# On the Boundary and Derivative of a Set ${ }^{1}$ 

Adam Grabowski<br>University of Białystok


#### Abstract

Summary. This is the first Mizar article in a series aiming at a complete formalization of the textbook "General Topology" by Engelking [7]. We cover the first part of Section 1.3, by defining such notions as a derivative of a subset $A$ of a topological space (usually denoted by $A^{\mathrm{d}}$, but $\operatorname{Der} A$ in our notation), the derivative and the boundary of families of subsets, points of accumulation and isolated points. We also introduce dense-in-itself, perfect and scattered topological spaces and formulate the notion of the density of a space. Some basic properties are given as well as selected exercises from [7].


MML Identifier: TOPGEN_1.

The terminology and notation used in this paper are introduced in the following papers: [13], [15], [1], [2], [12], [3], [5], [10], [16], [9], [14], [4], [6], [8], and [11].

## 1. Preliminaries

Let $T$ be a set, let $A$ be a subset of $T$, and let $B$ be a set. Then $A \backslash B$ is a subset of $T$.

The following three propositions are true:
(1) For every 1-sorted structure $T$ and for all subsets $A, B$ of $T$ holds $A$ meets $B^{\mathrm{c}}$ iff $A \backslash B \neq \emptyset$.
(2) For every 1-sorted structure $T$ holds $T$ is countable iff $\Omega_{T}$ is countable.
(3) For every 1 -sorted structure $T$ holds $T$ is countable iff $\overline{\overline{\Omega_{T}}} \leq \aleph_{0}$.

Let $T$ be a finite 1-sorted structure. Note that $\Omega_{T}$ is finite.
Let us note that every 1 -sorted structure which is finite is also countable.

[^0]Let us observe that there exists a 1-sorted structure which is countable and non empty and there exists a topological space which is countable and non empty.

Let $T$ be a countable 1-sorted structure. Observe that $\Omega_{T}$ is countable.
Let us observe that there exists a topological space which is $T_{1}$ and non empty.

## 2. Boundary of a Subset

Next we state two propositions:
(4) For every topological structure $T$ and for every subset $A$ of $T$ holds $A \cup \Omega_{T}=\Omega_{T}$.
(5) For every topological space $T$ and for every subset $A$ of $T$ holds $\operatorname{Int} A=$ $\overline{A^{\mathrm{c}}}$.

Let $T$ be a topological space and let $F$ be a family of subsets of $T$. The functor $\operatorname{Fr} F$ yielding a family of subsets of $T$ is defined by:
(Def. 1) For every subset $A$ of $T$ holds $A \in \operatorname{Fr} F$ iff there exists a subset $B$ of $T$ such that $A=\operatorname{Fr} B$ and $B \in F$.
The following propositions are true:
(6) For every topological space $T$ and for every family $F$ of subsets of $T$ such that $F=\emptyset$ holds Fr $F=\emptyset$.
(7) Let $T$ be a topological space, $F$ be a family of subsets of $T$, and $A$ be a subset of $T$. If $F=\{A\}$, then $\operatorname{Fr} F=\{\operatorname{Fr} A\}$.
(8) For every topological space $T$ and for all families $F, G$ of subsets of $T$ such that $F \subseteq G$ holds $\operatorname{Fr} F \subseteq \operatorname{Fr} G$.
(9) For every topological space $T$ and for all families $F, G$ of subsets of $T$ holds $\operatorname{Fr}(F \cup G)=\operatorname{Fr} F \cup \operatorname{Fr} G$.
(10) For every topological structure $T$ and for every subset $A$ of $T$ holds $\operatorname{Fr} A=\bar{A} \backslash \operatorname{Int} A$.
(11) Let $T$ be a non empty topological space, $A$ be a subset of $T$, and $p$ be a point of $T$. Then $p \in \operatorname{Fr} A$ if and only if for every subset $U$ of $T$ such that $U$ is open and $p \in U$ holds $A$ meets $U$ and $U \backslash A \neq \emptyset$.
(12) Let $T$ be a non empty topological space, $A$ be a subset of $T$, and $p$ be a point of $T$. Then $p \in \operatorname{Fr} A$ if and only if for every basis $B$ of $p$ and for every subset $U$ of $T$ such that $U \in B$ holds $A$ meets $U$ and $U \backslash A \neq \emptyset$.
(13) Let $T$ be a non empty topological space, $A$ be a subset of $T$, and $p$ be a point of $T$. Then $p \in \operatorname{Fr} A$ if and only if there exists a basis $B$ of $p$ such that for every subset $U$ of $T$ such that $U \in B$ holds $A$ meets $U$ and $U \backslash A \neq \emptyset$.
(14) For every topological space $T$ and for all subsets $A, B$ of $T$ holds $\operatorname{Fr}(A \cap$ $B) \subseteq \bar{A} \cap \operatorname{Fr} B \cup \operatorname{Fr} A \cap \bar{B}$.
(15) For every topological space $T$ and for every subset $A$ of $T$ holds the carrier of $T=\operatorname{Int} A \cup \operatorname{Fr} A \cup \operatorname{Int}\left(A^{\mathrm{c}}\right)$.
(16) For every topological space $T$ and for every subset $A$ of $T$ holds $A$ is open and closed iff $\operatorname{Fr} A=\emptyset$.

