Walks in Graphs ${ }^{1}$

Gilbert Lee ${ }^{2}$
University of Victoria, Victoria, Canada

Summary. We define walks for graphs introduced in [9], introduce walk attributes and functors for walk creation and modification of walks. Subwalks of a walk are also defined. In our rendition, walks are alternating finite sequences of vertices and edges.

MML identifier: GLIB_001, version: 7.5.01 4.39.921

The notation and terminology used here are introduced in the following papers: [14], [12], [16], [13], [18], [6], [4], [5], [1], [10], [17], [7], [3], [19], [15], [8], [2], [9], and [11].

1. Preliminaries

The following propositions are true:
(1) For all odd natural numbers x, y holds $x<y$ iff $x+2 \leq y$.
(2) Let X be a set and k be a natural number. Suppose $X \subseteq \operatorname{Seg} k$. Let m, n be natural numbers. If $m \in \operatorname{dom} \operatorname{Sgm} X$ and $n=(\operatorname{Sgm} X)(m)$, then $m \leq n$.
(3) For every set X and for every finite sequence f_{2} of elements of X and for every FinSubsequence f_{1} of f_{2} holds len Seq $f_{1} \leq \operatorname{len} f_{2}$.
(4) Let X be a set, f_{2} be a finite sequence of elements of X, f_{1} be a FinSubsequence of f_{2}, and m be a natural number. Suppose $m \in \operatorname{dom} \operatorname{Seq} f_{1}$. Then there exists a natural number n such that $n \in \operatorname{dom} f_{2}$ and $m \leq n$ and $\left(\operatorname{Seq} f_{1}\right)(m)=f_{2}(n)$.

[^0](5) For every set X and for every finite sequence f_{2} of elements of X and for every FinSubsequence f_{1} of f_{2} holds len $\operatorname{Seq} f_{1}=\operatorname{card} f_{1}$.
(6) Let X be a set, f_{2} be a finite sequence of elements of X, and f_{1} be a FinSubsequence of f_{2}. Then $\operatorname{dom} \operatorname{Seq} f_{1}=\operatorname{dom} \operatorname{Sgm} \operatorname{dom} f_{1}$.

2. Walk Definitions

Let G be a graph. A finite sequence of elements of the vertices of G is said to be a vertex sequence of G if:
(Def. 1) For every natural number n such that $1 \leq n$ and $n<$ len it there exists a set e such that e joins $\operatorname{it}(n)$ and $\operatorname{it}(n+1)$ in G.
Let G be a graph. A finite sequence of elements of the edges of G is said to be a edge sequence of G if it satisfies the condition (Def. 2).
(Def. 2) There exists a finite sequence v_{1} of elements of the vertices of G such that len $v_{1}=$ len it +1 and for every natural number n such that $1 \leq n$ and $n \leq$ len it holds it (n) joins $v_{1}(n)$ and $v_{1}(n+1)$ in G.
Let G be a graph. A finite sequence of elements of (the vertices of G) \cup (the edges of G) is said to be a walk of G if it satisfies the conditions (Def. 3).
(Def. 3)(i) len it is odd,
(ii) $\mathrm{it}(1) \in$ the vertices of G, and
(iii) for every odd natural number n such that $n<$ len it holds it $(n+1)$ joins it (n) and $\operatorname{it}(n+2)$ in G.
Let G be a graph and let W be a walk of G. One can verify that len W is odd and non empty.

Let G be a graph and let v be a vertex of G. The functor $G \cdot \operatorname{walkOf}(v)$ yielding a walk of G is defined as follows:
(Def. 4) G.walkOf $(v)=\langle v\rangle$.
Let G be a graph and let x, y, e be sets. The functor $G \cdot \operatorname{walkOf}(x, e, y)$ yielding a walk of G is defined as follows:
(Def. 5) $\quad G \cdot \operatorname{walkOf}(x, e, y)=\left\{\begin{array}{l}\langle x, e, y\rangle, \text { if } e \text { joins } x \text { and } y \text { in } G, \\ G \text {.walkOf(choose(the vertices of } G) \text {), otherwise. }\end{array}\right.$
Let G be a graph and let W be a walk of G. The functor W.first() yields a vertex of G and is defined as follows:
(Def. 6) $\quad W$.first() $=W(1)$.
The functor W.last() yields a vertex of G and is defined by:
(Def. 7) $W . \operatorname{last}()=W(\operatorname{len} W)$.
Let G be a graph, let W be a walk of G, and let n be a natural number. The functor W.vertexAt (n) yielding a vertex of G is defined as follows:
(Def. 8) $W . \operatorname{vertexAt}(n)=\left\{\begin{array}{l}W(n), \text { if } n \text { is odd and } n \leq \operatorname{len} W, \\ W . \operatorname{first}(), \text { otherwise. }\end{array}\right.$
Let G be a graph and let W be a walk of G. The functor W.reverse() yielding a walk of G is defined as follows:
(Def. 9) W.reverse ()$=\operatorname{Rev}(W)$.
Let G be a graph and let W_{1}, W_{2} be walks of G. The functor W_{1}. append $\left(W_{2}\right)$ yields a walk of G and is defined by:
$\left(\right.$ Def. 10) $\quad W_{1} \cdot \operatorname{append}\left(W_{2}\right)=\left\{\begin{array}{l}W_{1} \propto W_{2}, \text { if } W_{1} \cdot \operatorname{last}()=W_{2} \cdot \text { first }(), \\ W_{1}, \text { otherwise. }\end{array}\right.$
Let G be a graph, let W be a walk of G, and let m, n be natural numbers. The functor W.cut (m, n) yields a walk of G and is defined by:
$\left(\right.$ Def. 11) $W \cdot \operatorname{cut}(m, n)=\left\{\begin{array}{c}\langle W(m), \ldots, W(n)\rangle, \text { if } m \text { is odd and } n \text { is odd and } \\ m \leq n \text { and } n \leq \operatorname{len} W, \\ W, \text { otherwise. }\end{array}\right.$
Let G be a graph, let W be a walk of G, and let m, n be natural numbers. The functor W.remove (m, n) yielding a walk of G is defined by:
$\left(\right.$ Def. 12) $\quad W \cdot \operatorname{remove}(m, n)=\left\{\begin{array}{c}(W \cdot \operatorname{cut}(1, m)) \cdot \operatorname{append}((W \cdot c u t(n, \text { len } W))), \\ \text { if } m \text { is odd and } n \text { is odd and } m \leq n \text { and } \\ n \leq \text { len } W \text { and } W(m)=W(n), \\ W, \text { otherwise. }\end{array}\right.$
Let G be a graph, let W be a walk of G, and let e be a set. The functor W.addEdge (e) yields a walk of G and is defined as follows:
$($ Def. 13) $W \cdot \operatorname{addEdge}(e)=W \cdot \operatorname{append}((G \cdot \operatorname{walkOf}(W \cdot \operatorname{last}(), e, W \cdot \operatorname{last}() \cdot \operatorname{adj}(e))))$.
Let G be a graph and let W be a walk of G. The functor W.vertexSeq() yielding a vertex sequence of G is defined by:
(Def. 14) len $W+1=2 \cdot \operatorname{len}(W \cdot v e r t e x S e q())$ and for every natural number n such that $1 \leq n$ and $n \leq \operatorname{len}(W \cdot \operatorname{vertexSeq}())$ holds $W \cdot \operatorname{vertexSeq}()(n)=$ $W(2 \cdot n-1)$.
Let G be a graph and let W be a walk of G. The functor W.edgeSeq() yields a edge sequence of G and is defined by:
(Def. 15) len $W=2 \cdot \operatorname{len}(W$.edgeSeq($))+1$ and for every natural number n such that $1 \leq n$ and $n \leq \operatorname{len}(W$.edgeSeq($)$) holds W.edgeSeq ()$(n)=W(2 \cdot n)$.
Let G be a graph and let W be a walk of G. The functor W.vertices() yields a finite subset of the vertices of G and is defined as follows:
(Def. 16) W.vertices ()$=\operatorname{rng}(W \cdot \operatorname{vertexSeq}())$.
Let G be a graph and let W be a walk of G. The functor W.edges() yields a finite subset of the edges of G and is defined by:
(Def. 17) $\quad W \cdot \operatorname{edges}()=\operatorname{rng}(W \cdot \operatorname{edgeSeq}())$.
Let G be a graph and let W be a walk of G. The functor W.length() yielding a natural number is defined by:
(Def. 18) $W . \operatorname{length}()=\operatorname{len}(W \cdot \operatorname{dg} \operatorname{seSeq}())$.
Let G be a graph, let W be a walk of G, and let v be a set. The functor W.find (v) yields an odd natural number and is defined by:
(Def. 19)(i) $\quad W . \operatorname{find}(v) \leq \operatorname{len} W$ and $W(W \cdot \operatorname{find}(v))=v$ and for every odd natural number n such that $n \leq$ len W and $W(n)=v$ holds W.find $(v) \leq n$ if $v \in W$.vertices(),
(ii) W.find $(v)=\operatorname{len} W$, otherwise.

