On the Boundary and Derivative of a \mathbf{Set}^1

Adam Grabowski University of Białystok

Summary. This is the first Mizar article in a series aiming at a complete formalization of the textbook "General Topology" by Engelking [7]. We cover the first part of Section 1.3, by defining such notions as a derivative of a subset A of a topological space (usually denoted by A^d , but Der A in our notation), the derivative and the boundary of families of subsets, points of accumulation and isolated points. We also introduce dense-in-itself, perfect and scattered topological spaces and formulate the notion of the density of a space. Some basic properties are given as well as selected exercises from [7].

MML Identifier: TOPGEN_1.

The terminology and notation used in this paper are introduced in the following papers: [13], [15], [1], [2], [12], [3], [5], [10], [16], [9], [14], [4], [6], [8], and [11].

1. Preliminaries

Let T be a set, let A be a subset of T, and let B be a set. Then $A \setminus B$ is a subset of T.

The following three propositions are true:

- (1) For every 1-sorted structure T and for all subsets A, B of T holds A meets B^{c} iff $A \setminus B \neq \emptyset$.
- (2) For every 1-sorted structure T holds T is countable iff Ω_T is countable.
- (3) For every 1-sorted structure T holds T is countable iff $\overline{\Omega_T} \leq \aleph_0$.

Let T be a finite 1-sorted structure. Note that Ω_T is finite.

Let us note that every 1-sorted structure which is finite is also countable.

C 2005 University of Białystok ISSN 1426-2630

 $^{^1{\}rm This}$ work has been partially supported by the KBN grant 4 T11C 039 24 and the FP6 IST grant TYPES No. 510996.

Let us observe that there exists a 1-sorted structure which is countable and non empty and there exists a topological space which is countable and non empty.

Let T be a countable 1-sorted structure. Observe that Ω_T is countable.

Let us observe that there exists a topological space which is T_1 and non empty.

2. Boundary of a Subset

Next we state two propositions:

- (4) For every topological structure T and for every subset A of T holds $A \cup \Omega_T = \Omega_T$.
- (5) For every topological space T and for every subset A of T holds Int $A = \overline{A^{cc}}$.

Let T be a topological space and let F be a family of subsets of T. The functor $\operatorname{Fr} F$ yielding a family of subsets of T is defined by:

(Def. 1) For every subset A of T holds $A \in \operatorname{Fr} F$ iff there exists a subset B of T such that $A = \operatorname{Fr} B$ and $B \in F$.

The following propositions are true:

- (6) For every topological space T and for every family F of subsets of T such that $F = \emptyset$ holds Fr $F = \emptyset$.
- (7) Let T be a topological space, F be a family of subsets of T, and A be a subset of T. If $F = \{A\}$, then Fr $F = \{Fr A\}$.
- (8) For every topological space T and for all families F, G of subsets of T such that $F \subseteq G$ holds $\operatorname{Fr} F \subseteq \operatorname{Fr} G$.
- (9) For every topological space T and for all families F, G of subsets of T holds $Fr(F \cup G) = Fr F \cup Fr G$.
- (10) For every topological structure T and for every subset A of T holds $\operatorname{Fr} A = \overline{A} \setminus \operatorname{Int} A$.
- (11) Let T be a non empty topological space, A be a subset of T, and p be a point of T. Then $p \in \operatorname{Fr} A$ if and only if for every subset U of T such that U is open and $p \in U$ holds A meets U and $U \setminus A \neq \emptyset$.
- (12) Let T be a non empty topological space, A be a subset of T, and p be a point of T. Then $p \in \operatorname{Fr} A$ if and only if for every basis B of p and for every subset U of T such that $U \in B$ holds A meets U and $U \setminus A \neq \emptyset$.
- (13) Let T be a non empty topological space, A be a subset of T, and p be a point of T. Then $p \in \operatorname{Fr} A$ if and only if there exists a basis B of p such that for every subset U of T such that $U \in B$ holds A meets U and $U \setminus A \neq \emptyset$.

- (14) For every topological space T and for all subsets A, B of T holds $\operatorname{Fr}(A \cap B) \subseteq \overline{A} \cap \operatorname{Fr} B \cup \operatorname{Fr} A \cap \overline{B}$.
- (15) For every topological space T and for every subset A of T holds the carrier of $T = \text{Int } A \cup \text{Fr } A \cup \text{Int}(A^c)$.
- (16) For every topological space T and for every subset A of T holds A is open and closed iff $\operatorname{Fr} A = \emptyset$.
 - 3. Accumulation Points and Derivative of a Set

Let T be a topological structure, let A be a subset of T, and let x be a set. We say that x is an accumulation point of A if and only if:

(Def. 2) $x \in \overline{A \setminus \{x\}}$.

We now state the proposition

(17) Let T be a topological space, A be a subset of T, and x be a set. If x is an accumulation point of A, then x is a point of T.

Let T be a topological structure and let A be a subset of T. The functor Der A yielding a subset of T is defined by:

(Def. 3) For every set x such that $x \in$ the carrier of T holds $x \in$ Der A iff x is an accumulation point of A.

