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Summary. This article is part of a series of Mizar articles which constitute

a formal proof (of a basic version) of Kurt Gödel’s famous completeness theorem

(K. Gödel, “Die Vollständigkeit der Axiome des logischen Funktionenkalküls”,

Monatshefte für Mathematik und Physik 37 (1930), 349-360). The completeness

theorem provides the theoretical basis for a uniform formalization of mathemat-

ics as in the Mizar project. We formalize first-order logic up to the completeness

theorem as in H. D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical Logic,

1984, Springer Verlag New York Inc. The present article establishes that every

substitution can be applied to every formula as in Chapter III par. 8, Defi-

nition 8.1, 8.2 of Ebbinghaus, Flum, Thomas. After that, it is observed that

substitution doesn’t change the number of quantifiers of a formula. Then further

details about substitution and some results about the construction of formulas

are proven.

MML Identifier: SUBSTUT2.

The papers [15], [10], [17], [3], [7], [13], [1], [11], [2], [6], [18], [9], [8], [12], [14],

[16], [5], and [4] provide the terminology and notation for this paper.

1This research was carried out within the project “Wissensformate” and was finan-

cially supported by the Mathematical Institute of the University of Bonn (http://www.-

wissensformate.uni-bonn.de). Preparation of the Mizar code was part of the first author’s

graduate work under the supervision of the second author. The authors thank Jip Veldman

for his work on the final version of this article.

27
c© 2005 University of Bia lystok

ISSN 1426–2630



28 patrick braselmann and peter koepke

1. Further Properties of Substitution

For simplicity, we adopt the following convention: i, k, n denote natural

numbers, p, q, r, s denote elements of CQC-WFF, x, y denote bound variables,

P denotes a k-ary predicate symbol, l, l1 denote variables lists of k, S1 denotes

a CQC-substitution, and S, S2 denote elements of CQC-Sub-WFF.

Next we state several propositions:

(1) For every S1 there exists S such that S1 = VERUM and S2 = S1.

(2) For every S1 there exists S such that S1 = P [l1] and S2 = S1.

(3) Let k, l be natural numbers. Suppose P is a k-ary predicate symbol and

a l-ary predicate symbol. Then k = l.

(4) If for every S1 there exists S such that S1 = p and S2 = S1, then for

every S1 there exists S such that S1 = ¬p and S2 = S1.

(5) Suppose for every S1 there exists S such that S1 = p and S2 = S1 and

for every S1 there exists S such that S1 = q and S2 = S1. Let given S1.

Then there exists S such that S1 = p ∧ q and S2 = S1.

Let us consider p, S1. Then 〈〈p, S1〉〉 is an element of [:WFF, vSUB :].

We now state several propositions:

(6) dom RestrictSub(x,∀xp, S1) misses {x}.

(7) If x ∈ rng RestrictSub(x,∀xp, S1), then S-Bound(〈〈∀xp, S1〉〉) =

xupVar(RestrictSub(x,∀xp,S1),p).

(8) If x /∈ rng RestrictSub(x,∀xp, S1), then S-Bound(〈〈∀xp, S1〉〉) = x.

(9) ExpandSub(x, p,RestrictSub(x,∀xp, S1)) =

(@RestrictSub(x,∀xp, S1))+·x↾S-Bound(〈〈∀xp, S1〉〉).

(10) If S2 = (@RestrictSub(x,∀xp, S1))+·x↾S-Bound(〈〈∀xp, S1〉〉) and S1 = p,

then 〈〈S, x〉〉 is quantifiable and there exists S2 such that S2 = 〈〈∀xp, S1〉〉.

(11) If for every S1 there exists S such that S1 = p and S2 = S1, then for

every S1 there exists S such that S1 = ∀xp and S2 = S1.

(12) For all p, S1 there exists S such that S1 = p and S2 = S1.

Let us consider p, S1. Then 〈〈p, S1〉〉 is an element of CQC-Sub-WFF.

Let us consider x, y. The functor Sbst(x, y) yielding a CQC-substitution is

defined by:

(Def. 1) Sbst(x, y) = x7−→. y.

2. Facts about Substitution and Quantifiers of a Formula

Let us consider p, x, y. The functor p(x, y) yields an element of CQC-WFF

and is defined as follows:

(Def. 2) p(x, y) = CQCSub(〈〈p, Sbst(x, y)〉〉).
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In this article we present several logical schemes. The scheme CQCInd1

concerns a unary predicate P, and states that:

For every p holds P[p]

provided the parameters meet the following conditions:

• For every p such that the number of quantifiers in p = 0 holds

P[p], and

• Let given k. Suppose that for every p such that the number of

quantifiers in p = k holds P[p]. Let given p. If the number of

quantifiers in p = k + 1, then P[p].

The scheme CQCInd2 concerns a unary predicate P, and states that:

For every p holds P[p]

provided the following conditions are met:

• For every p such that the number of quantifiers in p ≤ 0 holds

P[p], and

• Let given k. Suppose that for every p such that the number of

quantifiers in p ≤ k holds P[p]. Let given p. If the number of

quantifiers in p ≤ k + 1, then P[p].

We now state three propositions:

(13) VERUM(x, y) = VERUM .

(14) P [l](x, y) = P [CQC-Subst(l, Sbst(x, y))] and the number of quantifiers

in P [l] = the number of quantifiers in P [l](x, y).

(15) The number of quantifiers in P [l] = the number of quantifiers in

CQCSub(〈〈P [l], S1〉〉).