Let G be a graph, let W be a walk of G, and let n be a natural number. The functor W.find (n) yielding an odd natural number is defined by:
(Def. 20)(i) $\quad W$.find $(n) \leq$ len W and $W(W . \operatorname{find}(n))=W(n)$ and for every odd natural number k such that $k \leq$ len W and $W(k)=W(n)$ holds W.find $(n) \leq k$ if n is odd and $n \leq \operatorname{len} W$,
(ii) $\quad W \cdot \operatorname{find}(n)=$ len W, otherwise.

Let G be a graph, let W be a walk of G, and let v be a set. The functor $W \cdot \operatorname{rfind}(v)$ yields an odd natural number and is defined as follows:
$($ Def. 21)(i) $\quad W \cdot \operatorname{rffind}(v) \leq \operatorname{len} W$ and $W(W \cdot \operatorname{rfind}(v))=v$ and for every odd natural number n such that $n \leq$ len W and $W(n)=v$ holds $n \leq W$.rfind (v) if $v \in W$.vertices () ,
(ii) $\quad W \cdot \operatorname{rfind}(v)=\operatorname{len} W$, otherwise.

Let G be a graph, let W be a walk of G, and let n be a natural number. The functor $W \cdot \operatorname{rfind}(n)$ yields an odd natural number and is defined by:
$($ Def. 22)(i) $\quad W . \operatorname{rfind}(n) \leq \operatorname{len} W$ and $W(W . r f i n d ~(n))=W(n)$ and for every odd natural number k such that $k \leq$ len W and $W(k)=W(n)$ holds $k \leq$ $W \cdot \operatorname{rfind}(n)$ if n is odd and $n \leq$ len W,
(ii) $\quad W \cdot \operatorname{rfind}(n)=\operatorname{len} W$, otherwise.

Let G be a graph, let u, v be sets, and let W be a walk of G. We say that W is walk from u to v if and only if:
(Def. 23) $W \cdot \operatorname{first}()=u$ and $W \cdot \operatorname{last}()=v$.
Let G be a graph and let W be a walk of G. We say that W is closed if and only if:
(Def. 24) $W . \operatorname{first}()=W . \operatorname{last}()$.
We say that W is directed if and only if:
(Def. 25) For every odd natural number n such that $n<$ len W holds (the source of $G)(W(n+1))=W(n)$.
We say that W is trivial if and only if:
(Def. 26) W.length ()$=0$.
We say that W is trail-like if and only if:
(Def. 27) W.edgeSeq() is one-to-one.

Let G be a graph and let W be a walk of G. We introduce W is open as an antonym of W is closed.

Let G be a graph and let W be a walk of G. We say that W is path-like if and only if the conditions (Def. 28) are satisfied.
(Def. 28)(i) $\quad W$ is trail-like, and
(ii) for all odd natural numbers m, n such that $m<n$ and $n \leq$ len W holds if $W(m)=W(n)$, then $m=1$ and $n=$ len W.
Let G be a graph and let W be a walk of G. We say that W is vertex-distinct if and only if:
(Def. 29) For all odd natural numbers m, n such that $m \leq \operatorname{len} W$ and $n \leq$ len W and $W(m)=W(n)$ holds $m=n$.
Let G be a graph and let W be a walk of G. We say that W is circuit-like if and only if:
(Def. 30) W is closed, trail-like, and non trivial.
We say that W is cycle-like if and only if:
(Def. 31) W is closed, path-like, and non trivial.
Let G be a graph. One can verify the following observations:

* every walk of G which is path-like is also trail-like,
* every walk of G which is trivial is also path-like,
* every walk of G which is trivial is also vertex-distinct,
* every walk of G which is vertex-distinct is also path-like,
* every walk of G which is circuit-like is also closed, trail-like, and non trivial, and
* every walk of G which is cycle-like is also closed, path-like, and non trivial.

Let G be a graph. Observe that there exists a walk of G which is closed, directed, and trivial.

