On the Characteristic and Weight of a Topological Space ${ }^{1}$

Grzegorz Bancerek
Białystok Technical University

Abstract

Summary. We continue Mizar formalization of General Topology according to the book [13] by Engelking. In the article the formalization of Section 1.1 is completed. Namely, the paper includes the formalization of theorems on correspondence of the basis and basis in a point, definitions of the character of a point and a topological space, a neighborhood system, and the weight of a topological space. The formalization is tested with almost discrete topological spaces with infinity.

MML Identifier: TOPGEN_2.

The notation and terminology used here are introduced in the following articles: [22], [26], [21], [16], [27], [9], [28], [10], [7], [3], [18], [5], [4], [12], [24], [1], [2], [25], [17], [29], [11], [14], [8], [19], [20], [23], [6], and [15].

1. Characteristic of Topological Spaces

One can prove the following propositions:
(1) Let T be a non empty topological space, B be a basis of T, and x be an element of T. Then $\{U ; U$ ranges over subsets of $T: x \in U \wedge U \in B\}$ is a basis of x.
(2) Let T be a non empty topological space and B be a many sorted set indexed by T. Suppose that for every element x of T holds $B(x)$ is a basis of x. Then $\bigcup B$ is a basis of T.
Let T be a non empty topological structure and let x be an element of T. The functor $\operatorname{Chi}(x, T)$ yielding a cardinal number is defined as follows:

[^0](Def. 1) There exists a basis B of x such that $\operatorname{Chi}(x, T)=\overline{\bar{B}}$ and for every basis B of x holds Chi $(x, T) \leq \overline{\bar{B}}$.
One can prove the following proposition
(3) Let X be a set. Suppose that for every set a such that $a \in X$ holds a is a cardinal number. Then $\bigcup X$ is a cardinal number.
Let T be a non empty topological structure. The functor $\operatorname{Chi} T$ yields a cardinal number and is defined by the conditions (Def. 2).
(Def. 2)(i) For every point x of T holds $\operatorname{Chi}(x, T) \leq \operatorname{Chi} T$, and
(ii) for every cardinal number M such that for every point x of T holds Chi $(x, T) \leq M$ holds Chi $T \leq M$.
The following three propositions are true:
(4) For every non empty topological structure T holds $\operatorname{Chi} T=$ $\bigcup\{\operatorname{Chi}(x, T): x$ ranges over points of $T\}$.
(5) For every non empty topological structure T and for every point x of T holds $\operatorname{Chi}(x, T) \leq \operatorname{Chi} T$.
(6) For every non empty topological space T holds T is first-countable iff Chi $T \leq \aleph_{0}$.

2. Neighborhood Systems

Let T be a non empty topological space. A many sorted set indexed by T is said to be a neighborhood system of T if:
(Def. 3) For every element x of T holds it (x) is a basis of x.
Let T be a non empty topological space and let N be a neighborhood system of T. Then $\bigcup N$ is a basis of T. Let x be a point of T. Then $N(x)$ is a basis of x.

We now state several propositions:
(7) Let T be a non empty topological space, N be a neighborhood system of T, and x be an element of T. Then $N(x)$ is non empty and for every set U such that $U \in N(x)$ holds $x \in U$.
(8) Let T be a non empty topological space, x, y be points of T, B_{1} be a basis of x, B_{2} be a basis of y, and U be a set. If $x \in U$ and $U \in B_{2}$, then there exists an open subset V of T such that $V \in B_{1}$ and $V \subseteq U$.
(9) Let T be a non empty topological space, x be a point of T, B be a basis of x, and U_{1}, U_{2} be sets. If $U_{1} \in B$ and $U_{2} \in B$, then there exists an open subset V of T such that $V \in B$ and $V \subseteq U_{1} \cap U_{2}$.
(10) Let T be a non empty topological space, A be a subset of T, and x be an element of T. Then $x \in \bar{A}$ if and only if for every basis B of x and for every set U such that $U \in B$ holds U meets A.
(11) Let T be a non empty topological space, A be a subset of T, and x be an element of T. Then $x \in \bar{A}$ if and only if there exists a basis B of x such that for every set U such that $U \in B$ holds U meets A.
Let T be a topological space. Note that there exists a family of subsets of T which is open and non empty.

3. Weights of Topological Spaces

Next we state the proposition
(12) Let T be a non empty topological space and S be an open family of subsets of T. Then there exists an open family G of subsets of T such that $G \subseteq S$ and $\cup G=\bigcup S$ and $\overline{\bar{G}} \leq$ weight T.
Let T be a topological structure. We say that T is finite-weight if and only if:
(Def. 4) weight T is finite.
Let T be a topological structure. We introduce T is infinite-weight as an antonym of T is finite-weight.

Let us mention that every topological structure which is finite is also finiteweight and every topological structure which is infinite-weight is also infinite.

Let us note that there exists a topological space which is finite and non empty.