## 3. Accumulation Points and Derivative of a Set

Let $T$ be a topological structure, let $A$ be a subset of $T$, and let $x$ be a set. We say that $x$ is an accumulation point of $A$ if and only if:
(Def. 2) $x \in \overline{A \backslash\{x\}}$.
We now state the proposition
(17) Let $T$ be a topological space, $A$ be a subset of $T$, and $x$ be a set. If $x$ is an accumulation point of $A$, then $x$ is a point of $T$.
Let $T$ be a topological structure and let $A$ be a subset of $T$. The functor Der $A$ yielding a subset of $T$ is defined by:
(Def. 3) For every set $x$ such that $x \in$ the carrier of $T$ holds $x \in \operatorname{Der} A$ iff $x$ is an accumulation point of $A$.
Next we state four propositions:
(18) Let $T$ be a non empty topological space, $A$ be a subset of $T$, and $x$ be a set. Then $x \in \operatorname{Der} A$ if and only if $x$ is an accumulation point of $A$.
(19) Let $T$ be a non empty topological space, $A$ be a subset of $T$, and $x$ be a point of $T$. Then $x \in \operatorname{Der} A$ if and only if for every open subset $U$ of $T$ such that $x \in U$ there exists a point $y$ of $T$ such that $y \in A \cap U$ and $x \neq y$.
(20) Let $T$ be a non empty topological space, $A$ be a subset of $T$, and $x$ be a point of $T$. Then $x \in \operatorname{Der} A$ if and only if for every basis $B$ of $x$ and for every subset $U$ of $T$ such that $U \in B$ there exists a point $y$ of $T$ such that $y \in A \cap U$ and $x \neq y$.
(21) Let $T$ be a non empty topological space, $A$ be a subset of $T$, and $x$ be a point of $T$. Then $x \in \operatorname{Der} A$ if and only if there exists a basis $B$ of $x$ such that for every subset $U$ of $T$ such that $U \in B$ there exists a point $y$ of $T$ such that $y \in A \cap U$ and $x \neq y$.

## 4. Isolated Points

Let $T$ be a topological space, let $A$ be a subset of $T$, and let $x$ be a set. We say that $x$ is isolated in $A$ if and only if:
(Def. 4) $\quad x \in A$ and $x$ is not an accumulation point of $A$.
The following three propositions are true:
(22) Let $T$ be a non empty topological space, $A$ be a subset of $T$, and $p$ be a set. Then $p \in A \backslash \operatorname{Der} A$ if and only if $p$ is isolated in $A$.
(23) Let $T$ be a non empty topological space, $A$ be a subset of $T$, and $p$ be a point of $T$. Then $p$ is an accumulation point of $A$ if and only if for every open subset $U$ of $T$ such that $p \in U$ there exists a point $q$ of $T$ such that $q \neq p$ and $q \in A$ and $q \in U$.
(24) Let $T$ be a non empty topological space, $A$ be a subset of $T$, and $p$ be a point of $T$. Then $p$ is isolated in $A$ if and only if there exists an open subset $G$ of $T$ such that $G \cap A=\{p\}$.
Let $T$ be a topological space and let $p$ be a point of $T$. We say that $p$ is isolated if and only if:
(Def. 5) $\quad p$ is isolated in $\Omega_{T}$.
Next we state the proposition
(25) For every non empty topological space $T$ and for every point $p$ of $T$ holds $p$ is isolated iff $\{p\}$ is open.

## 5. Derivative of a Subset-Family

Let $T$ be a topological space and let $F$ be a family of subsets of $T$. The functor Der $F$ yielding a family of subsets of $T$ is defined by:
(Def. 6) For every subset $A$ of $T$ holds $A \in \operatorname{Der} F$ iff there exists a subset $B$ of $T$ such that $A=\operatorname{Der} B$ and $B \in F$.
For simplicity, we follow the rules: $T$ is a non empty topological space, $A$, $B$ are subsets of $T, F, G$ are families of subsets of $T$, and $x$ is a set.

