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Summary. This is the first Mizar article in a series aiming at a complete

formalization of the textbook “General Topology” by Engelking [7]. We cover

the first part of Section 1.3, by defining such notions as a derivative of a subset

A of a topological space (usually denoted by A
d, but Der A in our notation), the

derivative and the boundary of families of subsets, points of accumulation and

isolated points. We also introduce dense-in-itself, perfect and scattered topo-

logical spaces and formulate the notion of the density of a space. Some basic

properties are given as well as selected exercises from [7].

MML Identifier: TOPGEN 1.

The terminology and notation used in this paper are introduced in the following

papers: [13], [15], [1], [2], [12], [3], [5], [10], [16], [9], [14], [4], [6], [8], and [11].

1. Preliminaries

Let T be a set, let A be a subset of T , and let B be a set. Then A \ B is a

subset of T .

The following three propositions are true:

(1) For every 1-sorted structure T and for all subsets A, B of T holds A

meets Bc iff A \ B 6= ∅.

(2) For every 1-sorted structure T holds T is countable iff ΩT is countable.

(3) For every 1-sorted structure T holds T is countable iff ΩT ≤ ℵ0.

Let T be a finite 1-sorted structure. Note that ΩT is finite.

Let us note that every 1-sorted structure which is finite is also countable.
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Let us observe that there exists a 1-sorted structure which is countable and

non empty and there exists a topological space which is countable and non

empty.

Let T be a countable 1-sorted structure. Observe that ΩT is countable.

Let us observe that there exists a topological space which is T1 and non

empty.

2. Boundary of a Subset

Next we state two propositions:

(4) For every topological structure T and for every subset A of T holds

A ∪ ΩT = ΩT .

(5) For every topological space T and for every subset A of T holds IntA =

Acc.

Let T be a topological space and let F be a family of subsets of T . The

functor FrF yielding a family of subsets of T is defined by:

(Def. 1) For every subset A of T holds A ∈ Fr F iff there exists a subset B of T

such that A = FrB and B ∈ F.

The following propositions are true:

(6) For every topological space T and for every family F of subsets of T

such that F = ∅ holds FrF = ∅.

(7) Let T be a topological space, F be a family of subsets of T , and A be a

subset of T . If F = {A}, then FrF = {Fr A}.

(8) For every topological space T and for all families F , G of subsets of T

such that F ⊆ G holds FrF ⊆ Fr G.

(9) For every topological space T and for all families F , G of subsets of T

holds Fr(F ∪ G) = FrF ∪ Fr G.

(10) For every topological structure T and for every subset A of T holds

Fr A = A \ IntA.

(11) Let T be a non empty topological space, A be a subset of T , and p be a

point of T . Then p ∈ Fr A if and only if for every subset U of T such that

U is open and p ∈ U holds A meets U and U \ A 6= ∅.

(12) Let T be a non empty topological space, A be a subset of T , and p be

a point of T . Then p ∈ Fr A if and only if for every basis B of p and for

every subset U of T such that U ∈ B holds A meets U and U \ A 6= ∅.

(13) Let T be a non empty topological space, A be a subset of T , and p be

a point of T . Then p ∈ Fr A if and only if there exists a basis B of p

such that for every subset U of T such that U ∈ B holds A meets U and

U \ A 6= ∅.



on the boundary and derivative of a set 141

(14) For every topological space T and for all subsets A, B of T holds Fr(A∩

B) ⊆ A ∩ Fr B ∪ Fr A ∩ B.

(15) For every topological space T and for every subset A of T holds the

carrier of T = IntA ∪ Fr A ∪ Int(Ac).

(16) For every topological space T and for every subset A of T holds A is

open and closed iff FrA = ∅.

3. Accumulation Points and Derivative of a Set

Let T be a topological structure, let A be a subset of T , and let x be a set.

We say that x is an accumulation point of A if and only if:

(Def. 2) x ∈ A \ {x}.

We now state the proposition

(17) Let T be a topological space, A be a subset of T , and x be a set. If x is

an accumulation point of A, then x is a point of T .