Next we state four propositions:

- (18) Let T be a non empty topological space, A be a subset of T, and x be a set. Then $x \in \text{Der } A$ if and only if x is an accumulation point of A.
- (19) Let T be a non empty topological space, A be a subset of T, and x be a point of T. Then $x \in \text{Der } A$ if and only if for every open subset U of T such that $x \in U$ there exists a point y of T such that $y \in A \cap U$ and $x \neq y$.
- (20) Let T be a non empty topological space, A be a subset of T, and x be a point of T. Then $x \in \text{Der } A$ if and only if for every basis B of x and for every subset U of T such that $U \in B$ there exists a point y of T such that $y \in A \cap U$ and $x \neq y$.
- (21) Let T be a non empty topological space, A be a subset of T, and x be a point of T. Then $x \in \text{Der } A$ if and only if there exists a basis B of x such that for every subset U of T such that $U \in B$ there exists a point y of T such that $y \in A \cap U$ and $x \neq y$.

4. Isolated Points

Let T be a topological space, let A be a subset of T, and let x be a set. We say that x is isolated in A if and only if:

ADAM GRABOWSKI

(Def. 4) $x \in A$ and x is not an accumulation point of A.

The following three propositions are true:

- (22) Let T be a non empty topological space, A be a subset of T, and p be a set. Then $p \in A \setminus \text{Der } A$ if and only if p is isolated in A.
- (23) Let T be a non empty topological space, A be a subset of T, and p be a point of T. Then p is an accumulation point of A if and only if for every open subset U of T such that $p \in U$ there exists a point q of T such that $q \neq p$ and $q \in A$ and $q \in U$.
- (24) Let T be a non empty topological space, A be a subset of T, and p be a point of T. Then p is isolated in A if and only if there exists an open subset G of T such that $G \cap A = \{p\}$.

Let T be a topological space and let p be a point of T. We say that p is isolated if and only if:

(Def. 5) p is isolated in Ω_T .

Next we state the proposition

(25) For every non empty topological space T and for every point p of T holds p is isolated iff $\{p\}$ is open.

5. Derivative of a Subset-Family

Let T be a topological space and let F be a family of subsets of T. The functor Der F yielding a family of subsets of T is defined by:

(Def. 6) For every subset A of T holds $A \in \text{Der } F$ iff there exists a subset B of T such that A = Der B and $B \in F$.

For simplicity, we follow the rules: T is a non empty topological space, A, B are subsets of T, F, G are families of subsets of T, and x is a set.

- One can prove the following propositions:
- (26) If $F = \emptyset$, then Der $F = \emptyset$.
- (27) If $F = \{A\}$, then Der $F = \{Der A\}$.
- (28) If $F \subseteq G$, then $\operatorname{Der} F \subseteq \operatorname{Der} G$.
- (29) $\operatorname{Der}(F \cup G) = \operatorname{Der} F \cup \operatorname{Der} G.$
- (30) For every non empty topological space T and for every subset A of T holds $\text{Der } A \subseteq \overline{A}$.
- (31) For every topological space T and for every subset A of T holds $\overline{A} = A \cup \text{Der } A$.
- (32) For every non empty topological space T and for all subsets A, B of T such that $A \subseteq B$ holds $\text{Der } A \subseteq \text{Der } B$.
- (33) For every non empty topological space T and for all subsets A, B of T holds $\text{Der}(A \cup B) = \text{Der} A \cup \text{Der} B$.

142

- (34) For every non empty topological space T and for every subset A of T such that T is T_1 holds Der Der $A \subseteq$ Der A.
- (35) For every topological space T and for every subset A of T such that T is T_1 holds $\overline{\text{Der } A} = \text{Der } A$.

Let T be a T_1 non empty topological space and let A be a subset of T. Observe that Der A is closed.

One can prove the following two propositions:

- (36) For every non empty topological space T and for every family F of subsets of T holds $\bigcup \text{Der } F \subseteq \text{Der } \bigcup F$.
- (37) If $A \subseteq B$ and x is an accumulation point of A, then x is an accumulation point of B.

6. Density-in-itself

Let T be a topological space and let A be a subset of T. We say that A is dense-in-itself if and only if:

(Def. 7) $A \subseteq \text{Der} A$.

Let T be a non empty topological space. We say that T is dense-in-itself if and only if:

(Def. 8) Ω_T is dense-in-itself.

Next we state the proposition

(38) If T is T_1 and A is dense-in-itself, then \overline{A} is dense-in-itself.

Let T be a topological space and let F be a family of subsets of T. We say that F is dense-in-itself if and only if:

- (Def. 9) For every subset A of T such that $A \in F$ holds A is dense-in-itself. The following propositions are true:
 - (39) For every family F of subsets of T such that F is dense-in-itself holds $\bigcup F \subseteq \bigcup \text{Der } F$.
 - (40) If F is dense-in-itself, then $\bigcup F$ is dense-in-itself.
 - (41) $\operatorname{Fr}(\emptyset_T) = \emptyset.$

Let T be a topological space and let A be an open closed subset of T. Note that $\operatorname{Fr} A$ is empty.

