On the Real Valued Functions ${ }^{1}$

Artur Korniłowicz
University of Bialystok

MML Identifier: PARTFUN3.

The terminology and notation used here have been introduced in the following articles: [9], [12], [1], [10], [11], [13], [14], [2], [3], [4], [6], [5], [8], and [7].

Let r be a real number. Observe that $\frac{r}{r}$ is non negative.
Let r be a real number. Observe that $r \cdot r$ is non negative and $r \cdot r^{-1}$ is non negative.

Let r be a non negative real number. One can check that \sqrt{r} is non negative.
Let r be a positive real number. Observe that \sqrt{r} is positive.
We now state the proposition
(1) For every function f and for every set A such that f is one-to-one and $A \subseteq \operatorname{dom}\left(f^{-1}\right)$ holds $f^{\circ}\left(f^{-1}\right)^{\circ} A=A$.
Let f be a non-empty function. One can verify that $f^{-1}(\{0\})$ is empty.
Let R be a binary relation. We say that R is positive yielding if and only if:
(Def. 1) For every real number r such that $r \in \operatorname{rng} R$ holds $0<r$.
We say that R is negative yielding if and only if:
(Def. 2) For every real number r such that $r \in \operatorname{rng} R$ holds $0>r$.
We say that R is non-positive yielding if and only if:
(Def. 3) For every real number r such that $r \in \operatorname{rng} R$ holds $0 \geq r$.
We say that R is non-negative yielding if and only if:
(Def. 4) For every real number r such that $r \in \operatorname{rng} R$ holds $0 \leq r$.
Let X be a set and let r be a positive real number. Observe that $X \longmapsto r$ is positive yielding.

Let X be a set and let r be a negative real number. Note that $X \longmapsto r$ is negative yielding.

[^0]Let X be a set and let r be a non positive real number. Note that $X \longmapsto r$ is non-positive yielding.

Let X be a set and let r be a non negative real number. Observe that $X \longmapsto r$ is non-negative yielding.

Let X be a non empty set. Note that $X \longmapsto 0$ is non non-empty.
Let us observe that every binary relation which is positive yielding is also non-negative yielding and non-empty and every binary relation which is negative yielding is also non-positive yielding and non-empty.

Let X be a set. One can check that there exists a function from X into \mathbb{R} which is negative yielding and there exists a function from X into \mathbb{R} which is positive yielding.

One can check that there exists a function which is non-empty and realyielding.

We now state two propositions:
(2) For every non-empty real-yielding function f holds $\operatorname{dom}\left(\frac{1}{f}\right)=\operatorname{dom} f$.
(3) Let X be a non empty set, f be a partial function from X to \mathbb{R}, and g be a non-empty partial function from X to \mathbb{R}. Then $\operatorname{dom}\left(\frac{f}{g}\right)=\operatorname{dom} f \cap \operatorname{dom} g$.
Let X be a set and let f, g be non-positive yielding partial functions from X to \mathbb{R}. Observe that $f+g$ is non-positive yielding.

Let X be a set and let f, g be non-negative yielding partial functions from X to \mathbb{R}. Note that $f+g$ is non-negative yielding.

Let X be a set, let f be a positive yielding partial function from X to \mathbb{R}, and let g be a non-negative yielding partial function from X to \mathbb{R}. Observe that $f+g$ is positive yielding.

Let X be a set, let f be a non-negative yielding partial function from X to \mathbb{R}, and let g be a positive yielding partial function from X to \mathbb{R}. One can verify that $f+g$ is positive yielding.

Let X be a set, let f be a non-positive yielding partial function from X to \mathbb{R}, and let g be a negative yielding partial function from X to \mathbb{R}. Note that $f+g$ is negative yielding.

Let X be a set, let f be a negative yielding partial function from X to \mathbb{R}, and let g be a non-positive yielding partial function from X to \mathbb{R}. Note that $f+g$ is negative yielding.

Let X be a set, let f be a non-negative yielding partial function from X to \mathbb{R}, and let g be a non-positive yielding partial function from X to \mathbb{R}. Note that $f-g$ is non-negative yielding.

Let X be a set, let f be a non-positive yielding partial function from X to \mathbb{R}, and let g be a non-negative yielding partial function from X to \mathbb{R}. Observe that $f-g$ is non-positive yielding.

Let X be a set, let f be a positive yielding partial function from X to \mathbb{R}, and let g be a non-positive yielding partial function from X to \mathbb{R}. One can check
that $f-g$ is positive yielding.
Let X be a set, let f be a non-positive yielding partial function from X to \mathbb{R}, and let g be a positive yielding partial function from X to \mathbb{R}. Observe that $f-g$ is negative yielding.

Let X be a set, let f be a negative yielding partial function from X to \mathbb{R}, and let g be a non-negative yielding partial function from X to \mathbb{R}. Note that $f-g$ is negative yielding.