Let T be a topological structure and let A be a subset of T . The functor

Der A yielding a subset of T is defined by:

(Def. 3) For every set x such that x ∈ the carrier of T holds x ∈ Der A iff x is an

accumulation point of A.

Next we state four propositions:

(18) Let T be a non empty topological space, A be a subset of T , and x be a

set. Then x ∈ Der A if and only if x is an accumulation point of A.

(19) Let T be a non empty topological space, A be a subset of T , and x be

a point of T . Then x ∈ Der A if and only if for every open subset U of

T such that x ∈ U there exists a point y of T such that y ∈ A ∩ U and

x 6= y.

(20) Let T be a non empty topological space, A be a subset of T , and x be

a point of T . Then x ∈ Der A if and only if for every basis B of x and for

every subset U of T such that U ∈ B there exists a point y of T such that

y ∈ A ∩ U and x 6= y.

(21) Let T be a non empty topological space, A be a subset of T , and x be a

point of T . Then x ∈ Der A if and only if there exists a basis B of x such

that for every subset U of T such that U ∈ B there exists a point y of T

such that y ∈ A ∩ U and x 6= y.

4. Isolated Points

Let T be a topological space, let A be a subset of T , and let x be a set. We

say that x is isolated in A if and only if:
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(Def. 4) x ∈ A and x is not an accumulation point of A.

The following three propositions are true:

(22) Let T be a non empty topological space, A be a subset of T , and p be a

set. Then p ∈ A \ Der A if and only if p is isolated in A.

(23) Let T be a non empty topological space, A be a subset of T , and p be a

point of T . Then p is an accumulation point of A if and only if for every

open subset U of T such that p ∈ U there exists a point q of T such that

q 6= p and q ∈ A and q ∈ U.

(24) Let T be a non empty topological space, A be a subset of T , and p be

a point of T . Then p is isolated in A if and only if there exists an open

subset G of T such that G ∩ A = {p}.

Let T be a topological space and let p be a point of T . We say that p is

isolated if and only if:

(Def. 5) p is isolated in ΩT .

Next we state the proposition

(25) For every non empty topological space T and for every point p of T holds

p is isolated iff {p} is open.

5. Derivative of a Subset-Family

Let T be a topological space and let F be a family of subsets of T . The

functor DerF yielding a family of subsets of T is defined by:

(Def. 6) For every subset A of T holds A ∈ Der F iff there exists a subset B of T

such that A = DerB and B ∈ F.

For simplicity, we follow the rules: T is a non empty topological space, A,

B are subsets of T , F , G are families of subsets of T , and x is a set.

One can prove the following propositions:

(26) If F = ∅, then DerF = ∅.

(27) If F = {A}, then DerF = {Der A}.

(28) If F ⊆ G, then DerF ⊆ Der G.

(29) Der(F ∪ G) = DerF ∪ Der G.

(30) For every non empty topological space T and for every subset A of T

holds DerA ⊆ A.

(31) For every topological space T and for every subset A of T holds A =

A ∪ Der A.

(32) For every non empty topological space T and for all subsets A, B of T

such that A ⊆ B holds DerA ⊆ Der B.

(33) For every non empty topological space T and for all subsets A, B of T

holds Der(A ∪ B) = DerA ∪ Der B.
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(34) For every non empty topological space T and for every subset A of T

such that T is T1 holds DerDerA ⊆ Der A.

(35) For every topological space T and for every subset A of T such that T

is T1 holds Der A = DerA.

Let T be a T1 non empty topological space and let A be a subset of T .

Observe that DerA is closed.

One can prove the following two propositions:

(36) For every non empty topological space T and for every family F of

subsets of T holds
⋃

Der F ⊆ Der
⋃

F.

(37) If A ⊆ B and x is an accumulation point of A, then x is an accumulation

point of B.

6. Density-in-itself

Let T be a topological space and let A be a subset of T . We say that A is

dense-in-itself if and only if:

(Def. 7) A ⊆ Der A.

Let T be a non empty topological space. We say that T is dense-in-itself if

and only if:

(Def. 8) ΩT is dense-in-itself.

Next we state the proposition

(38) If T is T1 and A is dense-in-itself, then A is dense-in-itself.