Let G be a graph. Observe that there exists a walk of G which is vertexdistinct.

Let G be a graph. A trail of G is a trail-like walk of G. A path of G is a path-like walk of G.

Let G be a graph. A dwalk of G is a directed walk of G. A dtrail of G is a directed trail of G. A dpath of G is a directed path of G.

Let G be a graph and let v be a vertex of G. Note that G.walkOf (v) is closed, directed, and trivial.

Let G be a graph and let x, e, y be sets. One can check that G.walkOf (x, e, y) is path-like.

Let G be a graph and let x, e be sets. Note that G.walkOf (x, e, x) is closed.
Let G be a graph and let W be a closed walk of G. One can check that W.reverse() is closed.

Let G be a graph and let W be a trivial walk of G. One can verify that W.reverse() is trivial.

Let G be a graph and let W be a trail of G. Note that W.reverse() is trail-like.

Let G be a graph and let W be a path of G. Observe that W.reverse() is path-like.

Let G be a graph and let W_{1}, W_{2} be closed walks of G. Note that W_{1}.append $\left(W_{2}\right)$ is closed.

Let G be a graph and let W_{1}, W_{2} be dwalks of G. One can verify that W_{1}.append $\left(W_{2}\right)$ is directed.

Let G be a graph and let W_{1}, W_{2} be trivial walks of G. Observe that W_{1}.append $\left(W_{2}\right)$ is trivial.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers. Note that W.cut (m, n) is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural numbers. Observe that W.cut (m, n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers. Note that W.cut (m, n) is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers. Note that W.cut (m, n) is path-like.

Let G be a graph, let W be a vertex-distinct walk of G, and let m, n be natural numbers. One can verify that W.cut (m, n) is vertex-distinct.

Let G be a graph, let W be a closed walk of G, and let m, n be natural numbers. One can verify that W.remove (m, n) is closed.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers. Note that W.remove (m, n) is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural numbers. One can check that W.remove (m, n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers. Observe that W.remove (m, n) is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers. Observe that W.remove (m, n) is path-like.

Let G be a graph and let W be a walk of G. A walk of G is called a subwalk of W if:
(Def. 32) It is walk from W.first() to W.last() and there exists a FinSubsequence e_{1} of $W \cdot \operatorname{edgeSeq}()$ such that it.edgeSeq ()$=\operatorname{Seq} e_{1}$.
Let G be a graph, let W be a walk of G, and let m, n be natural numbers. Then W.remove (m, n) is a subwalk of W.

Let G be a graph and let W be a walk of G. Note that there exists a subwalk of W which is trail-like and path-like.

Let G be a graph and let W be a walk of G. A trail of W is a trail-like subwalk of W. A path of W is a path-like subwalk of W.

Let G be a graph and let W be a dwalk of G. One can verify that there exists a path of W which is directed.

Let G be a graph and let W be a dwalk of G. A dwalk of W is a directed subwalk of W. A dtrail of W is a directed trail of W. A dpath of W is a directed path of W.

Let G be a graph. The functor G.allWalks() yields a non empty subset of $((\text { the vertices of } G) \cup(\text { the edges of } G))^{*}$ and is defined by:
(Def. 33) G.allWalks ()$=\{W: W$ ranges over walks of $G\}$.
Let G be a graph. The functor G.allTrails() yielding a non empty subset of G.allWalks() is defined by:
(Def. 34) G.allTrails ()$=\{W: W$ ranges over trails of $G\}$.
Let G be a graph. The functor G.allPaths() yields a non empty subset of G.allTrails() and is defined as follows:
(Def. 35) G.allPaths ()$=\{W: W$ ranges over paths of $G\}$.
Let G be a graph. The functor G.allDWalks() yields a non empty subset of G.allWalks() and is defined by:
(Def. 36) G.allDWalks ()$=\{W: W$ ranges over dwalks of $G\}$.
Let G be a graph. The functor G.allDTrails() yields a non empty subset of G.allTrails() and is defined as follows:
(Def. 37) G.allDTrails ()$=\{W: W$ ranges over dtrails of $G\}$.
Let G be a graph. The functor G.allDPaths() yields a non empty subset of G.allDTrails() and is defined by:
(Def. 38) G.allDPaths ()$=\{W: W$ ranges over directed paths of $G\}$.
Let G be a finite graph. One can check that G.allTrails() is finite.
Let G be a graph and let X be a non empty subset of G.allWalks(). We see that the element of X is a walk of G.

Let G be a graph and let X be a non empty subset of G.allTrails(). We see that the element of X is a trail of G.

Let G be a graph and let X be a non empty subset of G.allPaths(). We see that the element of X is a path of G.

Let G be a graph and let X be a non empty subset of G.allDWalks(). We see that the element of X is a dwalk of G.

Let G be a graph and let X be a non empty subset of G.allDTrails(). We see that the element of X is a dtrail of G.

Let G be a graph and let X be a non empty subset of G.allDPaths(). We see that the element of X is a dpath of G.

3. Walk Theorems

For simplicity, we adopt the following rules: G, G_{1}, G_{2} are graphs, W, W_{1}, W_{2} are walks of G, e, x, y, z are sets, v is a vertex of G, and n, m are natural numbers.

