Some Properties of Rectangles on the Plane ${ }^{1}$

Artur Korniłowicz
University of Białystok

Yasunari Shidama
Shinshu University
Nagano

MML Identifier: TOPREALA.

The terminology and notation used in this paper have been introduced in the following articles: [25], [9], [28], [2], [29], [5], [30], [8], [6], [16], [3], [23], [24], [27], [1], [4], [7], [22], [17], [21], [20], [26], [13], [10], [19], [31], [14], [12], [11], [18], and [15].

1. Real Numbers

We adopt the following rules: i is an integer and a, b, r, s are real numbers. The following propositions are true:
(1) $\operatorname{frac}(r+i)=\operatorname{frac} r$.
(2) If $r \leq a$ and $a<\lfloor r\rfloor+1$, then $\lfloor a\rfloor=\lfloor r\rfloor$.
(3) If $r \leq a$ and $a<\lfloor r\rfloor+1$, then frac $r \leq \operatorname{frac} a$.
(4) If $r<a$ and $a<\lfloor r\rfloor+1$, then frac $r<\operatorname{frac} a$.
(5) If $a \geq\lfloor r\rfloor+1$ and $a \leq r+1$, then $\lfloor a\rfloor=\lfloor r\rfloor+1$.
(6) If $a \geq\lfloor r\rfloor+1$ and $a<r+1$, then frac $a<\operatorname{frac} r$.
(7) If $r \leq a$ and $a<r+1$ and $r \leq b$ and $b<r+1$ and frac $a=$ frac b, then $a=b$.

[^0]
2. Subsets of \mathbb{R}

Let r be a real number and let s be a positive real number. One can verify the following observations:

* $] r, r+s[$ is non empty,
* $\quad r, r+s[$ is non empty,
* $] r, r+s]$ is non empty,
* $[r, r+s]$ is non empty,
* $] r-s, r[$ is non empty,
* $[r-s, r[$ is non empty,
* $] r-s, r]$ is non empty, and
* $[r-s, r]$ is non empty.

Let r be a non positive real number and let s be a positive real number. One can verify the following observations:

* $] r, s[$ is non empty,
* $[r, s[$ is non empty,
* $] r, s]$ is non empty, and
* $[r, s]$ is non empty.

Let r be a negative real number and let s be a non negative real number. One can check the following observations:

* $] r, s$ [is non empty,
* $\quad[r, s[$ is non empty,
* $] r, s]$ is non empty, and
* $[r, s]$ is non empty.

We now state a number of propositions:
(8) If $r \leq a$ and $b<s$, then $[a, b] \subseteq[r, s[$.
(9) If $r<a$ and $b \leq s$, then $[a, b] \subseteq] r, s]$.
(10) If $r<a$ and $b<s$, then $[a, b] \subseteq] r, s[$.
(11) If $r \leq a$ and $b \leq s$, then $[a, b[\subseteq[r, s]$.
(12) If $r \leq a$ and $b \leq s$, then $[a, b[\subseteq[r, s[$.
(13) If $r<a$ and $b \leq s$, then $[a, b[\subseteq] r, s]$.
(14) If $r<a$ and $b \leq s$, then $[a, b[\subseteq] r, s[$.
(15) If $r \leq a$ and $b \leq s$, then $] a, b] \subseteq[r, s]$.
(16) If $r \leq a$ and $b<s$, then $] a, b] \subseteq[r, s[$.
(17) If $r \leq a$ and $b \leq s$, then $] a, b] \subseteq] r, s]$.
(18) If $r \leq a$ and $b<s$, then $] a, b] \subseteq] r, s[$.
(19) If $r \leq a$ and $b \leq s$, then $] a, b[\subseteq[r, s]$.
(20) If $r \leq a$ and $b \leq s$, then $] a, b[\subseteq[r, s[$.
(21) If $r \leq a$ and $b \leq s$, then $] a, b[\subseteq] r, s]$.

3. Functions

The following propositions are true:
(22) For every function f and for all sets x, X such that $x \in \operatorname{dom} f$ and $f(x) \in f^{\circ} X$ and f is one-to-one holds $x \in X$.
(23) For every finite sequence f and for every natural number i such that $i+1 \in \operatorname{dom} f$ holds $i \in \operatorname{dom} f$ or $i=0$.
(24) For all sets x, y, X, Y and for every function f such that $x \neq y$ and $f \in \Pi[x \longmapsto X, y \longmapsto Y]$ holds $f(x) \in X$ and $f(y) \in Y$.
(25) For all sets a, b holds $\langle a, b\rangle=[1 \longmapsto a, 2 \longmapsto b]$.

4. General Topology

Let us note that there exists a topological space which is constituted finite sequences, non empty, and strict.

Let T be a constituted finite sequences topological space. Note that every subspace of T is constituted finite sequences.