Let T be a topological space and let F be a family of subsets of T . We say

that F is dense-in-itself if and only if:

(Def. 9) For every subset A of T such that A ∈ F holds A is dense-in-itself.

The following propositions are true:

(39) For every family F of subsets of T such that F is dense-in-itself holds
⋃

F ⊆
⋃

Der F.

(40) If F is dense-in-itself, then
⋃

F is dense-in-itself.

(41) Fr(∅T ) = ∅.

Let T be a topological space and let A be an open closed subset of T . Note

that FrA is empty.

Let T be a non empty non discrete topological space. Note that there exists

a subset of T which is non open and there exists a subset of T which is non

closed.

Let T be a non empty non discrete topological space and let A be a non

open subset of T . Observe that FrA is non empty.

Let T be a non empty non discrete topological space and let A be a non

closed subset of T . One can check that FrA is non empty.
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7. Perfect Sets

Let T be a topological space and let A be a subset of T . We say that A is

perfect if and only if:

(Def. 10) A is closed and dense-in-itself.

Let T be a topological space. One can check that every subset of T which

is perfect is also closed and dense-in-itself and every subset of T which is closed

and dense-in-itself is also perfect.

We now state three propositions:

(42) For every topological space T holds Der(∅T ) = ∅T .

(43) For every topological space T and for every subset A of T holds A is

perfect iff Der A = A.

(44) For every topological space T holds ∅T is perfect.

Let T be a topological space. Note that every subset of T which is empty is

also perfect.

Let T be a topological space. Observe that there exists a subset of T which

is perfect.

8. Scattered Subsets

Let T be a topological space and let A be a subset of T . We say that A is

scattered if and only if:

(Def. 11) It is not true that there exists a subset B of T such that B is non empty

and B ⊆ A and B is dense-in-itself.

Let T be a non empty topological space. Observe that every subset of T

which is non empty and scattered is also non dense-in-itself and every subset of

T which is dense-in-itself and non empty is also non scattered.

The following proposition is true

(45) For every topological space T holds ∅T is scattered.

Let T be a topological space. Note that every subset of T which is empty is

also scattered.

One can prove the following proposition

(46) Let T be a non empty topological space. Suppose T is T1. Then there

exist subsets A, B of T such that A ∪ B = ΩT and A misses B and A is

perfect and B is scattered.

Let T be a discrete topological space and let A be a subset of T . Observe

that FrA is empty.

Let T be a discrete topological space. Observe that every subset of T is

closed and open.

The following proposition is true
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(47) For every discrete topological space T and for every subset A of T holds

Der A = ∅.

Let T be a discrete non empty topological space and let A be a subset of T .

Note that DerA is empty.

One can prove the following proposition

(48) For every discrete non empty topological space T and for every subset

A of T such that A is dense holds A = ΩT .

9. Density of a Topological Space and Separable Spaces

Let T be a topological space. The functor density T yielding a cardinal

number is defined by:

(Def. 12) There exists a subset A of T such that A is dense and density T = A

and for every subset B of T such that B is dense holds density T ≤ B.

Let T be a topological space. We say that T is separable if and only if:

(Def. 13) density T ≤ ℵ0.

One can prove the following proposition

(49) Every countable topological space is separable.

Let us observe that every topological space which is countable is also sepa-

rable.

10. Exercises

The following propositions are true:

(50) For every subset A of R1 such that A = Q holds Ac = IQ.

(51) For every subset A of R1 such that A = IQ holds Ac = Q.

(52) For every subset A of R1 such that A = Q holds IntA = ∅.

(53) For every subset A of R1 such that A = IQ holds IntA = ∅.

(54) For every subset A of R1 such that A = Q holds A is dense.

(55) For every subset A of R1 such that A = IQ holds A is dense.

(56) For every subset A of R1 such that A = Q holds A is boundary.

(57) For every subset A of R1 such that A = IQ holds A is boundary.

(58) For every subset A of R1 such that A = R holds A is non boundary.

(59) There exist subsets A, B of R1 such that A is boundary and B is bound-

ary and A ∪ B is non boundary.
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