq (n+1) \div 2$ and $(n+1) \div 2 \leq \operatorname{len}(W.\operatorname{vertexSeq}())$.
- (70) $(G.walkOf(v)).vertexSeq() = \langle v \rangle.$
- (71) If e joins x and y in G, then $(G.walkOf(x, e, y)).vertexSeq() = \langle x, y \rangle$.
- (72) W.first() = W.vertexSeq()(1) and W.last() = W.vertexSeq()(len(W.vertexSeq())).
- (73) For every odd natural number n such that $n \leq \operatorname{len} W$ holds $W.\operatorname{vertexAt}(n) = W.\operatorname{vertexSeq}()((n+1) \div 2).$
- (74) $n \in \operatorname{dom}(W.\operatorname{vertexSeq}())$ iff $2 \cdot n 1 \in \operatorname{dom} W$.
- (75) $(W.\operatorname{cut}(1, n)).\operatorname{vertexSeq}() \subseteq W.\operatorname{vertexSeq}().$
- (76) If e joins W.last() and x in G, then (W.addEdge(e)).vertexSeq() = $W.vertexSeq() \cap \langle x \rangle.$
- (77) For every walk W_1 of G_1 and for every walk W_2 of G_2 such that $W_1 = W_2$ holds W_1 .vertexSeq() = W_2 .vertexSeq().
- (78) For every even natural number n such that $1 \le n$ and $n \le \text{len } W$ holds $n \div 2 \in \text{dom}(W.\text{edgeSeq}())$ and $W(n) = W.\text{edgeSeq}()(n \div 2)$.
- (79) $n \in \operatorname{dom}(W.\operatorname{edgeSeq}())$ iff $2 \cdot n \in \operatorname{dom} W$.
- (80) For every natural number n such that $n \in \text{dom}(W.\text{edgeSeq}())$ holds $W.\text{edgeSeq}()(n) \in \text{the edges of } G.$
- (81) There exists an even natural number l_1 such that $l_1 = \operatorname{len} W 1$ and $\operatorname{len}(W.\operatorname{edgeSeq}()) = l_1 \div 2.$
- (82) $(W.\operatorname{cut}(1, n)).\operatorname{edgeSeq}() \subseteq W.\operatorname{edgeSeq}().$
- (83) If e joins W.last() and x in G, then (W.addEdge(e)).edgeSeq() = $W.edgeSeq() \cap \langle e \rangle$.

- (84) *e* joins *x* and *y* in *G* iff (*G*.walkOf(*x*, *e*, *y*)).edgeSeq() = $\langle e \rangle$.
- (85) W.reverse().edgeSeq() = Rev(W.edgeSeq()).
- (86) If $W_1.last() = W_2.first()$, then $(W_1.append(W_2)).edgeSeq() = W_1.edgeSeq() \cap W_2.edgeSeq()$.
- (87) For every walk W_1 of G_1 and for every walk W_2 of G_2 such that $W_1 = W_2$ holds $W_1.edgeSeq() = W_2.edgeSeq()$.
- (88) $x \in W$.vertices() iff there exists an odd natural number n such that $n \leq \operatorname{len} W$ and W(n) = x.
- (89) $W.first() \in W.vertices()$ and $W.last() \in W.vertices()$.
- (90) For every odd natural number n such that $n \leq \operatorname{len} W$ holds $W.\operatorname{vertexAt}(n) \in W.\operatorname{vertices}().$
- (91) $(G.walkOf(v)).vertices() = \{v\}.$
- (92) If e joins x and y in G, then $(G.walkOf(x, e, y)).vertices() = \{x, y\}.$
- (93) W.vertices() = W.reverse().vertices().
- (94) If $W_1.last() = W_2.first()$, then $(W_1.append(W_2)).vertices() = W_1.vertices() \cup W_2.vertices()$.
- (95) For all odd natural numbers m, n such that $m \le n$ and $n \le \text{len } W$ holds $(W.\text{cut}(m, n)).\text{vertices}() \subseteq W.\text{vertices}().$
- (96) If e joins W.last() and x in G, then (W.addEdge(e)).vertices() = $W.vertices() \cup \{x\}.$
- (97) Let G be a finite graph, W be a walk of G, and e, x be sets. If e joins W.last() and x in G and $x \notin W.vertices()$, then card((W.addEdge(e)).vertices()) = card(W.vertices()) + 1.
- (98) If $x \in W$.vertices() and $y \in W$.vertices(), then there exists a walk of G which is walk from x to y.
- (99) For every walk W_1 of G_1 and for every walk W_2 of G_2 such that $W_1 = W_2$ holds W_1 .vertices() = W_2 .vertices().
- (100) $e \in W.edges()$ iff there exists an even natural number n such that $1 \le n$ and $n \le \text{len } W$ and W(n) = e.
- (101) $e \in W.edges()$ iff there exists an odd natural number n such that n < len W and W(n+1) = e.
- (102) $\operatorname{rng} W = W.\operatorname{vertices}() \cup W.\operatorname{edges}().$
- (103) If $W_1.last() = W_2.first()$, then $(W_1.append(W_2)).edges() = W_1.edges() \cup W_2.edges()$.
- (104) Suppose $e \in W$.edges(). Then there exist vertices v_2 , v_3 of G and there exists an odd natural number n such that $n + 2 \leq \text{len } W$ and $v_2 = W(n)$ and e = W(n+1) and $v_3 = W(n+2)$ and e joins v_2 and v_3 in G.
- (105) $e \in W.edges()$ iff there exists a natural number n such that $n \in dom(W.edgeSeq())$ and W.edgeSeq()(n) = e.

