Spaces of Pencils, Grassmann Spaces, and Generalized Veronese Spaces¹

Adam Naumowicz University of Białystok

Summary. In this paper we construct several examples of partial linear spaces. First, we define two algebraic structures, namely the spaces of k-pencils and Grassmann spaces for vector spaces over an arbitrary field. Then we introduce the notion of generalized Veronese spaces following the definition presented in the paper [8] by Naumowicz and Prażmowski. For all spaces defined, we state the conditions under which they are not degenerated to a single line.

MML Identifier: PENCIL_4.

The terminology and notation used here are introduced in the following articles: [11], [16], [4], [2], [9], [3], [1], [5], [10], [7], [15], [6], [14], [13], [12], and [17].

1. Spaces of k-Pencils

One can prove the following propositions:

- (1) For all natural numbers k, n such that $1 \le k$ and k < n and $3 \le n$ holds k+1 < n or $2 \le k$.
- (2) For every finite set X and for every natural number n such that $n \leq \operatorname{card} X$ there exists a subset Y of X such that $\operatorname{card} Y = n$.
- (3) For every field F and for every vector space V over F holds every subspace of V is a subspace of Ω_V .
- (4) For every field F and for every vector space V over F holds every subspace of Ω_V is a subspace of V.

C 2005 University of Białystok ISSN 1426-2630

 $^{^1{\}rm This}$ work has been partially supported by the KBN grant 4 T11C 039 24OB and the FP6 IST grant TYPES No. 510096.

ADAM NAUMOWICZ

- (5) For every field F and for every vector space V over F and for every subspace W of V holds Ω_W is a subspace of V.
- (6) Let F be a field and V, W be vector spaces over F. If Ω_W is a subspace of V, then W is a subspace of V.

Let F be a field, let V be a vector space over F, and let W_1, W_2 be subspaces of V. The functor segment (W_1, W_2) yielding a subset of Subspaces V is defined by:

- (Def. 1)(i) For every strict subspace W of V holds $W \in \text{segment}(W_1, W_2)$ iff W_1 is a subspace of W and W is a subspace of W_2 if W_1 is a subspace of W_2 ,
 - (ii) segment $(W_1, W_2) = \emptyset$, otherwise.

We now state the proposition

(7) Let F be a field, V be a vector space over F, and W_1, W_2, W_3, W_4 be subspaces of V. Suppose W_1 is a subspace of W_2 and W_3 is a subspace of W_4 and $\Omega_{(W_1)} = \Omega_{(W_3)}$ and $\Omega_{(W_2)} = \Omega_{(W_4)}$. Then segment $(W_1, W_2) =$ segment (W_3, W_4) .

Let F be a field, let V be a vector space over F, and let W_1, W_2 be subspaces of V. The functor pencil (W_1, W_2) yielding a subset of Subspaces V is defined by:

(Def. 2) pencil(W_1, W_2) = segment(W_1, W_2) \ { $\Omega_{(W_1)}, \Omega_{(W_2)}$ }.

Next we state the proposition

(8) Let F be a field, V be a vector space over F, and W_1, W_2, W_3, W_4 be subspaces of V. Suppose W_1 is a subspace of W_2 and W_3 is a subspace of W_4 and $\Omega_{(W_1)} = \Omega_{(W_3)}$ and $\Omega_{(W_2)} = \Omega_{(W_4)}$. Then pencil $(W_1, W_2) =$ pencil (W_3, W_4) .

Let F be a field, let V be a finite dimensional vector space over F, let W_1, W_2 be subspaces of V, and let k be a natural number. The functor pencil (W_1, W_2, k) yielding a subset of $\text{Sub}_k(V)$ is defined by:

(Def. 3) pencil (W_1, W_2, k) = pencil $(W_1, W_2) \cap \operatorname{Sub}_k(V)$.

We now state two propositions:

- (9) Let F be a field, V be a finite dimensional vector space over F, k be a natural number, and W_1, W_2, W be subspaces of V. If $W \in \text{pencil}(W_1, W_2, k)$, then W_1 is a subspace of W and W is a subspace of W_2 .
- (10) Let F be a field, V be a finite dimensional vector space over F, k be a natural number, and W_1 , W_2 , W_3 , W_4 be subspaces of V. Suppose W_1 is a subspace of W_2 and W_3 is a subspace of W_4 and $\Omega_{(W_1)} = \Omega_{(W_3)}$ and $\Omega_{(W_2)} = \Omega_{(W_4)}$. Then pencil $(W_1, W_2, k) = \text{pencil}(W_3, W_4, k)$.

Let F be a field, let V be a finite dimensional vector space over F, and let k be a natural number. k pencils of V yields a family of subsets of $\text{Sub}_k(V)$ and is defined by the condition (Def. 4).