Let X be a set, let f be a non-negative yielding partial function from X to \mathbb{R}, and let g be a negative yielding partial function from X to \mathbb{R}. One can verify that $f-g$ is positive yielding.

Let X be a set and let f, g be non-positive yielding partial functions from X to \mathbb{R}. One can verify that $f g$ is non-negative yielding.

Let X be a set and let f, g be non-negative yielding partial functions from X to \mathbb{R}. Note that $f g$ is non-negative yielding.

Let X be a set, let f be a non-positive yielding partial function from X to \mathbb{R}, and let g be a non-negative yielding partial function from X to \mathbb{R}. One can verify that $f g$ is non-positive yielding.

Let X be a set, let f be a non-negative yielding partial function from X to \mathbb{R}, and let g be a non-positive yielding partial function from X to \mathbb{R}. Observe that $f g$ is non-positive yielding.

Let X be a set, let f be a positive yielding partial function from X to \mathbb{R}, and let g be a negative yielding partial function from X to \mathbb{R}. Note that $f g$ is negative yielding.

Let X be a set, let f be a negative yielding partial function from X to \mathbb{R}, and let g be a positive yielding partial function from X to \mathbb{R}. One can verify that $f g$ is negative yielding.

Let X be a set and let f, g be positive yielding partial functions from X to \mathbb{R}. One can verify that $f g$ is positive yielding.

Let X be a set and let f, g be negative yielding partial functions from X to \mathbb{R}. One can check that $f g$ is positive yielding.

Let X be a set and let f, g be non-empty partial functions from X to \mathbb{R}. Observe that $f g$ is non-empty.

Let X be a set and let f be a partial function from X to \mathbb{R}. Note that $f f$ is non-negative yielding.

Let X be a set, let r be a non positive real number, and let f be a non-positive yielding partial function from X to \mathbb{R}. One can verify that $r f$ is non-negative yielding.

Let X be a set, let r be a non negative real number, and let f be a nonnegative yielding partial function from X to \mathbb{R}. Observe that $r f$ is non-negative yielding.

Let X be a set, let r be a non positive real number, and let f be a nonnegative yielding partial function from X to \mathbb{R}. One can verify that $r f$ is
non-positive yielding.
Let X be a set, let r be a non negative real number, and let f be a nonpositive yielding partial function from X to \mathbb{R}. One can verify that $r f$ is nonpositive yielding.

Let X be a set, let r be a positive real number, and let f be a negative yielding partial function from X to \mathbb{R}. Note that $r f$ is negative yielding.

Let X be a set, let r be a negative real number, and let f be a positive yielding partial function from X to \mathbb{R}. One can check that $r f$ is negative yielding.

Let X be a set, let r be a positive real number, and let f be a positive yielding partial function from X to \mathbb{R}. One can verify that $r f$ is positive yielding.

Let X be a set, let r be a negative real number, and let f be a negative yielding partial function from X to \mathbb{R}. Note that $r f$ is positive yielding.

Let X be a set, let r be a non zero real number, and let f be a non-empty partial function from X to \mathbb{R}. Observe that $r f$ is non-empty.

Let X be a non empty set and let f, g be non-positive yielding partial functions from X to \mathbb{R}. Note that $\frac{f}{g}$ is non-negative yielding.

Let X be a non empty set and let f, g be non-negative yielding partial functions from X to \mathbb{R}. Observe that $\frac{f}{g}$ is non-negative yielding.

Let X be a non empty set, let f be a non-positive yielding partial function from X to \mathbb{R}, and let g be a non-negative yielding partial function from X to \mathbb{R}. Note that $\frac{f}{g}$ is non-positive yielding.

Let X be a non empty set, let f be a non-negative yielding partial function from X to \mathbb{R}, and let g be a non-positive yielding partial function from X to \mathbb{R}. Note that $\frac{f}{g}$ is non-positive yielding.

Let X be a non empty set, let f be a positive yielding partial function from X to \mathbb{R}, and let g be a negative yielding partial function from X to \mathbb{R}. One can verify that $\frac{f}{g}$ is negative yielding.

Let X be a non empty set, let f be a negative yielding partial function from X to \mathbb{R}, and let g be a positive yielding partial function from X to \mathbb{R}. Observe that $\frac{f}{g}$ is negative yielding.

Let X be a non empty set and let f, g be positive yielding partial functions from X to \mathbb{R}. One can check that $\frac{f}{g}$ is positive yielding.

Let X be a non empty set and let f, g be negative yielding partial functions from X to \mathbb{R}. One can check that $\frac{f}{g}$ is positive yielding.

Let X be a non empty set and let f be a partial function from X to \mathbb{R}. Observe that $\frac{f}{f}$ is non-negative yielding.

Let X be a non empty set and let f, g be non-empty partial functions from X to \mathbb{R}. One can verify that $\frac{f}{g}$ is non-empty.

Let X be a set and let f be a non-positive yielding function from X into \mathbb{R}. One can verify that $\operatorname{Inv} f$ is non-positive yielding.