- (106) If $e \in W$.edges() and e joins x and y in G, then $x \in W$.vertices() and $y \in W$.vertices().
- (107) $(W.\operatorname{cut}(m, n)).\operatorname{edges}() \subseteq W.\operatorname{edges}().$
- (108) W.edges() = W.reverse().edges().
- (109) e joins x and y in G iff $(G.walkOf(x, e, y)).edges() = \{e\}.$
- (110) $W.edges() \subseteq G.edgesBetween(W.vertices()).$
- (111) For every walk W_1 of G_1 and for every walk W_2 of G_2 such that $W_1 = W_2$ holds $W_1.edges() = W_2.edges()$.
- (112) If e joins W.last() and x in G, then $(W.addEdge(e)).edges() = W.edges() \cup \{e\}.$
- (113) $\operatorname{len} W = 2 \cdot W.\operatorname{length}() + 1.$
- (114) $\operatorname{len} W_1 = \operatorname{len} W_2$ iff $W_1.\operatorname{length}() = W_2.\operatorname{length}()$.
- (115) For every walk W_1 of G_1 and for every walk W_2 of G_2 such that $W_1 = W_2$ holds W_1 .length() = W_2 .length().
- (116) For every odd natural number n such that $n \leq \operatorname{len} W$ holds $W.\operatorname{find}(W(n)) \leq n$ and $W.\operatorname{rfind}(W(n)) \geq n$.
- (117) For every walk W_1 of G_1 and for every walk W_2 of G_2 and for every set v such that $W_1 = W_2$ holds $W_1.find(v) = W_2.find(v)$ and $W_1.rfind(v) = W_2.rfind(v)$.
- (118) For every odd natural number n such that $n \leq \operatorname{len} W$ holds $W.\operatorname{find}(n) \leq n$ and $W.\operatorname{rfind}(n) \geq n$.
- (119) W is closed iff $W(1) = W(\operatorname{len} W)$.
- (120) W is closed iff there exists a set x such that W is walk from x to x.
- (121) W is closed iff W.reverse() is closed.
- (122) For every walk W_1 of G_1 and for every walk W_2 of G_2 such that $W_1 = W_2$ and W_1 is closed holds W_2 is closed.
- (123) W is directed if and only if for every odd natural number n such that n < len W holds W(n+1) joins W(n) to W(n+2) in G.
- (124) Suppose W is directed and walk from x to y and e joins y to z in G. Then W.addEdge(e) is directed and W.addEdge(e) is walk from x to z.
- (125) For every dwalk W of G and for all natural numbers m, n holds $W.\operatorname{cut}(m,n)$ is directed.
- (126) W is non trivial iff $3 \leq \text{len } W$.
- (127) W is non trivial iff len $W \neq 1$.
- (128) If $W.first() \neq W.last()$, then W is non trivial.
- (129) W is trivial iff there exists a vertex v of G such that W = G.walkOf(v).
- (130) W is trivial iff W.reverse() is trivial.
- (131) If W_2 is trivial, then W_1 .append $(W_2) = W_1$.

