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Summary. In this paper we construct several examples of partial linear

spaces. First, we define two algebraic structures, namely the spaces of k-pencils

and Grassmann spaces for vector spaces over an arbitrary field. Then we intro-

duce the notion of generalized Veronese spaces following the definition presented

in the paper [8] by Naumowicz and Prażmowski. For all spaces defined, we state

the conditions under which they are not degenerated to a single line.

MML Identifier: PENCIL 4.

The terminology and notation used here are introduced in the following articles:

[11], [16], [4], [2], [9], [3], [1], [5], [10], [7], [15], [6], [14], [13], [12], and [17].

1. Spaces of k-Pencils

One can prove the following propositions:

(1) For all natural numbers k, n such that 1 ≤ k and k < n and 3 ≤ n holds

k + 1 < n or 2 ≤ k.

(2) For every finite set X and for every natural number n such that n ≤

cardX there exists a subset Y of X such that cardY = n.

(3) For every field F and for every vector space V over F holds every sub-

space of V is a subspace of ΩV .

(4) For every field F and for every vector space V over F holds every sub-

space of ΩV is a subspace of V .
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(5) For every field F and for every vector space V over F and for every

subspace W of V holds ΩW is a subspace of V .

(6) Let F be a field and V , W be vector spaces over F . If ΩW is a subspace

of V , then W is a subspace of V .

Let F be a field, let V be a vector space over F , and let W1, W2 be subspaces

of V . The functor segment(W1,W2) yielding a subset of SubspacesV is defined

by:

(Def. 1)(i) For every strict subspace W of V holds W ∈ segment(W1,W2) iff W1

is a subspace of W and W is a subspace of W2 if W1 is a subspace of W2,

(ii) segment(W1,W2) = ∅, otherwise.

We now state the proposition

(7) Let F be a field, V be a vector space over F , and W1, W2, W3, W4 be

subspaces of V . Suppose W1 is a subspace of W2 and W3 is a subspace

of W4 and Ω(W1) = Ω(W3) and Ω(W2) = Ω(W4). Then segment(W1,W2) =

segment(W3,W4).

Let F be a field, let V be a vector space over F , and let W1, W2 be subspaces

of V . The functor pencil(W1,W2) yielding a subset of SubspacesV is defined

by:

(Def. 2) pencil(W1,W2) = segment(W1,W2) \ {Ω(W1),Ω(W2)}.

Next we state the proposition

(8) Let F be a field, V be a vector space over F , and W1, W2, W3, W4 be

subspaces of V . Suppose W1 is a subspace of W2 and W3 is a subspace

of W4 and Ω(W1) = Ω(W3) and Ω(W2) = Ω(W4). Then pencil(W1,W2) =

pencil(W3,W4).

Let F be a field, let V be a finite dimensional vector space over F , let W1, W2

be subspaces of V , and let k be a natural number. The functor pencil(W1,W2, k)

yielding a subset of Subk(V ) is defined by:

(Def. 3) pencil(W1,W2, k) = pencil(W1,W2) ∩ Subk(V ).

We now state two propositions:

(9) Let F be a field, V be a finite dimensional vector space over F , k be a nat-

ural number, and W1, W2, W be subspaces of V . If W ∈ pencil(W1,W2, k),

then W1 is a subspace of W and W is a subspace of W2.

(10) Let F be a field, V be a finite dimensional vector space over F , k be a

natural number, and W1, W2, W3, W4 be subspaces of V . Suppose W1

is a subspace of W2 and W3 is a subspace of W4 and Ω(W1) = Ω(W3) and

Ω(W2) = Ω(W4). Then pencil(W1,W2, k) = pencil(W3,W4, k).

Let F be a field, let V be a finite dimensional vector space over F , and let k

be a natural number. k pencils of V yields a family of subsets of Subk(V ) and

is defined by the condition (Def. 4).
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(Def. 4) Let X be a set. Then X ∈ k pencils of V if and only if there exist

subspaces W1, W2 of V such that W1 is a subspace of W2 and dim(W1) +

1 = k and dim(W2) = k + 1 and X = pencil(W1,W2, k).