We now state a number of propositions:
$(8)^{3}$ For every odd natural number n such that $n \leq \operatorname{len} W$ holds $W(n) \in$ the vertices of G.
(9) For every even natural number n such that $n \in \operatorname{dom} W$ holds $W(n) \in$ the edges of G.
(10) Let n be an even natural number. Suppose $n \in \operatorname{dom} W$. Then there exists an odd natural number n_{1} such that $n_{1}=n-1$ and $n-1 \in \operatorname{dom} W$ and $n+1 \in \operatorname{dom} W$ and $W(n)$ joins $W\left(n_{1}\right)$ and $W(n+1)$ in G.
(11) For every odd natural number n such that $n<$ len W holds $W(n+1) \in$ (W.vertexAt (n)).edgesInOut().
(12) For every odd natural number n such that $1<n$ and $n \leq \operatorname{len} W$ holds $W(n-1) \in(W . \operatorname{vertexAt}(n))$.edgesInOut().
(13) For every odd natural number n such that $n<\operatorname{len} W$ holds $n \in \operatorname{dom} W$ and $n+1 \in \operatorname{dom} W$ and $n+2 \in \operatorname{dom} W$.
(14) $\operatorname{len}(G \cdot \operatorname{walkOf}(v))=1$ and $(G \cdot \operatorname{walkOf}(v))(1)=v$ and $(G \cdot \operatorname{walkOf}(v)) \cdot \operatorname{first}()=v$ and $(G \cdot \operatorname{walkOf}(v)) \cdot \operatorname{last}()=v$ and $G \cdot \operatorname{walkOf}(v)$ is walk from v to v.
(15) If e joins x and y in G, then $\operatorname{len}(G \cdot \operatorname{walkOf}(x, e, y))=3$.
(16) If e joins x and y in G, then ($G \cdot \operatorname{walkOf}(x, e, y)) \cdot f i r s t()=x$ and $(G \cdot$ walkOf $(x, e, y)) \cdot \operatorname{last}()=y$ and $G \cdot$ walkOf (x, e, y) is walk from x to y.
(17) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} such that $W_{1}=W_{2}$ holds W_{1}.first ()$=W_{2}$.first($)$ and W_{1}.last ()$=W_{2}$.last().
(18) W is walk from x to y iff $W(1)=x$ and $W(\operatorname{len} W)=y$.
(19) If W is walk from x to y, then x is a vertex of G and y is a vertex of G.
(20) Let W_{1} be a walk of G_{1} and W_{2} be a walk of G_{2}. If $W_{1}=W_{2}$, then W_{1} is walk from x to y iff W_{2} is walk from x to y.
(21) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} such that $W_{1}=W_{2}$ and for every natural number n holds $W_{1} \cdot v e r t e x \operatorname{At}(n)=W_{2}$.vertexAt (n).
(22) $\operatorname{len} W=\operatorname{len}(W$.reverse()) and $\operatorname{dom} W=\operatorname{dom}(W$.reverse()) and $\mathrm{rng} W=$ rng(W.reverse()).
(23) W.first() $=W$.reverse().last() and W.last() $=W$.reverse().first().
(24) W is walk from x to y iff W.reverse() is walk from y to x.

[^1](25) If $n \in \operatorname{dom} W$, then $W(n)=W$.reverse ()$((\operatorname{len} W-n)+1)$ and (len $W-$ $n)+1 \in \operatorname{dom}(W$.reverse ()$)$.
(26) If $n \in \operatorname{dom}(W \cdot \operatorname{reverse}())$, then $W \cdot \operatorname{reverse}()(n)=W((\operatorname{len} W-n)+1)$ and $(\operatorname{len} W-n)+1 \in \operatorname{dom} W$.
(27) W.reverse().reverse($)=W$.
(28) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} such that $W_{1}=W_{2}$ holds $W_{1} \cdot \operatorname{reverse}()=W_{2} \cdot \operatorname{reverse}()$.
(29) If $W_{1} \cdot \operatorname{last}()=W_{2} \cdot \operatorname{first}()$, then $\operatorname{len}\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right)+1=\operatorname{len} W_{1}+$ len W_{2}.
(30) If $W_{1} \cdot \operatorname{last}()=W_{2} \cdot$ first(), then len $W_{1} \leq \operatorname{len}\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right)$ and len $W_{2} \leq \operatorname{len}\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right)$.
(31) If $W_{1} \cdot \operatorname{last}()=W_{2} \cdot \operatorname{first}()$, then $\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right) \cdot$ first ()$=W_{1} \cdot \operatorname{first}()$ and ($\left.W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right) \cdot \operatorname{last}()=W_{2} \cdot \operatorname{last}()$ and $W_{1} \cdot \operatorname{append}\left(W_{2}\right)$ is walk from $W_{1} \cdot \mathrm{first}()$ to $W_{2} \cdot \operatorname{last}()$.
(32) If W_{1} is walk from x to y and W_{2} is walk from y to z, then W_{1}.append $\left(W_{2}\right)$ is walk from x to z.
(33) If $n \in \operatorname{dom} W_{1}$, then $\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right)(n)=W_{1}(n)$ and $n \in$ $\operatorname{dom}\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right)$.
(34) If $W_{1} \cdot \operatorname{last}()=W_{2}$.first(), then for every natural number n such that $n<$ len W_{2} holds $\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right)\left(\right.$ len $\left.W_{1}+n\right)=W_{2}(n+1)$ and len $W_{1}+n \in$ $\operatorname{dom}\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right)$.
(35) If $n \in \operatorname{dom}\left(W_{1}\right.$.append $\left.\left(W_{2}\right)\right)$, then $n \in \operatorname{dom} W_{1}$ or there exists a natural number k such that $k<\operatorname{len} W_{2}$ and $n=\operatorname{len} W_{1}+k$.