- (132) For all odd natural numbers m, n such that $m \le n$ and $n \le \text{len } W$ holds W.cut(m, n) is trivial iff m = n.
- (133) If e joins W.last() and x in G, then W.addEdge(e) is non trivial.
- (134) If W is non trivial, then there exists an odd natural number l_2 such that $l_2 = \text{len } W 2$ and $(W.\text{cut}(1, l_2)).\text{addEdge}(W(l_2 + 1)) = W.$
- (135) If W_2 is non trivial and W_2 .edges() $\subseteq W_1$.edges(), then W_2 .vertices() $\subseteq W_1$.vertices().
- (136) If W is non trivial, then for every vertex v of G such that $v \in W$.vertices() holds v is not isolated.
- (137) W is trivial iff $W.edges() = \emptyset$.
- (138) For every walk W_1 of G_1 and for every walk W_2 of G_2 such that $W_1 = W_2$ and W_1 is trivial holds W_2 is trivial.
- (139) W is trail-like iff for all even natural numbers m, n such that $1 \le m$ and m < n and $n \le \operatorname{len} W$ holds $W(m) \ne W(n)$.
- (140) If len $W \leq 3$, then W is trail-like.
- (141) W is trail-like iff W.reverse() is trail-like.
- (142) For every trail W of G and for all natural numbers m, n holds $W.\operatorname{cut}(m,n)$ is trail-like.
- (143) For every trail W of G and for every set e such that $e \in W.\text{last}().\text{edgesInOut}()$ and $e \notin W.\text{edges}()$ holds W.addEdge(e) is trail-like.
- (144) For every trail W of G and for every vertex v of G such that $v \in W$.vertices() and v is endvertex holds v = W.first() or v = W.last().
- (145) For every finite graph G and for every trail W of G holds $len(W.edgeSeq()) \leq G.size().$
- (146) If len $W \leq 3$, then W is path-like.
- (147) If for all odd natural numbers m, n such that $m \leq \operatorname{len} W$ and $n \leq \operatorname{len} W$ and W(m) = W(n) holds m = n, then W is path-like.
- (148) Let W be a path of G. Suppose W is open. Let m, n be odd natural numbers. If m < n and $n \leq \text{len } W$, then $W(m) \neq W(n)$.
- (149) W is path-like iff W.reverse() is path-like.
- (150) For every path W of G and for all natural numbers m, n holds $W.\operatorname{cut}(m, n)$ is path-like.
- (151) Let W be a path of G and e, v be sets. Suppose that
 - (i) e joins W.last() and v in G,
 - (ii) $e \notin W.edges(),$
 - (iii) W is trivial or open, and
 - (iv) for every odd natural number n such that 1 < n and $n \leq \text{len } W$ holds $W(n) \neq v$.

Then W.addEdge(e) is path-like.

- (152) Let W be a path of G and e, v be sets. Suppose e joins W.last() and v in G and $v \notin W$.vertices() and W is trivial or open. Then W.addEdge(e) is path-like.
- (153) If for every odd natural number n such that $n \leq \operatorname{len} W$ holds $W.\operatorname{find}(W(n)) = W.\operatorname{rfind}(W(n))$, then W is path-like.
- (154) If for every odd natural number n such that $n \leq \operatorname{len} W$ holds W.rfind(n) = n, then W is path-like.
- (155) For every finite graph G and for every path W of G holds $len(W.vertexSeq()) \le G.order() + 1.$
- (156) Let G be a graph, W be a vertex-distinct walk of G, and e, v be sets. If e joins W.last() and v in G and $v \notin W$.vertices(), then W.addEdge(e) is vertex-distinct.
- (157) If e joins x and x in G, then G.walkOf(x, e, x) is cycle-like.
- (158) Suppose e joins x and y in G and $e \in W_1$.edges() and W_1 is cycle-like. Then there exists a walk W_2 of G such that W_2 is walk from x to y and $e \notin W_2$.edges().
- (159) W is a subwalk of W.
- (160) For every walk W_1 of G and for every subwalk W_2 of W_1 holds every subwalk of W_2 is a subwalk of W_1 .
- (161) If W_1 is a subwalk of W_2 , then W_1 is walk from x to y iff W_2 is walk from x to y.
- (162) If W_1 is a subwalk of W_2 , then W_1 .first() = W_2 .first() and W_1 .last() = W_2 .last().
- (163) If W_1 is a subwalk of W_2 , then $\operatorname{len} W_1 \leq \operatorname{len} W_2$.
- (164) If W_1 is a subwalk of W_2 , then $W_1.edges() \subseteq W_2.edges()$ and $W_1.vertices() \subseteq W_2.vertices()$.
- (165) Suppose W_1 is a subwalk of W_2 . Let m be an odd natural number. Suppose $m \leq \operatorname{len} W_1$. Then there exists an odd natural number n such that $m \leq n$ and $n \leq \operatorname{len} W_2$ and $W_1(m) = W_2(n)$.
- (166) Suppose W_1 is a subwalk of W_2 . Let m be an even natural number. Suppose $1 \le m$ and $m \le \operatorname{len} W_1$. Then there exists an even natural number n such that $m \le n$ and $n \le \operatorname{len} W_2$ and $W_1(m) = W_2(n)$.
- (167) For every trail W_1 of G such that W_1 is non trivial holds there exists a path of W_1 which is non trivial.
- (168) For every graph G_1 and for every subgraph G_2 of G_1 holds every walk of G_2 is a walk of G_1 .
- (169) Let G_1 be a graph, G_2 be a subgraph of G_1 , and W be a walk of G_1 . If W is trivial and W.first() \in the vertices of G_2 , then W is a walk of G_2 .