We now state several propositions:

(11) Let F be a field, V be a finite dimensional vector space over F , and k

be a natural number. If 1 ≤ k and k < dim(V ), then k pencils of V is non

empty.

(12) Let F be a field, V be a finite dimensional vector space over F , W1,

W2, P , Q be subspaces of V , and k be a natural number. Suppose 1 ≤ k

and k < dim(V ) and dim(W1) + 1 = k and dim(W2) = k + 1 and P ∈

pencil(W1,W2, k) and Q ∈ pencil(W1,W2, k) and P 6= Q. Then P ∩ Q =

Ω(W1) and P + Q = Ω(W2).

(13) Let F be a field, V be a finite dimensional vector space over F , and v

be a vector of V . If v 6= 0V , then dim(Lin({v})) = 1.

(14) Let F be a field, V be a finite dimensional vector space over F , W be a

subspace of V , and v be a vector of V . If v /∈ W, then dim(W +Lin({v})) =

dim(W ) + 1.

(15) Let F be a field, V be a finite dimensional vector space over F , W be a

subspace of V , and v, u be vectors of V . Suppose v /∈ W and u /∈ W and

v 6= u and {v, u} is linearly independent and W ∩ Lin({v, u}) = 0V . Then

dim(W + Lin({v, u})) = dim(W ) + 2.

(16) Let F be a field, V be a finite dimensional vector space over F , and

W1, W2 be subspaces of V . Suppose W1 is a subspace of W2. Let k be a

natural number. Suppose 1 ≤ k and k < dim(V ) and dim(W1) + 1 = k

and dim(W2) = k +1. Let v be a vector of V . If v ∈ W2 and v /∈ W1, then

W1 + Lin({v}) ∈ pencil(W1,W2, k).

(17) Let F be a field, V be a finite dimensional vector space over F , and

W1, W2 be subspaces of V . Suppose W1 is a subspace of W2. Let k be

a natural number. If 1 ≤ k and k < dim(V ) and dim(W1) + 1 = k and

dim(W2) = k + 1, then pencil(W1,W2, k) is non trivial.

Let F be a field, let V be a finite dimensional vector space over F , and let k

be a natural number. The functor PencilSpace(V, k) yielding a strict topological

structure is defined by:

(Def. 5) PencilSpace(V, k) = 〈Subk(V ), k pencils of V 〉.

Next we state several propositions:

(18) Let F be a field, V be a finite dimensional vector space over F , and k be

a natural number. If k ≤ dim(V ), then PencilSpace(V, k) is non empty.

(19) Let F be a field, V be a finite dimensional vector space over F , and k

be a natural number. If 1 ≤ k and k < dim(V ), then PencilSpace(V, k) is

non void.
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(20) Let F be a field, V be a finite dimensional vector space over F , and k

be a natural number. If 1 ≤ k and k < dim(V ) and 3 ≤ dim(V ), then

PencilSpace(V, k) is non degenerated.

(21) Let F be a field, V be a finite dimensional vector space over F , and k

be a natural number. If 1 ≤ k and k < dim(V ), then PencilSpace(V, k)

has non trivial blocks.

(22) Let F be a field, V be a finite dimensional vector space over F , and k

be a natural number. If 1 ≤ k and k < dim(V ), then PencilSpace(V, k) is

identifying close blocks.

(23) Let F be a field, V be a finite dimensional vector space over F , and k

be a natural number. If 1 ≤ k and k < dim(V ) and 3 ≤ dim(V ), then

PencilSpace(V, k) is a PLS.

2. Grassmann Spaces

Let F be a field, let V be a finite dimensional vector space over F , and let

m, n be natural numbers. The functor SubspaceSet(V,m, n) yields a family of

subsets of Subm(V ) and is defined by:

(Def. 6) For every set X holds X ∈ SubspaceSet(V,m, n) iff there exists a sub-

space W of V such that dim(W ) = n and X = Subm(W ).