(36) For all walks W_{3}, W_{4} of G_{1} and for all walks W_{5}, W_{6} of G_{2} such that $W_{3}=W_{5}$ and $W_{4}=W_{6}$ holds $W_{3} \cdot \operatorname{append}\left(W_{4}\right)=W_{5} \cdot \operatorname{append}\left(W_{6}\right)$.
(37) Let m, n be odd natural numbers. Suppose $m \leq n$ and $n \leq$ len W. Then len $(W \cdot \operatorname{cut}(m, n))+m=n+1$ and for every natural number i such that $i<\operatorname{len}(W \cdot \operatorname{cut}(m, n))$ holds $(W \cdot \operatorname{cut}(m, n))(i+1)=W(m+i)$ and $m+i \in \operatorname{dom} W$.
(38) Let m, n be odd natural numbers. Suppose $m \leq n$ and $n \leq \operatorname{len} W$. Then $(W \cdot \operatorname{cut}(m, n)) \cdot \operatorname{first}()=W(m)$ and $(W \cdot \operatorname{cut}(m, n)) \cdot \operatorname{last}()=W(n)$ and W.cut (m, n) is walk from $W(m)$ to $W(n)$.
(39) For all odd natural numbers m, n, o such that $m \leq n$ and $n \leq o$ and $o \leq \operatorname{len} W$ holds $(W \cdot \operatorname{cut}(m, n)) \cdot \operatorname{append}((W \cdot \operatorname{cut}(n, o)))=W \cdot \operatorname{cut}(m, o)$.
(40) $W \cdot \operatorname{cut}(1$, len $W)=W$.
(41) For every odd natural number n such that $n<$ len W holds G.walkOf $(W(n), W(n+1), W(n+2))=W \cdot \operatorname{cut}(n, n+2)$.
(42) For all odd natural numbers m, n such that $m \leq n$ and $n<\operatorname{len} W$ holds $(W \cdot \operatorname{cut}(m, n)) \cdot \operatorname{addEdge}(W(n+1))=W \cdot \operatorname{cut}(m, n+2)$.
(43) For every odd natural number n such that $n \leq$ len W holds $W \cdot \operatorname{cut}(n, n)=\langle W \cdot \operatorname{vertexAt}(n)\rangle$.
(44) If m is odd and $m \leq n$, then $W \cdot \operatorname{cut}(1, n) \cdot \operatorname{cut}(1, m)=W \cdot \operatorname{cut}(1, m)$.
(45) For all odd natural numbers m, n such that $m \leq n$ and $n \leq \operatorname{len} W_{1}$ and $W_{1} \cdot \operatorname{last}()=W_{2} \cdot \operatorname{first}()$ holds $\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right) \cdot \operatorname{cut}(m, n)=W_{1} \cdot \operatorname{cut}(m, n)$.
(46) For every odd natural number m such that $m \leq$ len W holds $\operatorname{len}(W \cdot \operatorname{cut}(1, m))=m$.
(47) For every odd natural number m and for every natural number x such that $x \in \operatorname{dom}(W \cdot \operatorname{cut}(1, m))$ and $m \leq$ len W holds $(W \cdot \operatorname{cut}(1, m))(x)=$ $W(x)$.
(48) Let m, n be odd natural numbers and i be a natural number. If $m \leq$ n and $n \leq \operatorname{len} W$ and $i \in \operatorname{dom}(W \cdot \operatorname{cut}(m, n))$, then $(W \cdot \operatorname{cut}(m, n))(i)=$ $W((m+i)-1)$ and $(m+i)-1 \in \operatorname{dom} W$.
(49) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} and for all natural numbers m, n such that $W_{1}=W_{2}$ holds $W_{1} \cdot \operatorname{cut}(m, n)=W_{2} \cdot \operatorname{cut}(m, n)$.
(50) For all odd natural numbers m, n such that $m \leq n$ and $n \leq \operatorname{len} W$ and $W(m)=W(n)$ holds len $(W \cdot \operatorname{remove}(m, n))+n=\operatorname{len} W+m$.
(51) If W is walk from x to y, then W.remove (m, n) is walk from x to y.
(52) $\operatorname{len}(W \cdot \operatorname{remove}(m, n)) \leq \operatorname{len} W$.
(53) W.remove $(m, m)=W$.
(54) For all odd natural numbers m, n such that $m \leq n$ and $n \leq \operatorname{len} W$ and $W(m)=W(n)$ holds $(W \cdot \operatorname{cut}(1, m)) \cdot \operatorname{last}()=(W \cdot \operatorname{cut}(n$, len $W)) \cdot \operatorname{first}()$.
(55) Let m, n be odd natural numbers. Suppose $m \leq n$ and $n \leq \operatorname{len} W$ and $W(m)=W(n)$. Let x be a natural number. If $x \in \operatorname{Seg} m$, then $(W$.remove $(m, n))(x)=W(x)$.
(56) Let m, n be odd natural numbers. Suppose $m \leq n$ and $n \leq \operatorname{len} W$ and $W(m)=W(n)$. Let x be a natural number. Suppose $m \leq x$ and $x \leq \operatorname{len}(W$.remove $(m, n))$. Then $(W \cdot \operatorname{remove}(m, n))(x)=W((x-m)+n)$ and $(x-m)+n$ is a natural number and $(x-m)+n \leq$ len W.
(57) For all odd natural numbers m, n such that $m \leq n$ and $n \leq$ len W and $W(m)=W(n)$ holds len $(W \cdot \operatorname{remove}(m, n))=(\operatorname{len} W+m)-n$.
(58) For every natural number m such that $W(m)=W$.last() holds $W \cdot \operatorname{remove}(m, \operatorname{len} W)=W \cdot \operatorname{cut}(1, m)$.
(59) For every natural number m such that W.first() $=W(m)$ holds $W \cdot \operatorname{remove}(1, m)=W \cdot \operatorname{cut}(m$, len $W)$.
(60) ($W \cdot \operatorname{remove}(m, n)) \cdot \operatorname{first}()=W \cdot \operatorname{first}()$ and ($W \cdot \operatorname{remove}(m, n)) \cdot \operatorname{last}()=$ W.last().
(61) Let m, n be odd natural numbers and x be a natural number. Suppose $m \leq n$ and $n \leq \operatorname{len} W$ and $W(m)=W(n)$ and $x \in \operatorname{dom}(W$.remove $(m, n))$.