- (170) Let G_1 be a graph, G_2 be a subgraph of G_1 , and W be a walk of G_1 . If W is non trivial and W.edges() \subseteq the edges of G_2 , then W is a walk of G_2 .
- (171) Let G_1 be a graph, G_2 be a subgraph of G_1 , and W be a walk of G_1 . Suppose W.vertices() \subseteq the vertices of G_2 and W.edges() \subseteq the edges of G_2 . Then W is a walk of G_2 .
- (172) Let G_1 be a non trivial graph, W be a walk of G_1 , v be a vertex of G_1 , and G_2 be a subgraph of G_1 with vertex v removed. If $v \notin W$.vertices(), then W is a walk of G_2 .
- (173) Let G_1 be a graph, W be a walk of G_1 , e be a set, and G_2 be a subgraph of G_1 with edge e removed. If $e \notin W.edges()$, then W is a walk of G_2 .
- (174) Let G_1 be a graph, G_2 be a subgraph of G_1 , and x, y, e be sets. If e joins x and y in G_2 , then G_1 .walkOf $(x, e, y) = G_2$.walkOf(x, e, y).
- (175) Let G_1 be a graph, G_2 be a subgraph of G_1 , W_1 be a walk of G_1 , W_2 be a walk of G_2 , and e be a set. If $W_1 = W_2$ and $e \in W_2$.last().edgesInOut(), then W_1 .addEdge $(e) = W_2$.addEdge(e).
- (176) Let G_1 be a graph, G_2 be a subgraph of G_1 , and W be a walk of G_2 . Then
 - (i) if W is closed, then W is a closed walk of G_1 ,
 - (ii) if W is directed, then W is a directed walk of G_1 ,
 - (iii) if W is trivial, then W is a trivial walk of G_1 ,
 - (iv) if W is trail-like, then W is a trail-like walk of G_1 ,
 - (v) if W is path-like, then W is a path-like walk of G_1 , and
 - (vi) if W is vertex-distinct, then W is a vertex-distinct walk of G_1 .
- (177) Let G_1 be a graph, G_2 be a subgraph of G_1 , W_1 be a walk of G_1 , and W_2 be a walk of G_2 such that $W_1 = W_2$. Then
 - (i) W_1 is closed iff W_2 is closed,
 - (ii) W_1 is directed iff W_2 is directed,
 - (iii) W_1 is trivial iff W_2 is trivial,
 - (iv) W_1 is trail-like iff W_2 is trail-like,
 - (v) W_1 is path-like iff W_2 is path-like, and
 - (vi) W_1 is vertex-distinct iff W_2 is vertex-distinct.
- (178) If $G_1 =_G G_2$ and x is a vertex sequence of G_1 , then x is a vertex sequence of G_2 .
- (179) If $G_1 =_G G_2$ and x is a edge sequence of G_1 , then x is a edge sequence of G_2 .
- (180) If $G_1 =_G G_2$ and x is a walk of G_1 , then x is a walk of G_2 .
- (181) If $G_1 =_G G_2$, then G_1 .walkOf $(x, e, y) = G_2$.walkOf(x, e, y).
- (182) Let W_1 be a walk of G_1 and W_2 be a walk of G_2 such that $G_1 =_G G_2$ and $W_1 = W_2$. Then

- (i) W_1 is closed iff W_2 is closed,
- (ii) W_1 is directed iff W_2 is directed,
- (iii) W_1 is trivial iff W_2 is trivial,
- (iv) W_1 is trail-like iff W_2 is trail-like,
- (v) W_1 is path-like iff W_2 is path-like, and
- (vi) W_1 is vertex-distinct iff W_2 is vertex-distinct.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241–245, 1996.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [9] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics, 13(2):235-252, 2005.
- [10] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297–304, 1996.
- [11] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
- [12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [17] Josef Urban. Basic facts about inaccessible and measurable cardinals. Formalized Mathematics, 9(2):323–329, 2001.
- [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received February 22, 2005