One can prove the following propositions:

(24) Let F be a field, V be a finite dimensional vector space over F , and m,

n be natural numbers. If n ≤ dim(V ), then SubspaceSet(V,m, n) is non

empty.

(25) Let F be a field and W1, W2 be finite dimensional vector spaces over F .

If Ω(W1) = Ω(W2), then for every natural number m holds Subm(W1) =

Subm(W2).

(26) Let F be a field, V be a finite dimensional vector space over F , W be a

subspace of V , and m be a natural number. If 1 ≤ m and m ≤ dim(V )

and Subm(V ) ⊆ Subm(W ), then ΩV = ΩW .

Let F be a field, let V be a finite dimensional vector space over F , and let

m, n be natural numbers. The functor GrassmannSpace(V,m, n) yields a strict

topological structure and is defined as follows:

(Def. 7) GrassmannSpace(V,m, n) = 〈Subm(V ),SubspaceSet(V,m, n)〉.

We now state several propositions:

(27) Let F be a field, V be a finite dimensional vector space over F , and m,

n be natural numbers. If m ≤ dim(V ), then GrassmannSpace(V,m, n) is

non empty.
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(28) Let F be a field, V be a finite dimensional vector space over F , and m,

n be natural numbers. If n ≤ dim(V ), then GrassmannSpace(V,m, n) is

non void.

(29) Let F be a field, V be a finite dimensional vector space over F , and

m, n be natural numbers. If 1 ≤ m and m < n and n < dim(V ), then

GrassmannSpace(V,m, n) is non degenerated.

(30) Let F be a field, V be a finite dimensional vector space over F , and

m, n be natural numbers. If 1 ≤ m and m < n and n ≤ dim(V ), then

GrassmannSpace(V,m, n) has non trivial blocks.

(31) Let F be a field, V be a finite dimensional vector space over F ,

and m be a natural number. If 1 ≤ m and m + 1 ≤ dim(V ), then

GrassmannSpace(V,m, m + 1) is identifying close blocks.

(32) Let F be a field, V be a finite dimensional vector space over F ,

and m be a natural number. If 1 ≤ m and m + 1 < dim(V ), then

GrassmannSpace(V,m, m + 1) is a PLS.

3. Veronese Spaces

Let X be a set. The functor PairSetX is defined as follows:

(Def. 8) For every set z holds z ∈ PairSetX iff there exist sets x, y such that

x ∈ X and y ∈ X and z = {x, y}.

Let X be a non empty set. One can verify that PairSetX is non empty.

Let t, X be sets. The functor PairSet(t, X) is defined as follows:

(Def. 9) For every set z holds z ∈ PairSet(t, X) iff there exists a set y such that

y ∈ X and z = {t, y}.

Let t be a set and let X be a non empty set. One can verify that PairSet(t, X)

is non empty.

Let t be a set and let X be a non trivial set. One can verify that PairSet(t, X)

is non trivial.

Let X be a set and let L be a family of subsets of X. The functor

PairSetFamily L yields a family of subsets of PairSetX and is defined as fol-

lows:

(Def. 10) For every set S holds S ∈ PairSetFamily L iff there exists a set t and

there exists a subset l of X such that t ∈ X and l ∈ L and S = PairSet(t, l).

Let X be a non empty set and let L be a non empty family of subsets of X.

Note that PairSetFamily L is non empty.

Let S be a topological structure. The functor VeroneseSpaceS yielding a

strict topological structure is defined by:

(Def. 11) VeroneseSpace S = 〈PairSet (the carrier of S),PairSetFamily (the topol-

ogy of S)〉.
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Let S be a non empty topological structure. One can verify that

VeroneseSpace S is non empty.

Let S be a non empty non void topological structure. One can check that

VeroneseSpace S is non void.

Let S be a non empty non void non degenerated topological structure. Note

that VeroneseSpace S is non degenerated.

Let S be a non empty non void topological structure with non trivial blocks.

One can check that VeroneseSpace S has non trivial blocks.

Let S be an identifying close blocks topological structure. Note that

VeroneseSpace S is identifying close blocks.

Let S be a PLS. Then VeroneseSpace S is a strict PLS.
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