Then $x \in \operatorname{Seg} m$ or $m \leq x$ and $x \leq \operatorname{len}(W$.remove $(m, n))$.
(62) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} and for all natural numbers m, n such that $W_{1}=W_{2}$ holds $W_{1} \cdot \operatorname{remove}(m, n)=$ W_{2}.remove (m, n).
(63) If e joins W.last() and x in G, then W.addEdge $(e)=W^{\frown}\langle e, x\rangle$.
(64) If e joins W.last() and x in G, then (W.addEdge $(e))$. first ()$=W . \operatorname{first}()$ and $(W \cdot \operatorname{addEdge}(e)) \cdot \operatorname{last}()=x$ and $W \cdot \operatorname{addEdge}(e)$ is walk from $W \cdot \operatorname{first}()$ to x.
(65) If e joins $W \cdot \operatorname{last}()$ and x in G, then len $(W \cdot \operatorname{addEdge}(e))=$ len $W+2$.
(66) Suppose e joins W.last () and x in G. Then $(W$.addEdge $(e))(\operatorname{len} W+1)=$ e and $(W$.addEdge $(e))($ len $W+2)=x$ and for every natural number n such that $n \in \operatorname{dom} W$ holds $(W$.addEdge $(e))(n)=W(n)$.
(67) If W is walk from x to y and e joins y and z in G, then W.addEdge (e) is walk from x to z.
(68) $\quad 1 \leq \operatorname{len}(W$.vertexSeq()).
(69) For every odd natural number n such that $n \leq$ len W holds $2 \cdot((n+1) \div$ $2)-1=n$ and $1 \leq(n+1) \div 2$ and $(n+1) \div 2 \leq \operatorname{len}(W$.vertexSeq()$)$.
(70) $\quad(G \cdot w a l k O f(v)) \cdot v e r t e x S e q()=\langle v\rangle$.
(71) If e joins x and y in G, then $(G \cdot \operatorname{walkOf}(x, e, y)) \cdot \operatorname{vertexSeq}()=\langle x, y\rangle$.
(72) $W \cdot \operatorname{first}()=W \cdot \operatorname{vertexSeq}()(1)$ and $W \cdot \operatorname{last}()=$ $W \cdot \operatorname{vertexSeq}()(\operatorname{len}(W \cdot \operatorname{vertexSeq}()))$.
(73) For every odd natural number n such that $n \leq \operatorname{len} W$ holds $W \cdot \operatorname{vertexAt}(n)=W \cdot \operatorname{vertexSeq}()((n+1) \div 2)$.
(74) $n \in \operatorname{dom}(W \cdot v e r t e x S e q())$ iff $2 \cdot n-1 \in \operatorname{dom} W$.
(75) $\quad(W \cdot \operatorname{cut}(1, n)) \cdot \operatorname{vertexSeq}() \subseteq W \cdot \operatorname{vertexSeq}()$.
(76) If e joins W.last() and x in G, then ($W \cdot \operatorname{addEdge}(e)) \cdot \operatorname{vertexSeq}()=$ W.vertexSeq($)^{\wedge}\langle x\rangle$.
(77) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} such that $W_{1}=W_{2}$ holds W_{1}.vertexSeq ()$=W_{2}$.vertexSeq().
(78) For every even natural number n such that $1 \leq n$ and $n \leq \operatorname{len} W$ holds $n \div 2 \in \operatorname{dom}(W . \operatorname{edgeSeq}())$ and $W(n)=W . \operatorname{edgeSeq}()(n \div 2)$.
(79) $\quad n \in \operatorname{dom}(W . \operatorname{edgeSeq}())$ iff $2 \cdot n \in \operatorname{dom} W$.
(80) For every natural number n such that $n \in \operatorname{dom}(W$.edgeSeq()) holds W.edgeSeq ()$(n) \in$ the edges of G.
(81) There exists an even natural number l_{1} such that $l_{1}=\operatorname{len} W-1$ and $\operatorname{len}(W \cdot \operatorname{dg} \operatorname{SeSeq}())=l_{1} \div 2$.
(82) $\quad(W \cdot \operatorname{cut}(1, n)) \cdot \operatorname{edgeSeq}() \subseteq W \cdot \operatorname{edgeSeq}()$.
(83) If e joins $W \cdot \operatorname{last}()$ and x in G, then $(W \cdot \operatorname{addEdge}(e)) \cdot \operatorname{edgeSeq}()=$ W.edgeSeq ()$^{\sim}\langle e\rangle$.
(84) e joins x and y in G iff $(G$.walkOf $(x, e, y))$.edgeSeq ()$=\langle e\rangle$.
(85) W.reverse().edgeSeq($)=\operatorname{Rev}(W \cdot \operatorname{edgeSeq}())$.
(86) If $W_{1} \cdot \operatorname{last}()=W_{2} \cdot$ first () , then $\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right) \cdot$.edgeSeq() $=$ W_{1}.edgeSeq() ${ }^{\wedge} W_{2}$.edgeSeq().
(87) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} such that $W_{1}=W_{2}$ holds W_{1}.edgeSeq ()$=W_{2}$.edgeSeq().
(88) $x \in W$.vertices() iff there exists an odd natural number n such that $n \leq$ len W and $W(n)=x$.
(89) W.first() $\in W$.vertices() and W.last() $\in W$.vertices().
(90) For every odd natural number n such that $n \leq$ len W holds W.vertexAt $(n) \in W$.vertices().
(91) $\quad(G \cdot$ walkOf $(v)) \cdot$ vertices ()$=\{v\}$.
(92) If e joins x and y in G, then $(G \cdot w a l k O f(x, e, y)) \cdot \operatorname{vertices}()=\{x, y\}$.
(93) W.vertices ()$=W$.reverse().vertices().
(94) If $W_{1} \cdot \operatorname{last}()=W_{2} \cdot$ first(), then $\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right) \cdot v e r t i c e s()=$ W_{1}.vertices ()$\cup W_{2}$.vertices () .
(95) For all odd natural numbers m, n such that $m \leq n$ and $n \leq \operatorname{len} W$ holds $(W \cdot \operatorname{cut}(m, n))$. $\operatorname{vertices}() \subseteq W$.vertices () .
(96) If e joins W.last() and x in G, then (W.addEdge((e)).vertices() $=$ W.vertices ()$\cup\{x\}$.
(97) Let G be a finite graph, W be a walk of G, and e, x be sets. If e joins W.last() and x in G and $x \notin W$.vertices(), then $\operatorname{card}((W \cdot \operatorname{addEdge}(e)) \cdot \operatorname{vertices}())=\operatorname{card}(W \cdot \operatorname{vertices}())+1$.
(98) If $x \in W \cdot \operatorname{vertices()~and~} y \in W \cdot v e r t i c e s()$, then there exists a walk of G which is walk from x to y.
(99) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} such that $W_{1}=W_{2}$ holds W_{1}.vertices ()$=W_{2}$.vertices () .
(100) $\quad e \in W$.edges() iff there exists an even natural number n such that $1 \leq n$ and $n \leq \operatorname{len} W$ and $W(n)=e$.
(101) $e \in W$.edges() iff there exists an odd natural number n such that $n<$ len W and $W(n+1)=e$.
(102) $\quad \operatorname{rng} W=W$.vertices() $\cup W$.edges () .