134

- (Def. 4) Let X be a set. Then $X \in k$ pencils of V if and only if there exist subspaces W_1, W_2 of V such that W_1 is a subspace of W_2 and $\dim(W_1) + 1 = k$ and $\dim(W_2) = k + 1$ and $X = \operatorname{pencil}(W_1, W_2, k)$.
 - We now state several propositions:
 - (11) Let F be a field, V be a finite dimensional vector space over F, and k be a natural number. If $1 \le k$ and $k < \dim(V)$, then k pencils of V is non empty.
 - (12) Let F be a field, V be a finite dimensional vector space over F, W_1 , W_2 , P, Q be subspaces of V, and k be a natural number. Suppose $1 \le k$ and $k < \dim(V)$ and $\dim(W_1) + 1 = k$ and $\dim(W_2) = k + 1$ and $P \in \operatorname{pencil}(W_1, W_2, k)$ and $Q \in \operatorname{pencil}(W_1, W_2, k)$ and $P \neq Q$. Then $P \cap Q = \Omega_{(W_1)}$ and $P + Q = \Omega_{(W_2)}$.
 - (13) Let F be a field, V be a finite dimensional vector space over F, and v be a vector of V. If $v \neq 0_V$, then dim $(\text{Lin}(\{v\})) = 1$.
 - (14) Let F be a field, V be a finite dimensional vector space over F, W be a subspace of V, and v be a vector of V. If $v \notin W$, then $\dim(W + \operatorname{Lin}(\{v\})) = \dim(W) + 1$.
 - (15) Let F be a field, V be a finite dimensional vector space over F, W be a subspace of V, and v, u be vectors of V. Suppose $v \notin W$ and $u \notin W$ and $v \neq u$ and $\{v, u\}$ is linearly independent and $W \cap \text{Lin}(\{v, u\}) = \mathbf{0}_V$. Then $\dim(W + \text{Lin}(\{v, u\})) = \dim(W) + 2$.
 - (16) Let F be a field, V be a finite dimensional vector space over F, and W_1, W_2 be subspaces of V. Suppose W_1 is a subspace of W_2 . Let k be a natural number. Suppose $1 \le k$ and $k < \dim(V)$ and $\dim(W_1) + 1 = k$ and $\dim(W_2) = k + 1$. Let v be a vector of V. If $v \in W_2$ and $v \notin W_1$, then $W_1 + \operatorname{Lin}(\{v\}) \in \operatorname{pencil}(W_1, W_2, k)$.
 - (17) Let F be a field, V be a finite dimensional vector space over F, and W_1, W_2 be subspaces of V. Suppose W_1 is a subspace of W_2 . Let k be a natural number. If $1 \le k$ and $k < \dim(V)$ and $\dim(W_1) + 1 = k$ and $\dim(W_2) = k + 1$, then $\operatorname{pencil}(W_1, W_2, k)$ is non trivial.

Let F be a field, let V be a finite dimensional vector space over F, and let k be a natural number. The functor PencilSpace(V, k) yielding a strict topological structure is defined by:

(Def. 5) PencilSpace $(V, k) = \langle Sub_k(V), k \text{ pencils of } V \rangle$.

Next we state several propositions:

- (18) Let F be a field, V be a finite dimensional vector space over F, and k be a natural number. If $k \leq \dim(V)$, then PencilSpace(V, k) is non empty.
- (19) Let F be a field, V be a finite dimensional vector space over F, and k be a natural number. If $1 \le k$ and $k < \dim(V)$, then $\operatorname{PencilSpace}(V, k)$ is non void.

ADAM NAUMOWICZ

- (20) Let F be a field, V be a finite dimensional vector space over F, and k be a natural number. If $1 \le k$ and $k < \dim(V)$ and $3 \le \dim(V)$, then PencilSpace(V, k) is non degenerated.
- (21) Let F be a field, V be a finite dimensional vector space over F, and k be a natural number. If $1 \le k$ and $k < \dim(V)$, then $\operatorname{PencilSpace}(V, k)$ has non trivial blocks.
- (22) Let F be a field, V be a finite dimensional vector space over F, and k be a natural number. If $1 \le k$ and $k < \dim(V)$, then $\operatorname{PencilSpace}(V, k)$ is identifying close blocks.
- (23) Let F be a field, V be a finite dimensional vector space over F, and k be a natural number. If $1 \le k$ and $k < \dim(V)$ and $3 \le \dim(V)$, then PencilSpace(V, k) is a PLS.

2. Grassmann Spaces

Let F be a field, let V be a finite dimensional vector space over F, and let m, n be natural numbers. The functor SubspaceSet(V, m, n) yields a family of subsets of Sub_m(V) and is defined by:

(Def. 6) For every set X holds $X \in \text{SubspaceSet}(V, m, n)$ iff there exists a subspace W of V such that $\dim(W) = n$ and $X = \text{Sub}_m(W)$.