One can prove the following proposition
(26) Let T be a non empty topological space, Z be a non empty subspace of T, t be a point of T, z be a point of Z, N be an open neighbourhood of t, and M be a subset of Z. If $t=z$ and $M=N \cap \Omega_{Z}$, then M is an open neighbourhood of z.
Let us note that every topological space which is empty is also discrete and anti-discrete.

Let X be a discrete topological space and let Y be a topological space. Note that every map from X into Y is continuous.

The following proposition is true
(27) Let X be a topological space, Y be a topological structure, and f be a map from X into Y. If f is empty, then f is continuous.
Let X be a topological space and let Y be a topological structure. Observe that every map from X into Y which is empty is also continuous.

One can prove the following propositions:
(28) Let X be a topological structure, Y be a non empty topological structure, and Z be a non empty subspace of Y. Then every map from X into Z is a map from X into Y.
(29) Let S, T be non empty topological spaces, X be a subset of S, Y be a subset of T, f be a continuous map from S into T, and g be a map from $S \upharpoonright X$ into $T \upharpoonright Y$. If $g=f \upharpoonright X$, then g is continuous.
(30) Let S, T be non empty topological spaces, Z be a non empty subspace of T, f be a map from S into T, and g be a map from S into Z. If $f=g$ and f is open, then g is open.
(31) Let S, T be non empty topological spaces, S_{1} be a subset of S, T_{1} be a subset of T, f be a map from S into T, and g be a map from $S\left\lceil S_{1}\right.$ into $T \upharpoonright T_{1}$. If $g=f \upharpoonright S_{1}$ and g is onto and f is open and one-to-one, then g is open.
(32) Let X, Y, Z be non empty topological spaces, f be a map from X into Y, and g be a map from Y into Z. If f is open and g is open, then $g \cdot f$ is open.
(33) Let X, Y be topological spaces, Z be an open subspace of Y, f be a map from X into Y, and g be a map from X into Z. If $f=g$ and g is open, then f is open.
(34) Let S, T be non empty topological spaces and f be a map from S into T. Suppose f is one-to-one and onto. Then f is continuous if and only if f^{-1} is open.
(35) Let S, T be non empty topological spaces and f be a map from S into T. Suppose f is one-to-one and onto. Then f is open if and only if f^{-1} is continuous.
(36) Let S be a topological space and T be a non empty topological space. Then S and T are homeomorphic if and only if the topological structure of S and the topological structure of T are homeomorphic.
(37) Let S, T be non empty topological spaces and f be a map from S into T. Suppose f is one-to-one, onto, continuous, and open. Then f is a homeomorphism.

5. $\mathbb{R}^{\mathbf{1}}$

One can prove the following propositions:
(38) For every partial function f from \mathbb{R} to \mathbb{R} such that $f=\mathbb{R} \longmapsto r$ holds f is continuous on \mathbb{R}.
(39) Let f, f_{1}, f_{2} be partial functions from \mathbb{R} to \mathbb{R}. Suppose that $\operatorname{dom} f=$ $\operatorname{dom} f_{1} \cup \operatorname{dom} f_{2}$ and $\operatorname{dom} f_{1}$ is open and $\operatorname{dom} f_{2}$ is open and f_{1} is continuous on $\operatorname{dom} f_{1}$ and f_{2} is continuous on dom f_{2} and for every set z such that $z \in \operatorname{dom} f_{1}$ holds $f(z)=f_{1}(z)$ and for every set z such that $z \in \operatorname{dom} f_{2}$ holds $f(z)=f_{2}(z)$. Then f is continuous on $\operatorname{dom} f$.
(40) Let x be a point of $\mathbb{R}^{\mathbf{1}}, N$ be a subset of \mathbb{R}, and M be a subset of $\mathbb{R}^{\mathbf{1}}$. Suppose $M=N$. If N is a neighbourhood of x, then M is a neighbourhood of x.
(41) For every point x of $\mathbb{R}^{\mathbf{1}}$ and for every neighbourhood M of x there exists a neighbourhood N of x such that $N \subseteq M$.
(42) Let f be a map from $\mathbb{R}^{\mathbf{1}}$ into $\mathbb{R}^{\mathbf{1}}, g$ be a partial function from \mathbb{R} to \mathbb{R}, and x be a point of $\mathbb{R}^{\mathbf{1}}$. If $f=g$ and g is continuous in x, then f is continuous at x.
(43) Let f be a map from $\mathbb{R}^{\mathbf{1}}$ into $\mathbb{R}^{\mathbf{1}}$ and g be a function from \mathbb{R} into \mathbb{R}. If $f=g$ and g is continuous on \mathbb{R}, then f is continuous.
(44) If $a \leq r$ and $s \leq b$, then $[r, s]$ is a closed subset of $[a, b]_{\mathrm{T}}$.
(45) If $a \leq r$ and $s \leq b$, then $] r, s$ [is an open subset of $[a, b]_{\mathrm{T}}$.
(46) If $a \leq b$ and $a \leq r$, then $] r, b]$ is an open subset of $[a, b]_{\mathrm{T}}$.
(47) If $a \leq b$ and $r \leq b$, then [a, r [is an open subset of $[a, b]_{\mathrm{T}}$.
(48) If $a \leq b$ and $r \leq s$, then the carrier of $\left.:[a, b]_{\mathrm{T}},[r, s]_{\mathrm{T}}:\right]=[[a, b],[r, s]:]$.