The following propositions are true:
(13) For every set X holds $\overline{\overline{\text { SmallestPartition }(X)}}=\overline{\bar{X}}$.
(14) Let T be a discrete non empty topological structure. Then SmallestPartition(the carrier of T) is a basis of T and for every basis B of T holds SmallestPartition(the carrier of $T) \subseteq B$.
(15) For every discrete non empty topological structure T holds weight $T=$ $\overline{\text { the carrier of } T}$.
One can verify that there exists a topological space which is infinite-weight.
Next we state several propositions:
(16) Let T be an infinite-weight topological space and B be a basis of T. Then there exists a basis B_{1} of T such that $B_{1} \subseteq B$ and $\overline{\overline{B_{1}}}=\operatorname{weight} T$.
(17) Let T be a finite-weight non empty topological space. Then there exists a basis B_{0} of T and there exists a function f from the carrier of T into the topology of T such that $B_{0}=\operatorname{rng} f$ and for every point x of T holds $x \in f(x)$ and for every open subset U of T such that $x \in U$ holds $f(x) \subseteq U$.
(18) Let T be a topological space, B_{0}, B be bases of T, and f be a function from the carrier of T into the topology of T. Suppose $B_{0}=\operatorname{rng} f$ and for every point x of T holds $x \in f(x)$ and for every open subset U of T such that $x \in U$ holds $f(x) \subseteq U$. Then $B_{0} \subseteq B$.
(19) Let T be a topological space, B_{0} be a basis of T, and f be a function from the carrier of T into the topology of T. Suppose $B_{0}=\operatorname{rng} f$ and for every point x of T holds $x \in f(x)$ and for every open subset U of T such that $x \in U$ holds $f(x) \subseteq U$. Then weight $T=\overline{\overline{B_{0}}}$.
(20) For every non empty topological space T and for every basis B of T there exists a basis B_{1} of T such that $B_{1} \subseteq B$ and $\overline{\overline{B_{1}}}=$ weight T.

4. Example of Almost Discrete Topological Space with Infinity

Let X, x_{0} be sets. The functor $\operatorname{DiscrWithInfin}\left(X, x_{0}\right)$ yielding a strict topological structure is defined by the conditions (Def. 5).
(Def. 5)(i) The carrier of $\operatorname{DiscrWithInfin}\left(X, x_{0}\right)=X$, and
(ii) the topology of DiscrWithInfin $\left(X, x_{0}\right)=\{U ; U$ ranges over subsets of $\left.X: x_{0} \notin U\right\} \cup\left\{F^{c} ; F\right.$ ranges over subsets of $X: F$ is finite $\}$.
Let X, x_{0} be sets. Observe that $\operatorname{Discr} \operatorname{With} \operatorname{Infin}\left(X, x_{0}\right)$ is topological spacelike.

Let X be a non empty set and let x_{0} be a set. One can verify that DiscrWithInfin $\left(X, x_{0}\right)$ is non empty.

Next we state a number of propositions:
(21) For all sets X, x_{0} and for every subset A of $\operatorname{Discr} W \operatorname{ith} \operatorname{Infin}\left(X, x_{0}\right)$ holds A is open iff $x_{0} \notin A$ or A^{c} is finite.
(22) For all sets X, x_{0} and for every subset A of $\left.\operatorname{DiscrWithInfin(~} X, x_{0}\right)$ holds A is closed iff if $x_{0} \in X$, then $x_{0} \in A$ or A is finite.
(23) For all sets X, x_{0}, x such that $x \in X$ holds $\{x\}$ is a closed subset of $\operatorname{DiscrWithInfin}\left(X, x_{0}\right)$.
(24) For all sets X, x_{0}, x such that $x \in X$ and $x \neq x_{0}$ holds $\{x\}$ is an open subset of DiscrWithInfin $\left(X, x_{0}\right)$.
(25) For all sets X, x_{0} such that X is infinite and for every subset U of DiscrWithInfin $\left(X, x_{0}\right)$ such that $U=\left\{x_{0}\right\}$ holds U is not open.
(26) For all sets X, x_{0} and for every subset A of $\operatorname{DiscrWithInfin}\left(X, x_{0}\right)$ such that A is finite holds $\bar{A}=A$.
(27) Let T be a non empty topological space and A be a subset of T. Suppose A is not closed. Let a be a point of T. If $A \cup\{a\}$ is closed, then $\bar{A}=A \cup\{a\}$.
(28) For all sets X, x_{0} such that $x_{0} \in X$ and for every subset A of DiscrWithInfin $\left(X, x_{0}\right)$ such that A is infinite holds $\bar{A}=A \cup\left\{x_{0}\right\}$.
(29) For all sets X, x_{0} and for every subset A of $\operatorname{DiscrWithInfin}\left(X, x_{0}\right)$ such that A^{c} is finite holds $\operatorname{Int} A=A$.
(30) For all sets X, x_{0} such that $x_{0} \in X$ and for every subset A of DiscrWithInfin $\left(X, x_{0}\right)$ such that A^{c} is infinite holds Int $A=A \backslash\left\{x_{0}\right\}$.
(31) For all sets X, x_{0} there exists a basis B_{0} of $\operatorname{DiscrWithInfin}\left(X, x_{0}\right)$ such that $B_{0}=\left(\right.$ SmallestPartition $\left.(X) \backslash\left\{\left\{x_{0}\right\}\right\}\right) \cup\left\{F^{\mathrm{c}} ; F\right.$ ranges over subsets of $X: F$ is finite $\}$.
In the sequel Z denotes an infinite set.
The following proposition is true
(32) $\overline{\overline{\operatorname{Fin} Z}}=\overline{\bar{Z}}$.