(103) If $W_{1} \cdot \operatorname{last}()=W_{2} \cdot$ first () , then $\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right) \cdot \operatorname{edges}()=W_{1} \cdot \operatorname{edges}() \cup$ W_{2}.edges().
(104) Suppose $e \in W$.edges(). Then there exist vertices v_{2}, v_{3} of G and there exists an odd natural number n such that $n+2 \leq \operatorname{len} W$ and $v_{2}=W(n)$ and $e=W(n+1)$ and $v_{3}=W(n+2)$ and e joins v_{2} and v_{3} in G.
(105) $e \in W$.edges() iff there exists a natural number n such that $n \in$ $\operatorname{dom}(W \cdot \operatorname{edgeSeq}())$ and $W \cdot \operatorname{edgeSeq}()(n)=e$.
(106) If $e \in W$.edges() and e joins x and y in G, then $x \in W$.vertices() and $y \in W$.vertices().
(107) $\quad(W \cdot \operatorname{cut}(m, n)) \cdot \operatorname{edges}() \subseteq W \cdot \operatorname{edges}()$.
(108) W.edges ()$=W$.reverse().edges().
(109) e joins x and y in G iff $(G \cdot$ walkOf $(x, e, y)) \cdot \operatorname{edges}()=\{e\}$.
(110) W.edges ()$\subseteq G$.edgesBetween $(W$.vertices ()$)$.
(111) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} such that $W_{1}=W_{2}$ holds $W_{1} \cdot \operatorname{edges}()=W_{2} \cdot \operatorname{edges}()$.
(112) If e joins W.last() and x in G, then (W.addEdge(e)).edges() $=$ W.edges ()$\cup\{e\}$.
(113) len $W=2 \cdot W \cdot \operatorname{length}()+1$.
(114) len $W_{1}=$ len W_{2} iff W_{1}.length ()$=W_{2}$.length () .
(115) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} such that $W_{1}=W_{2}$ holds $W_{1} \cdot \operatorname{length}()=W_{2} \cdot$ length () .
(116) For every odd natural number n such that $n \leq$ len W holds $W \cdot \operatorname{find}(W(n)) \leq n$ and $W \cdot \operatorname{rfind}(W(n)) \geq n$.
(117) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} and for every set v such that $W_{1}=W_{2}$ holds $W_{1} \cdot \operatorname{find}(v)=W_{2} \cdot \operatorname{find}(v)$ and $W_{1} \cdot \operatorname{rfind}(v)=$ $W_{2} . \operatorname{rfind}(v)$.
(118) For every odd natural number n such that $n \leq \operatorname{len} W$ holds W.find $(n) \leq$ n and $W \cdot \operatorname{rfind}(n) \geq n$.
(119) W is closed iff $W(1)=W(\operatorname{len} W)$.
(120) W is closed iff there exists a set x such that W is walk from x to x.
(121) W is closed iff W.reverse() is closed.
(122) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} such that $W_{1}=W_{2}$ and W_{1} is closed holds W_{2} is closed.
(123) W is directed if and only if for every odd natural number n such that $n<$ len W holds $W(n+1)$ joins $W(n)$ to $W(n+2)$ in G.
(124) Suppose W is directed and walk from x to y and e joins y to z in G. Then W.addEdge (e) is directed and W.addEdge (e) is walk from x to z.
(125) For every dwalk W of G and for all natural numbers m, n holds $W \cdot \operatorname{cut}(m, n)$ is directed.
(126) W is non trivial iff $3 \leq \operatorname{len} W$.
(127) W is non trivial iff len $W \neq 1$.
(128) If W.first() $\neq W$.last(), then W is non trivial.
(129) W is trivial iff there exists a vertex v of G such that $W=G$.walkOf (v).
(130) W is trivial iff W.reverse() is trivial.
(131) If W_{2} is trivial, then W_{1}.append $\left(W_{2}\right)=W_{1}$.
(132) For all odd natural numbers m, n such that $m \leq n$ and $n \leq$ len W holds $W \cdot \operatorname{cut}(m, n)$ is trivial iff $m=n$.
(133) If e joins W.last() and x in G, then W.addEdge (e) is non trivial.
(134) If W is non trivial, then there exists an odd natural number l_{2} such that $l_{2}=\operatorname{len} W-2$ and $\left(W \cdot \operatorname{cut}\left(1, l_{2}\right)\right) \cdot \operatorname{addEdge}\left(W\left(l_{2}+1\right)\right)=W$.
(135) If W_{2} is non trivial and W_{2}.edges ()$\subseteq W_{1}$.edges () , then W_{2}.vertices ()\subseteq W_{1}.vertices().
(136) If W is non trivial, then for every vertex v of G such that $v \in W$.vertices() holds v is not isolated.
(137) W is trivial iff W.edges ()$=\emptyset$.
(138) For every walk W_{1} of G_{1} and for every walk W_{2} of G_{2} such that $W_{1}=W_{2}$ and W_{1} is trivial holds W_{2} is trivial.
(139) W is trail-like iff for all even natural numbers m, n such that $1 \leq m$ and $m<n$ and $n \leq$ len W holds $W(m) \neq W(n)$.
(140) If len $W \leq 3$, then W is trail-like.
(141) W is trail-like iff W.reverse() is trail-like.
(142) For every trail W of G and for all natural numbers m, n holds $W \cdot \operatorname{cut}(m, n)$ is trail-like.
(143) For every trail W of G and for every set e such that $e \in$ W.last().edgesInOut() and $e \notin W$.edges() holds W.addEdge (e) is traillike.
(144) For every trail W of G and for every vertex v of G such that $v \in$ W.vertices() and v is endvertex holds $v=W$.first() or $v=W$.last().
(145) For every finite graph G and for every trail W of G holds $\operatorname{len}(W$.edgeSeq()) $\leq G$.size () .
(146) If len $W \leq 3$, then W is path-like.
(147) If for all odd natural numbers m, n such that $m \leq \operatorname{len} W$ and $n \leq \operatorname{len} W$ and $W(m)=W(n)$ holds $m=n$, then W is path-like.
(148) Let W be a path of G. Suppose W is open. Let m, n be odd natural numbers. If $m<n$ and $n \leq \operatorname{len} W$, then $W(m) \neq W(n)$.
(149) W is path-like iff W.reverse() is path-like.
(150) For every path W of G and for all natural numbers m, n holds W.cut (m, n) is path-like.
(151) Let W be a path of G and e, v be sets. Suppose that
(i) e joins $W \cdot l a s t()$ and v in G,
(ii) $e \notin W$.edges(),
(iii) W is trivial or open, and
(iv) for every odd natural number n such that $1<n$ and $n \leq \operatorname{len} W$ holds $W(n) \neq v$.