Let S be an element of QC-Sub-WFF. Then S2 is a CQC-substitution.

Next we state several propositions:

(16) 〈〈¬p, S1〉〉 = SubNot(〈〈p, S1〉〉).

(17)(i) (¬p)(x, y) = ¬p(x, y), and

(ii) if the number of quantifiers in p = the number of quantifiers in p(x,

y), then the number of quantifiers in ¬p = the number of quantifiers in

(¬p)(x, y).

(18) Suppose that for every S1 holds the number of quantifiers in p = the

number of quantifiers in CQCSub(〈〈p, S1〉〉). Let given S1. Then the num-

ber of quantifiers in ¬p = the number of quantifiers in CQCSub(〈〈¬p, S1〉〉).

(19) 〈〈p ∧ q, S1〉〉 = CQCSubAnd(〈〈p, S1〉〉, 〈〈q, S1〉〉).

(20)(i) (p ∧ q)(x, y) = p(x, y) ∧ q(x, y), and

(ii) if the number of quantifiers in p = the number of quantifiers in p(x,

y) and the number of quantifiers in q = the number of quantifiers in q(x,

y), then the number of quantifiers in p ∧ q = the number of quantifiers in

(p ∧ q)(x, y).

(21) Suppose that
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(i) for every S1 holds the number of quantifiers in p = the number of

quantifiers in CQCSub(〈〈p, S1〉〉), and

(ii) for every S1 holds the number of quantifiers in q = the number of

quantifiers in CQCSub(〈〈q, S1〉〉).

Let given S1. Then the number of quantifiers in p ∧ q = the number of

quantifiers in CQCSub(〈〈p ∧ q, S1〉〉).

The function CFQ from CQC-Sub-WFF into vSUB is defined as follows:

(Def. 3) CFQ = QSub ↾CQC-Sub-WFF .

Let us consider p, x, S1. The functor QScope(p, x, S1) yielding a CQC-WFF-

like element of [: QC-Sub-WFF, BoundVar :] is defined by:

(Def. 4) QScope(p, x, S1) = 〈〈〈〈p, CFQ(〈〈∀xp, S1〉〉)〉〉, x〉〉.

Let us consider p, x, S1. The functor Qsc(p, x, S1) yielding a second q.-

component of QScope(p, x, S1) is defined by:

(Def. 5) Qsc(p, x, S1) = S1.

The following propositions are true:

(22) 〈〈∀xp, S1〉〉 = CQCSubAll(QScope(p, x, S1),Qsc(p, x, S1)) and

QScope(p, x, S1) is quantifiable.

(23) Suppose that for every S1 holds the number of quantifiers in p = the

number of quantifiers in CQCSub(〈〈p, S1〉〉). Let given S1. Then the num-

ber of quantifiers in ∀xp = the number of quantifiers in CQCSub(〈〈∀xp,

S1〉〉).

(24) The number of quantifiers in VERUM = the number of quantifiers in

CQCSub(〈〈VERUM, S1〉〉).

(25) For all p, S1 holds the number of quantifiers in p = the number of

quantifiers in CQCSub(〈〈p, S1〉〉).

(26) If p is atomic, then there exist k, P , l1 such that p = P [l1].

The scheme CQCInd3 concerns a unary predicate P, and states that:

For every p such that the number of quantifiers in p = 0 holds

P[p]

provided the following condition is satisfied:

• Let given r, s, x, k, l be a variables list of k, and P be a k-ary

predicate symbol. Then P[VERUM] and P[P [l]] and if P[r], then

P[¬r] and if P[r] and P[s], then P[r ∧ s].

3. Results about the Construction of Formulas

In the sequel F1, F2, F3 denote formulae and L denotes a finite sequence.

Let G, H be formulae. Let us assume that G is a subformula of H. A finite

sequence is called a path from G to H if it satisfies the conditions (Def. 6).
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(Def. 6)(i) 1 ≤ len it,

(ii) it(1) = G,

(iii) it(len it) = H, and

(iv) for every k such that 1 ≤ k and k < len it there exist elements G1, H1

of WFF such that it(k) = G1 and it(k + 1) = H1 and G1 is an immediate

constituent of H1.

The following propositions are true:

(27) Let L be a path from F1 to F2. Suppose F1 is a subformula of F2 and

1 ≤ i and i ≤ len L. Then there exists F3 such that F3 = L(i) and F3 is a

subformula of F2.

(28) For every path L from F1 to p such that F1 is a subformula of p and

1 ≤ i and i ≤ len L holds L(i) is an element of CQC-WFF.

(29) Let L be a path from q to p. Suppose the number of quantifiers in p ≤ n

and q is a subformula of p and 1 ≤ i and i ≤ len L. Then there exists r

such that r = L(i) and the number of quantifiers in r ≤ n.

(30) If the number of quantifiers in p = n and q is a subformula of p, then

the number of quantifiers in q ≤ n.

(31) For all n, p such that for every q such that q is a subformula of p holds

the number of quantifiers in q = n holds n = 0.

(32) Let given p. Suppose that for every q such that q is a subformula of p

and for all x, r holds q 6= ∀xr. Then the number of quantifiers in p = 0.

(33) Let given p. Suppose that for every q such that q is a subformula of p

holds the number of quantifiers in q 6= 1. Then the number of quantifiers

in p = 0.

(34) Suppose 1 ≤ the number of quantifiers in p. Then there exists q such

that q is a subformula of p and the number of quantifiers in q = 1.
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