One can prove the following propositions:
(26) If $F=\emptyset$, then $\operatorname{Der} F=\emptyset$.
(27) If $F=\{A\}$, then $\operatorname{Der} F=\{\operatorname{Der} A\}$.
(28) If $F \subseteq G$, then Der $F \subseteq \operatorname{Der} G$.
(29) $\operatorname{Der}(F \cup G)=\operatorname{Der} F \cup \operatorname{Der} G$.
(30) For every non empty topological space $T$ and for every subset $A$ of $T$ holds $\operatorname{Der} A \subseteq \bar{A}$.
(31) For every topological space $T$ and for every subset $A$ of $T$ holds $\bar{A}=$ $A \cup \operatorname{Der} A$.
(32) For every non empty topological space $T$ and for all subsets $A, B$ of $T$ such that $A \subseteq B$ holds Der $A \subseteq \operatorname{Der} B$.
(33) For every non empty topological space $T$ and for all subsets $A, B$ of $T$ holds $\operatorname{Der}(A \cup B)=\operatorname{Der} A \cup \operatorname{Der} B$.
(34) For every non empty topological space $T$ and for every subset $A$ of $T$ such that $T$ is $T_{1}$ holds $\operatorname{Der} \operatorname{Der} A \subseteq \operatorname{Der} A$.
(35) For every topological space $T$ and for every subset $A$ of $T$ such that $T$ is $T_{1}$ holds $\overline{\operatorname{Der} A}=\operatorname{Der} A$.
Let $T$ be a $T_{1}$ non empty topological space and let $A$ be a subset of $T$. Observe that $\operatorname{Der} A$ is closed.

One can prove the following two propositions:
(36) For every non empty topological space $T$ and for every family $F$ of subsets of $T$ holds $\bigcup \operatorname{Der} F \subseteq \operatorname{Der} \bigcup F$.
(37) If $A \subseteq B$ and $x$ is an accumulation point of $A$, then $x$ is an accumulation point of $B$.

## 6. Density-in-itself

Let $T$ be a topological space and let $A$ be a subset of $T$. We say that $A$ is dense-in-itself if and only if:
(Def. 7) $A \subseteq \operatorname{Der} A$.
Let $T$ be a non empty topological space. We say that $T$ is dense-in-itself if and only if:
(Def. 8) $\Omega_{T}$ is dense-in-itself.
Next we state the proposition
(38) If $T$ is $T_{1}$ and $A$ is dense-in-itself, then $\bar{A}$ is dense-in-itself.

Let $T$ be a topological space and let $F$ be a family of subsets of $T$. We say that $F$ is dense-in-itself if and only if:
(Def. 9) For every subset $A$ of $T$ such that $A \in F$ holds $A$ is dense-in-itself.
The following propositions are true:
(39) For every family $F$ of subsets of $T$ such that $F$ is dense-in-itself holds $\bigcup F \subseteq \bigcup$ Der $F$.
(40) If $F$ is dense-in-itself, then $\bigcup F$ is dense-in-itself.
(41) $\operatorname{Fr}\left(\emptyset_{T}\right)=\emptyset$.

Let $T$ be a topological space and let $A$ be an open closed subset of $T$. Note that $\operatorname{Fr} A$ is empty.

Let $T$ be a non empty non discrete topological space. Note that there exists a subset of $T$ which is non open and there exists a subset of $T$ which is non closed.

Let $T$ be a non empty non discrete topological space and let $A$ be a non open subset of $T$. Observe that $\operatorname{Fr} A$ is non empty.

Let $T$ be a non empty non discrete topological space and let $A$ be a non closed subset of $T$. One can check that $\operatorname{Fr} A$ is non empty.

## 7. Perfect Sets

Let $T$ be a topological space and let $A$ be a subset of $T$. We say that $A$ is perfect if and only if:
(Def. 10) $A$ is closed and dense-in-itself.
Let $T$ be a topological space. One can check that every subset of $T$ which is perfect is also closed and dense-in-itself and every subset of $T$ which is closed and dense-in-itself is also perfect.

We now state three propositions:
(42) For every topological space $T$ holds $\operatorname{Der}\left(\emptyset_{T}\right)=\emptyset_{T}$.
(43) For every topological space $T$ and for every subset $A$ of $T$ holds $A$ is perfect iff $\operatorname{Der} A=A$.
(44) For every topological space $T$ holds $\emptyset_{T}$ is perfect.

Let $T$ be a topological space. Note that every subset of $T$ which is empty is also perfect.

Let $T$ be a topological space. Observe that there exists a subset of $T$ which is perfect.