Then W.addEdge (e) is path-like.
(152) Let W be a path of G and e, v be sets. Suppose e joins W.last() and v in G and $v \notin W$.vertices() and W is trivial or open. Then W.addEdge(e) is path-like.
(153) If for every odd natural number n such that $n \leq$ len W holds $W \cdot \operatorname{find}(W(n))=W \cdot \operatorname{rfind}(W(n))$, then W is path-like.
(154) If for every odd natural number n such that $n \leq$ len W holds $W \cdot \operatorname{rfind}(n)=n$, then W is path-like.
(155) For every finite graph G and for every path W of G holds $\operatorname{len}(W \cdot \operatorname{vertexSeq}()) \leq G \cdot \operatorname{order}()+1$.
(156) Let G be a graph, W be a vertex-distinct walk of G, and e, v be sets. If e joins $W \cdot \operatorname{last}()$ and v in G and $v \notin W$.vertices(), then W.addEdge (e) is vertex-distinct.
(157) If e joins x and x in G, then G.walkOf (x, e, x) is cycle-like.
(158) Suppose e joins x and y in G and $e \in W_{1}$.edges() and W_{1} is cycle-like. Then there exists a walk W_{2} of G such that W_{2} is walk from x to y and $e \notin W_{2}$. $\operatorname{edges}()$.
(159) W is a subwalk of W.
(160) For every walk W_{1} of G and for every subwalk W_{2} of W_{1} holds every subwalk of W_{2} is a subwalk of W_{1}.
(161) If W_{1} is a subwalk of W_{2}, then W_{1} is walk from x to y iff W_{2} is walk from x to y.
(162) If W_{1} is a subwalk of W_{2}, then $W_{1} \cdot \operatorname{first}()=W_{2}$.first($)$ and $W_{1} \cdot \operatorname{last}()=$ W_{2}.last().
(163) If W_{1} is a subwalk of W_{2}, then len $W_{1} \leq$ len W_{2}.
(164) If W_{1} is a subwalk of W_{2}, then W_{1}.edges ()$\subseteq W_{2}$.edges() and $W_{1} \cdot \operatorname{vertices}() \subseteq W_{2}$.vertices () .
(165) Suppose W_{1} is a subwalk of W_{2}. Let m be an odd natural number. Suppose $m \leq$ len W_{1}. Then there exists an odd natural number n such that $m \leq n$ and $n \leq$ len W_{2} and $W_{1}(m)=W_{2}(n)$.
(166) Suppose W_{1} is a subwalk of W_{2}. Let m be an even natural number. Suppose $1 \leq m$ and $m \leq$ len W_{1}. Then there exists an even natural number n such that $m \leq n$ and $n \leq \operatorname{len} W_{2}$ and $W_{1}(m)=W_{2}(n)$.
(167) For every trail W_{1} of G such that W_{1} is non trivial holds there exists a path of W_{1} which is non trivial.
(168) For every graph G_{1} and for every subgraph G_{2} of G_{1} holds every walk of G_{2} is a walk of G_{1}.
(169) Let G_{1} be a graph, G_{2} be a subgraph of G_{1}, and W be a walk of G_{1}. If W is trivial and W.first ()\in the vertices of G_{2}, then W is a walk of G_{2}.
(170) Let G_{1} be a graph, G_{2} be a subgraph of G_{1}, and W be a walk of G_{1}. If W is non trivial and W.edges ()\subseteq the edges of G_{2}, then W is a walk of G_{2}.
(171) Let G_{1} be a graph, G_{2} be a subgraph of G_{1}, and W be a walk of G_{1}. Suppose W.vertices ()\subseteq the vertices of G_{2} and W.edges ()\subseteq the edges of G_{2}. Then W is a walk of G_{2}.
(172) Let G_{1} be a non trivial graph, W be a walk of G_{1}, v be a vertex of G_{1}, and G_{2} be a subgraph of G_{1} with vertex v removed. If $v \notin W$.vertices(), then W is a walk of G_{2}.
(173) Let G_{1} be a graph, W be a walk of G_{1}, e be a set, and G_{2} be a subgraph of G_{1} with edge e removed. If $e \notin W$.edges(), then W is a walk of G_{2}.
(174) Let G_{1} be a graph, G_{2} be a subgraph of G_{1}, and x, y, e be sets. If e joins x and y in G_{2}, then $G_{1} \cdot \operatorname{walkOf}(x, e, y)=G_{2} \cdot \operatorname{walkOf}(x, e, y)$.
(175) Let G_{1} be a graph, G_{2} be a subgraph of G_{1}, W_{1} be a walk of G_{1}, W_{2} be a walk of G_{2}, and e be a set. If $W_{1}=W_{2}$ and $e \in W_{2} \cdot \operatorname{last}()$.edgesInOut(), then W_{1}.addEdge $(e)=W_{2} \cdot \operatorname{addEdge}(e)$.
(176) Let G_{1} be a graph, G_{2} be a subgraph of G_{1}, and W be a walk of G_{2}. Then
(i) if W is closed, then W is a closed walk of G_{1},
(ii) if W is directed, then W is a directed walk of G_{1},
(iii) if W is trivial, then W is a trivial walk of G_{1},
(iv) if W is trail-like, then W is a trail-like walk of G_{1},
(v) if W is path-like, then W is a path-like walk of G_{1}, and
(vi) if W is vertex-distinct, then W is a vertex-distinct walk of G_{1}.
(177) Let G_{1} be a graph, G_{2} be a subgraph of G_{1}, W_{1} be a walk of G_{1}, and W_{2} be a walk of G_{2} such that $W_{1}=W_{2}$. Then
(i) $\quad W_{1}$ is closed iff W_{2} is closed,
(ii) $\quad W_{1}$ is directed iff W_{2} is directed,
(iii) $\quad W_{1}$ is trivial iff W_{2} is trivial,
(iv) $\quad W_{1}$ is trail-like iff W_{2} is trail-like,
(v) $\quad W_{1}$ is path-like iff W_{2} is path-like, and
(vi) $\quad W_{1}$ is vertex-distinct iff W_{2} is vertex-distinct.
(178) If $G_{1}={ }_{G} G_{2}$ and x is a vertex sequence of G_{1}, then x is a vertex sequence of G_{2}.
(179) If $G_{1}={ }_{G} G_{2}$ and x is a edge sequence of G_{1}, then x is a edge sequence of G_{2}.
(180) If $G_{1}={ }_{G} G_{2}$ and x is a walk of G_{1}, then x is a walk of G_{2}.
(181) If $G_{1}={ }_{G} G_{2}$, then $G_{1} \cdot \operatorname{walkOf}(x, e, y)=G_{2} \cdot \operatorname{walkOf}(x, e, y)$.
(182) Let W_{1} be a walk of G_{1} and W_{2} be a walk of G_{2} such that $G_{1}={ }_{G} G_{2}$ and $W_{1}=W_{2}$. Then
(i) $\quad W_{1}$ is closed iff W_{2} is closed,
(ii) $\quad W_{1}$ is directed iff W_{2} is directed,
(iii) $\quad W_{1}$ is trivial iff W_{2} is trivial,
(iv) $\quad W_{1}$ is trail-like iff W_{2} is trail-like,
(v) $\quad W_{1}$ is path-like iff W_{2} is path-like, and
(vi) $\quad W_{1}$ is vertex-distinct iff W_{2} is vertex-distinct.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[8] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics, 13(2):235-252, 2005.
[10] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.
[11] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Josef Urban. Basic facts about inaccessible and measurable cardinals. Formalized Mathematics, 9(2):323-329, 2001.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received February 22, 2005

[^0]: ${ }^{1}$ This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
 ${ }^{2}$ Part of author's MSc work.

[^1]: ${ }^{3}$ The proposition (7) has been removed.