One can prove the following propositions:

- (24) Let F be a field, V be a finite dimensional vector space over F, and m, n be natural numbers. If $n \leq \dim(V)$, then $\operatorname{SubspaceSet}(V, m, n)$ is non empty.
- (25) Let F be a field and W_1 , W_2 be finite dimensional vector spaces over F. If $\Omega_{(W_1)} = \Omega_{(W_2)}$, then for every natural number m holds $\operatorname{Sub}_m(W_1) = \operatorname{Sub}_m(W_2)$.
- (26) Let F be a field, V be a finite dimensional vector space over F, W be a subspace of V, and m be a natural number. If $1 \le m$ and $m \le \dim(V)$ and $\operatorname{Sub}_m(V) \subseteq \operatorname{Sub}_m(W)$, then $\Omega_V = \Omega_W$.

Let F be a field, let V be a finite dimensional vector space over F, and let m, n be natural numbers. The functor GrassmannSpace(V, m, n) yields a strict topological structure and is defined as follows:

(Def. 7) GrassmannSpace $(V, m, n) = \langle Sub_m(V), SubspaceSet(V, m, n) \rangle$.

We now state several propositions:

(27) Let F be a field, V be a finite dimensional vector space over F, and m, n be natural numbers. If $m \leq \dim(V)$, then GrassmannSpace(V, m, n) is non empty.

136

- (28) Let F be a field, V be a finite dimensional vector space over F, and m, n be natural numbers. If $n \leq \dim(V)$, then $\operatorname{GrassmannSpace}(V, m, n)$ is non void.
- (29) Let F be a field, V be a finite dimensional vector space over F, and m, n be natural numbers. If $1 \le m$ and m < n and $n < \dim(V)$, then GrassmannSpace(V, m, n) is non degenerated.
- (30) Let F be a field, V be a finite dimensional vector space over F, and m, n be natural numbers. If $1 \le m$ and m < n and $n \le \dim(V)$, then GrassmannSpace(V, m, n) has non trivial blocks.
- (31) Let F be a field, V be a finite dimensional vector space over F, and m be a natural number. If $1 \leq m$ and $m + 1 \leq \dim(V)$, then GrassmannSpace(V, m, m + 1) is identifying close blocks.
- (32) Let F be a field, V be a finite dimensional vector space over F, and m be a natural number. If $1 \leq m$ and $m + 1 < \dim(V)$, then GrassmannSpace(V, m, m + 1) is a PLS.

3. Veronese Spaces

Let X be a set. The functor $\operatorname{PairSet} X$ is defined as follows:

(Def. 8) For every set z holds $z \in \text{PairSet } X$ iff there exist sets x, y such that $x \in X$ and $y \in X$ and $z = \{x, y\}$.

Let X be a non empty set. One can verify that $\operatorname{PairSet} X$ is non empty.

Let t, X be sets. The functor $\operatorname{PairSet}(t, X)$ is defined as follows:

(Def. 9) For every set z holds $z \in \text{PairSet}(t, X)$ iff there exists a set y such that $y \in X$ and $z = \{t, y\}$.

Let t be a set and let X be a non empty set. One can verify that $\operatorname{PairSet}(t, X)$ is non empty.

Let t be a set and let X be a non trivial set. One can verify that $\operatorname{PairSet}(t, X)$ is non trivial.

Let X be a set and let L be a family of subsets of X. The functor PairSetFamily L yields a family of subsets of PairSet X and is defined as follows:

(Def. 10) For every set S holds $S \in \text{PairSetFamily } L$ iff there exists a set t and there exists a subset l of X such that $t \in X$ and $l \in L$ and S = PairSet(t, l).

Let X be a non empty set and let L be a non empty family of subsets of X. Note that PairSetFamily L is non empty.

Let S be a topological structure. The functor VeroneseSpace S yielding a strict topological structure is defined by:

(Def. 11) VeroneseSpace $S = \langle \text{PairSet} \text{ (the carrier of } S), \text{PairSetFamily} \text{ (the topology of } S) \rangle$.

Let S be a non empty topological structure. One can verify that VeroneseSpace S is non empty.

Let S be a non empty non void topological structure. One can check that VeroneseSpace S is non void.

Let S be a non empty non void non degenerated topological structure. Note that VeroneseSpace S is non degenerated.

Let S be a non empty non void topological structure with non trivial blocks. One can check that VeroneseSpace S has non trivial blocks.

Let S be an identifying close blocks topological structure. Note that VeroneseSpace S is identifying close blocks.

Let S be a PLS. Then VeroneseSpace S is a strict PLS.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
- [4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [7] Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383–390, 2001.
- [8] Adam Naumowicz and Krzysztof Prażmowski. The geometry of generalized Veronese spaces. *Results in Mathematics*, 45:115–136, 2004.
- [9] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [12] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883–885,
- [12] Wojciech A. Trybulec. Dasis of vector space. Formalized Mathematics, 1(5):885–885, 1990.
 [13] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics,
- [15] Wojcieci A. Hybride. Operations on subspaces in vector space. Formatized Mathematics, 1(5):871–876, 1990.
- [14] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865–870, 1990.
- [15] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [17] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423–428, 1996.

Received November 8, 2004