## 8. Scattered Subsets

Let $T$ be a topological space and let $A$ be a subset of $T$. We say that $A$ is scattered if and only if:
(Def. 11) It is not true that there exists a subset $B$ of $T$ such that $B$ is non empty and $B \subseteq A$ and $B$ is dense-in-itself.
Let $T$ be a non empty topological space. Observe that every subset of $T$ which is non empty and scattered is also non dense-in-itself and every subset of $T$ which is dense-in-itself and non empty is also non scattered.

The following proposition is true
(45) For every topological space $T$ holds $\emptyset_{T}$ is scattered.

Let $T$ be a topological space. Note that every subset of $T$ which is empty is also scattered.

One can prove the following proposition
(46) Let $T$ be a non empty topological space. Suppose $T$ is $T_{1}$. Then there exist subsets $A, B$ of $T$ such that $A \cup B=\Omega_{T}$ and $A$ misses $B$ and $A$ is perfect and $B$ is scattered.
Let $T$ be a discrete topological space and let $A$ be a subset of $T$. Observe that $\operatorname{Fr} A$ is empty.

Let $T$ be a discrete topological space. Observe that every subset of $T$ is closed and open.

The following proposition is true
(47) For every discrete topological space $T$ and for every subset $A$ of $T$ holds Der $A=\emptyset$.

Let $T$ be a discrete non empty topological space and let $A$ be a subset of $T$. Note that $\operatorname{Der} A$ is empty.

One can prove the following proposition
(48) For every discrete non empty topological space $T$ and for every subset $A$ of $T$ such that $A$ is dense holds $A=\Omega_{T}$.

## 9. Density of a Topological Space and Separable Spaces

Let $T$ be a topological space. The functor density $T$ yielding a cardinal number is defined by:
(Def. 12) There exists a subset $A$ of $T$ such that $A$ is dense and density $T=\overline{\bar{A}}$ and for every subset $B$ of $T$ such that $B$ is dense holds density $T \leq \overline{\bar{B}}$.
Let $T$ be a topological space. We say that $T$ is separable if and only if:
(Def. 13) density $T \leq \aleph_{0}$.
One can prove the following proposition
(49) Every countable topological space is separable.

Let us observe that every topological space which is countable is also separable.

## 10. Exercises

The following propositions are true:
(50) For every subset $A$ of $\mathbb{R}^{1}$ such that $A=\mathbb{Q}$ holds $A^{\mathrm{c}}=\mathbb{I} \mathbb{Q}$.
(51) For every subset $A$ of $\mathbb{R}^{1}$ such that $A=\mathbb{I} \mathbb{Q}$ holds $A^{c}=\mathbb{Q}$.
(52) For every subset $A$ of $\mathbb{R}^{\mathbf{1}}$ such that $A=\mathbb{Q}$ holds $\operatorname{Int} A=\emptyset$.
(53) For every subset $A$ of $\mathbb{R}^{\mathbf{1}}$ such that $A=\mathbb{Q} \mathbb{Q}$ holds $\operatorname{Int} A=\emptyset$.
(54) For every subset $A$ of $\mathbb{R}^{\mathbf{1}}$ such that $A=\mathbb{Q}$ holds $A$ is dense.
(55) For every subset $A$ of $\mathbb{R}^{1}$ such that $A=\mathbb{I} \mathbb{Q}$ holds $A$ is dense.
(56) For every subset $A$ of $\mathbb{R}^{1}$ such that $A=\mathbb{Q}$ holds $A$ is boundary.
(57) For every subset $A$ of $\mathbb{R}^{\mathbf{1}}$ such that $A=\mathbb{I} \mathbb{Q}$ holds $A$ is boundary.
(58) For every subset $A$ of $\mathbb{R}^{1}$ such that $A=\mathbb{R}$ holds $A$ is non boundary.
(59) There exist subsets $A, B$ of $\mathbb{R}^{1}$ such that $A$ is boundary and $B$ is boundary and $A \cup B$ is non boundary.

## References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[4] Józef Białas and Yatsuka Nakamura. Dyadic numbers and $\mathrm{T}_{4}$ topological spaces. Formalized Mathematics, 5(3):361-366, 1996.
[5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[7] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN Polish Scientific Publishers, Warsaw, 1977.
[8] Adam Grabowski. On the subcontinua of a real line. Formalized Mathematics, 11(3):313322, 2003.
[9] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.
[10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[11] Marta Pruszyńska and Marek Dudzicz. On the isomorphism between finite chains. Formalized Mathematics, 9(2):429-430, 2001.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289-294, 1997.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.


[^0]:    ${ }^{1}$ This work has been partially supported by the KBN grant 4 T11C 03924 and the FP6 IST grant TYPES No. 510996.