In the sequel F is a subset of Z.
One can prove the following propositions:
(33) $\overline{\overline{\left\{F^{c}: F \text { is finite }\right\}}}=\bar{Z}$.
(34) Let X be an infinite set, x_{0} be a set, and B_{0} be a basis of $\operatorname{DiscrWithInfin}\left(X, x_{0}\right)$. If $B_{0}=\left(\operatorname{SmallestPartition}(X) \backslash\left\{\left\{x_{0}\right\}\right\}\right) \cup\left\{F^{c} ; F\right.$ ranges over subsets of $X: F$ is finite $\}$, then $\overline{\overline{B_{0}}}=\overline{\bar{X}}$.
(35) For every infinite set X and for every set x_{0} and for every basis B of DiscrWithInfin $\left(X, x_{0}\right)$ holds $\overline{\bar{X}} \leq \overline{\bar{B}}$.
(36) For every infinite set X and for every set x_{0} holds weight $\operatorname{Discr} W i t h I n f i n\left(X, x_{0}\right)=\overline{\bar{X}}$.
(37) Let X be a non empty set and x_{0} be a set. Then there exists a prebasis B_{0} of DiscrWithInfin $\left(X, x_{0}\right)$ such that $B_{0}=\left(\operatorname{SmallestPartition}(X) \backslash\left\{\left\{x_{0}\right\}\right\}\right) \cup$ $\left\{\{x\}^{\mathrm{c}}: x\right.$ ranges over elements of $\left.X\right\}$.

5. Exercises

Next we state four propositions:
(38) Let T be a topological space, F be a family of subsets of T, and I be a non empty family of subsets of F. Suppose that for every set G such that $G \in I$ holds $F \backslash G$ is finite. Then $\overline{\bigcup F}=\bigcup$ clf $F \cup \bigcap\{\overline{\bigcup G} ; G$ ranges over families of subsets of $T: G \in I\}$.
(39) Let T be a topological space and F be a family of subsets of T. Then $\overline{\bigcup F}=\bigcup \operatorname{clf} F \cup \bigcap\{\bar{\bigcup} ; G$ ranges over families of subsets of $T: G \subseteq$ $F \wedge F \backslash G$ is finite $\}$.
(40) Let X be a set and O be a family of subsets of 2^{X}. Suppose that for every family o of subsets of X such that $o \in O$ holds $\langle X, o\rangle$ is a topological space. Then there exists a family B of subsets of X such that
(i) $B=\operatorname{Intersect}(O)$,
(ii) $\langle X, B\rangle$ is a topological space,
(iii) for every family o of subsets of X such that $o \in O$ holds $\langle X, o\rangle$ is a topological extension of $\langle X, B\rangle$, and
(iv) for every topological space T such that the carrier of $T=X$ and for every family o of subsets of X such that $o \in O$ holds $\langle X, o\rangle$ is a topological extension of T holds $\langle X, B\rangle$ is a topological extension of T.
(41) Let X be a set and O be a family of subsets of 2^{X}. Then there exists a family B of subsets of X such that
(i) $\quad B=\operatorname{UniCl}(\operatorname{FinMeetCl}(\cup O))$,
(ii) $\langle X, B\rangle$ is a topological space,
(iii) for every family o of subsets of X such that $o \in O$ holds $\langle X, B\rangle$ is a topological extension of $\langle X, o\rangle$, and
(iv) for every topological space T such that the carrier of $T=X$ and for every family o of subsets of X such that $o \in O$ holds T is a topological extension of $\langle X, o\rangle$ holds T is a topological extension of $\langle X, B\rangle$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537541, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5(3):405-414, 1996.
[6] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics, 7(1):35-43, 1998.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[8] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Agata Darmochwat. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN Polish Scientific Publishers, Warsaw, 1977.
[14] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.
[15] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
[16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[17] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[18] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[19] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[20] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.
[21] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[23] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289-294, 1997.
[24] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[25] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[29] Mirosław Wysocki and Agata Darmochwat. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received December 10, 2004

[^0]: ${ }^{1}$ This work has been partially supported by the KBN grant 4 T11C 03924.