6. $\mathcal{E}_{\text {T }}^{2}$

Next we state four propositions:
(49) $[a, b]=[1 \longmapsto a, 2 \longmapsto b]$.
(50) $[a, b](1)=a$ and $[a, b](2)=b$.
(51) ClosedInsideOfRectangle $(a, b, r, s)=\Pi[1 \longmapsto[a, b], 2 \longmapsto[r, s]]$.
(52) If $a \leq b$ and $r \leq s$, then $[a, r] \in$ ClosedInsideOfRectangle (a, b, r, s).

Let a, b, c, d be real numbers. The functor $\operatorname{Trectangle}(a, b, c, d)$ yielding a subspace of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
(Def. 1) Trectangle $(a, b, c, d)=\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright$ ClosedInsideOfRectangle (a, b, c, d).
The following propositions are true:
(53) The carrier of Trectangle $(a, b, r, s)=$ ClosedInsideOfRectangle (a, b, r, s).
(54) If $a \leq b$ and $r \leq s$, then $\operatorname{Trectangle}(a, b, r, s)$ is non empty.

Let a, c be non positive real numbers and let b, d be non negative real numbers. Observe that $\operatorname{Trectangle}(a, b, c, d)$ is non empty.

The map R2Homeo from $\left.: \mathbb{R}^{\mathbf{1}}, \mathbb{R}^{\mathbf{1}}:\right]$ into $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
(Def. 2) For all real numbers x, y holds R2Homeo $(\langle x, y\rangle)=\langle x, y\rangle$.
Next we state several propositions:
(55) For all subsets A, B of \mathbb{R} holds R2Homeo $\left.{ }^{\circ}: A, B:\right]=\Pi[1 \longmapsto A, 2 \longmapsto$ $B]$.
(56) R2Homeo is a homeomorphism.
(57) If $a \leq b$ and $r \leq s$, then R2Homeo the carrier of : $[a, b]_{\mathrm{T}},[r, s]_{\mathrm{T}}:$ is a map from : $\left.:[a, b]_{\mathrm{T}},[r, s]_{\mathrm{T}}:\right]$ into Trectangle (a, b, r, s).
(58) Suppose $a \leq b$ and $r \leq s$. Let h be a map from : $[a, b]_{\mathrm{T}},[r, s]_{\mathrm{T}}:$ into Trectangle (a, b, r, s). If $h=$ R2Homeo the carrier of : $[a, b]_{\mathrm{T}},[r, s]_{\mathrm{T}}:$, then h is a homeomorphism.
(59) If $a \leq b$ and $r \leq s$, then : $\left.[a, b]_{\mathrm{T}},[r, s]_{\mathrm{T}}:\right]$ and $\operatorname{Trectangle}(a, b, r, s)$ are homeomorphic.
(60) If $a \leq b$ and $r \leq s$, then for every subset A of $[a, b]_{\mathrm{T}}$ and for every subset B of $[r, s]_{\mathrm{T}}$ holds $\Pi[1 \longmapsto A, 2 \longmapsto B]$ is a subset of $\operatorname{Trectangle}(a, b, r, s)$.
(61) Suppose $a \leq b$ and $r \leq s$. Let A be an open subset of $[a, b]_{\mathrm{T}}$ and B be an open subset of $[r, s]_{\mathrm{T}}$. Then $\Pi[1 \longmapsto A, 2 \longmapsto B]$ is an open subset of Trectangle (a, b, r, s).
(62) Suppose $a \leq b$ and $r \leq s$. Let A be a closed subset of $[a, b]_{\mathrm{T}}$ and B be a closed subset of $[r, s]_{\mathrm{T}}$. Then $\Pi[1 \longmapsto A, 2 \longmapsto B]$ is a closed subset of Trectangle (a, b, r, s).

References

[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwat. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[12] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[13] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.
[14] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1-16, 1992.
[15] Artur Korniłowicz. The fundamental group of convex subspaces of $\mathcal{E}_{\mathrm{T}}^{n}$. Formalized Mathematics, 12(3):295-299, 2004.
[16] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathemat$i c s, 1(2): 269-272,1990$.
[17] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics, 10(1):21-22, 2002.
[18] Yatsuka Nakamura. General Fashoda meet theorem for unit circle and square. Formalized Mathematics, 11(3):213-224, 2003.
[19] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
[20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[21] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[22] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[23] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[26] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[27] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[30] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[31] Mariusz Żynel and Adam Guzowski. T_{0} topological spaces. Formalized Mathematics, 5(1):75-77, 1996.

Received October 18, 2004

[^0]: ${ }^{1}$ The paper was written during the first author's post-doctoral fellowship granted by the Shinshu University, Japan.