Let X be a set and let f be a non-negative yielding function from X into \mathbb{R}. Observe that $\operatorname{Inv} f$ is non-negative yielding.

Let X be a set and let f be a positive yielding function from X into \mathbb{R}. One can verify that $\operatorname{Inv} f$ is positive yielding.

Let X be a set and let f be a negative yielding function from X into \mathbb{R}. Note that $\operatorname{Inv} f$ is negative yielding.

Let X be a set and let f be a non-empty function from X into \mathbb{R}. Note that $\operatorname{Inv} f$ is non-empty.

Let X be a set and let f be a non-empty function from X into \mathbb{R}. One can verify that $-f$ is non-empty.

Let X be a set and let f be a non-positive yielding function from X into \mathbb{R}. Observe that $-f$ is non-negative yielding.

Let X be a set and let f be a non-negative yielding function from X into \mathbb{R}. One can check that $-f$ is non-positive yielding.

Let X be a set and let f be a positive yielding function from X into \mathbb{R}. Observe that $-f$ is negative yielding.

Let X be a set and let f be a negative yielding function from X into \mathbb{R}. Observe that $-f$ is positive yielding.

Let X be a set and let f be a function from X into \mathbb{R}. Note that $|f|$ is non-negative yielding.

Let X be a set and let f be a non-empty function from X into \mathbb{R}. One can check that $|f|$ is positive yielding.

Let X be a non empty set and let f be a non-positive yielding function from X into \mathbb{R}. Observe that $\frac{1}{f}$ is non-positive yielding.

Let X be a non empty set and let f be a non-negative yielding function from X into \mathbb{R}. Note that $\frac{1}{f}$ is non-negative yielding.

Let X be a non empty set and let f be a positive yielding function from X into \mathbb{R}. One can check that $\frac{1}{f}$ is positive yielding.

Let X be a non empty set and let f be a negative yielding function from X into \mathbb{R}. Note that $\frac{1}{f}$ is negative yielding.

Let X be a non empty set and let f be a non-empty function from X into \mathbb{R}. One can check that $\frac{1}{f}$ is non-empty.

Let f be a real-yielding function. The functor \sqrt{f} yields a function and is defined as follows:
(Def. 5) $\operatorname{dom} \sqrt{f}=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom} \sqrt{f}$ holds $\sqrt{f}(x)=\sqrt{f(x)}$.
Let f be a real-yielding function. Observe that \sqrt{f} is real-yielding.
Let C be a set, let D be a real-membered set, and let f be a partial function from C to D. Then \sqrt{f} is a partial function from C to \mathbb{R}.

Let X be a set and let f be a non-negative yielding function from X into \mathbb{R}. One can check that \sqrt{f} is non-negative yielding.

Let X be a set and let f be a positive yielding function from X into \mathbb{R}. Note that \sqrt{f} is positive yielding.

Let X be a set and let f, g be functions from X into \mathbb{R}. Then $f+g$ is a function from X into \mathbb{R}. Then $f-g$ is a function from X into \mathbb{R}. Then $f g$ is a function from X into \mathbb{R}.

Let X be a set and let f be a function from X into \mathbb{R}. Then $-f$ is a function from X into \mathbb{R}. Then $|f|$ is a function from X into \mathbb{R}. Then \sqrt{f} is a function from X into \mathbb{R}.

Let X be a set, let f be a function from X into \mathbb{R}, and let r be a real number. Then $r f$ is a function from X into \mathbb{R}.

Let X be a set and let f be a non-empty function from X into \mathbb{R}. Then $\frac{1}{f}$ is a function from X into \mathbb{R}.

Let X be a non empty set, let f be a function from X into \mathbb{R}, and let g be a non-empty function from X into \mathbb{R}. Then $\frac{f}{g}$ is a function from X into \mathbb{R}.

In the sequel T is a non empty topological space, f, g are continuous real maps of T, and r is a real number.

Let us consider T, f, g. Then $f+g$ is a continuous real map of T. Then $f-g$ is a continuous real map of T. Then $f g$ is a continuous real map of T.

Let us consider T, f. Then $-f$ is a continuous real map of T.
Let us consider T, f. Then $|f|$ is a continuous real map of T.
Let us consider T. Observe that there exists a real map of T which is positive yielding and continuous and there exists a real map of T which is negative yielding and continuous.

Let us consider T and let f be a non-negative yielding continuous real map of T. Then \sqrt{f} is a continuous real map of T.

Let us consider T, f, r. Then $r f$ is a continuous real map of T.
Let us consider T and let f be a non-empty continuous real map of T. Then $\frac{1}{f}$ is a continuous real map of T.

Let us consider T, f and let g be a non-empty continuous real map of T. Then $\frac{f}{g}$ is a continuous real map of T.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[7] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[8] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[11] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received December 10, 2004

[^0]: ${ }^{1}$ The paper was written during the author's post-doctoral fellowship granted by the Shinshu University, Japan.