Let T be a non empty non discrete topological space. Note that there exists a subset of T which is non open and there exists a subset of T which is non closed.

Let T be a non empty non discrete topological space and let A be a non open subset of T. Observe that $\operatorname{Fr} A$ is non empty.

Let T be a non empty non discrete topological space and let A be a non closed subset of T. One can check that $\operatorname{Fr} A$ is non empty.

ADAM GRABOWSKI

7. Perfect Sets

Let T be a topological space and let A be a subset of T. We say that A is perfect if and only if:

(Def. 10) A is closed and dense-in-itself.

Let T be a topological space. One can check that every subset of T which is perfect is also closed and dense-in-itself and every subset of T which is closed and dense-in-itself is also perfect.

We now state three propositions:

- (42) For every topological space T holds $Der(\emptyset_T) = \emptyset_T$.
- (43) For every topological space T and for every subset A of T holds A is perfect iff Der A = A.
- (44) For every topological space T holds \emptyset_T is perfect.

Let T be a topological space. Note that every subset of T which is empty is also perfect.

Let T be a topological space. Observe that there exists a subset of T which is perfect.

8. Scattered Subsets

Let T be a topological space and let A be a subset of T. We say that A is scattered if and only if:

(Def. 11) It is not true that there exists a subset B of T such that B is non empty and $B \subseteq A$ and B is dense-in-itself.

Let T be a non empty topological space. Observe that every subset of T which is non empty and scattered is also non dense-in-itself and every subset of T which is dense-in-itself and non empty is also non scattered.

The following proposition is true

(45) For every topological space T holds \emptyset_T is scattered.

Let T be a topological space. Note that every subset of T which is empty is also scattered.

One can prove the following proposition

(46) Let T be a non empty topological space. Suppose T is T_1 . Then there exist subsets A, B of T such that $A \cup B = \Omega_T$ and A misses B and A is perfect and B is scattered.

Let T be a discrete topological space and let A be a subset of T. Observe that $\operatorname{Fr} A$ is empty.

Let T be a discrete topological space. Observe that every subset of T is closed and open.

The following proposition is true

(47) For every discrete topological space T and for every subset A of T holds $\text{Der } A = \emptyset$.

Let T be a discrete non empty topological space and let A be a subset of T. Note that Der A is empty.

One can prove the following proposition

(48) For every discrete non empty topological space T and for every subset A of T such that A is dense holds $A = \Omega_T$.

9. Density of a Topological Space and Separable Spaces

Let T be a topological space. The functor density T yielding a cardinal number is defined by:

(Def. 12) There exists a subset A of T such that A is dense and density $T = \overline{\overline{A}}$ and for every subset B of T such that B is dense holds density $T \leq \overline{\overline{B}}$.

Let T be a topological space. We say that T is separable if and only if:

(Def. 13) density $T \leq \aleph_0$.

One can prove the following proposition

(49) Every countable topological space is separable.

Let us observe that every topological space which is countable is also separable.

10. EXERCISES

The following propositions are true:

- (50) For every subset A of \mathbb{R}^1 such that $A = \mathbb{Q}$ holds $A^c = \mathbb{I}\mathbb{Q}$.
- (51) For every subset A of \mathbb{R}^1 such that $A = \mathbb{IQ}$ holds $A^c = \mathbb{Q}$.
- (52) For every subset A of \mathbb{R}^1 such that $A = \mathbb{Q}$ holds Int $A = \emptyset$.
- (53) For every subset A of \mathbb{R}^1 such that $A = \mathbb{IQ}$ holds Int $A = \emptyset$.
- (54) For every subset A of \mathbb{R}^1 such that $A = \mathbb{Q}$ holds A is dense.
- (55) For every subset A of \mathbb{R}^1 such that $A = \mathbb{IQ}$ holds A is dense.
- (56) For every subset A of \mathbb{R}^1 such that $A = \mathbb{Q}$ holds A is boundary.
- (57) For every subset A of \mathbb{R}^1 such that $A = \mathbb{IQ}$ holds A is boundary.
- (58) For every subset A of \mathbb{R}^1 such that $A = \mathbb{R}$ holds A is non boundary.
- (59) There exist subsets A, B of \mathbb{R}^1 such that A is boundary and B is boundary and $A \cup B$ is non boundary.

ADAM GRABOWSKI

References

- Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990. [2]
- [3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
- [4] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T₄ topological spaces. Formalized Mathematics, 5(3):361-366, 1996.
- Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces funda-[6]mental concepts. Formalized Mathematics, 2(4):605-608, 1991.
- [7]Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN -Polish Scientific Publishers, Warsaw, 1977.
- Adam Grabowski. On the subcontinua of a real line. Formalized Mathematics, 11(3):313-[8] 322, 2003.
- [9] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143–149, 1992.
- [10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [11] Marta Pruszyńska and Marek Dudzicz. On the isomorphism between finite chains. Formalized Mathematics, 9(2):429-430, 2001.
- [12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [14] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289–294, 1997.
 [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [16] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received November 8, 2004