Uniform Continuity of Functions on Normed Complex Linear Spaces

Noboru Endou
Gifu National College of Technology

MML Identifier: NCFCONT2.

The papers [19], [22], [1], [17], [10], [23], [4], [24], [5], [13], [20], [21], [18], [3], [12], [11], [2], [25], [16], [6], [8], [15], [7], [14], and [9] provide the notation and terminology for this paper.

1. Uniform Continuity of Functions on Real and Complex Normed Linear Spaces

For simplicity, we follow the rules: X, X_{1} denote sets, r, s denote real numbers, z denotes a complex number, R_{1} denotes a real normed space, and C_{1}, C_{2}, C_{3} denote complex normed spaces.

Let X be a set, let C_{2}, C_{3} be complex normed spaces, and let f be a partial function from C_{2} to C_{3}. We say that f is uniformly continuous on X if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for all points x_{1}, x_{2} of C_{2} such that $x_{1} \in X$ and $x_{2} \in X$ and $\left\|x_{1}-x_{2}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{2}}\right\|<r$.
Let X be a set, let R_{1} be a real normed space, let C_{1} be a complex normed space, and let f be a partial function from C_{1} to R_{1}. We say that f is uniformly continuous on X if and only if the conditions (Def. 2) are satisfied.
(Def. 2)(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for all points x_{1}, x_{2} of C_{1} such that $x_{1} \in X$ and $x_{2} \in X$ and $\left\|x_{1}-x_{2}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{2}}\right\|<r$.

Let X be a set, let R_{1} be a real normed space, let C_{1} be a complex normed space, and let f be a partial function from R_{1} to C_{1}. We say that f is uniformly continuous on X if and only if the conditions (Def. 3) are satisfied.
(Def. 3)(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for all points x_{1}, x_{2} of R_{1} such that $x_{1} \in X$ and $x_{2} \in X$ and $\left\|x_{1}-x_{2}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{2}}\right\|<r$.
Let X be a set, let C_{1} be a complex normed space, and let f be a partial function from the carrier of C_{1} to \mathbb{C}. We say that f is uniformly continuous on X if and only if the conditions (Def. 4) are satisfied.
(Def. 4)(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for all points x_{1}, x_{2} of C_{1} such that $x_{1} \in X$ and $x_{2} \in X$ and $\left\|x_{1}-x_{2}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{2}}\right|<r$.
Let X be a set, let C_{1} be a complex normed space, and let f be a partial function from the carrier of C_{1} to \mathbb{R}. We say that f is uniformly continuous on X if and only if the conditions (Def. 5) are satisfied.
(Def. 5)(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for all points x_{1}, x_{2} of C_{1} such that $x_{1} \in X$ and $x_{2} \in X$ and $\left\|x_{1}-x_{2}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{2}}\right|<r$.
Let X be a set, let R_{1} be a real normed space, and let f be a partial function from the carrier of R_{1} to \mathbb{C}. We say that f is uniformly continuous on X if and only if the conditions (Def. 6) are satisfied.
(Def. 6)(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for all points x_{1}, x_{2} of R_{1} such that $x_{1} \in X$ and $x_{2} \in X$ and $\left\|x_{1}-x_{2}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{2}}\right|<r$.
Next we state a number of propositions:
(1) Let f be a partial function from C_{2} to C_{3}. Suppose f is uniformly continuous on X and $X_{1} \subseteq X$. Then f is uniformly continuous on X_{1}.
(2) Let f be a partial function from C_{1} to R_{1}. Suppose f is uniformly continuous on X and $X_{1} \subseteq X$. Then f is uniformly continuous on X_{1}.
(3) Let f be a partial function from R_{1} to C_{1}. Suppose f is uniformly continuous on X and $X_{1} \subseteq X$. Then f is uniformly continuous on X_{1}.
(4) Let f_{1}, f_{2} be partial functions from C_{2} to C_{3}. Suppose f_{1} is uniformly continuous on X and f_{2} is uniformly continuous on X_{1}. Then $f_{1}+f_{2}$ is uniformly continuous on $X \cap X_{1}$.
(5) Let f_{1}, f_{2} be partial functions from C_{1} to R_{1}. Suppose f_{1} is uniformly continuous on X and f_{2} is uniformly continuous on X_{1}. Then $f_{1}+f_{2}$ is
uniformly continuous on $X \cap X_{1}$.
(6) Let f_{1}, f_{2} be partial functions from R_{1} to C_{1}. Suppose f_{1} is uniformly continuous on X and f_{2} is uniformly continuous on X_{1}. Then $f_{1}+f_{2}$ is uniformly continuous on $X \cap X_{1}$.
(7) Let f_{1}, f_{2} be partial functions from C_{2} to C_{3}. Suppose f_{1} is uniformly continuous on X and f_{2} is uniformly continuous on X_{1}. Then $f_{1}-f_{2}$ is uniformly continuous on $X \cap X_{1}$.
(8) Let f_{1}, f_{2} be partial functions from C_{1} to R_{1}. Suppose f_{1} is uniformly continuous on X and f_{2} is uniformly continuous on X_{1}. Then $f_{1}-f_{2}$ is uniformly continuous on $X \cap X_{1}$.
(9) Let f_{1}, f_{2} be partial functions from R_{1} to C_{1}. Suppose f_{1} is uniformly continuous on X and f_{2} is uniformly continuous on X_{1}. Then $f_{1}-f_{2}$ is uniformly continuous on $X \cap X_{1}$.
(10) Let f be a partial function from C_{2} to C_{3}. If f is uniformly continuous on X, then $z f$ is uniformly continuous on X.
(11) Let f be a partial function from C_{1} to R_{1}. If f is uniformly continuous on X, then $r f$ is uniformly continuous on X.
(12) Let f be a partial function from R_{1} to C_{1}. If f is uniformly continuous on X, then $z f$ is uniformly continuous on X.
(13) Let f be a partial function from C_{2} to C_{3}. If f is uniformly continuous on X, then $-f$ is uniformly continuous on X.
(14) Let f be a partial function from C_{1} to R_{1}. If f is uniformly continuous on X, then $-f$ is uniformly continuous on X.
(15) Let f be a partial function from R_{1} to C_{1}. If f is uniformly continuous on X, then $-f$ is uniformly continuous on X.
(16) Let f be a partial function from C_{2} to C_{3}. If f is uniformly continuous on X, then $\|f\|$ is uniformly continuous on X.
(17) Let f be a partial function from C_{1} to R_{1}. If f is uniformly continuous on X, then $\|f\|$ is uniformly continuous on X.
(18) Let f be a partial function from R_{1} to C_{1}. If f is uniformly continuous on X, then $\|f\|$ is uniformly continuous on X.
(19) For every partial function f from C_{2} to C_{3} such that f is uniformly continuous on X holds f is continuous on X.
(20) For every partial function f from C_{1} to R_{1} such that f is uniformly continuous on X holds f is continuous on X.
(21) For every partial function f from R_{1} to C_{1} such that f is uniformly continuous on X holds f is continuous on X.
(22) Let f be a partial function from the carrier of C_{1} to \mathbb{C}. If f is uniformly continuous on X, then f is continuous on X.
(23) Let f be a partial function from the carrier of C_{1} to \mathbb{R}. If f is uniformly continuous on X, then f is continuous on X.
(24) Let f be a partial function from the carrier of R_{1} to \mathbb{C}. If f is uniformly continuous on X, then f is continuous on X.
(25) For every partial function f from C_{2} to C_{3} such that f is Lipschitzian on X holds f is uniformly continuous on X.
(26) For every partial function f from C_{1} to R_{1} such that f is Lipschitzian on X holds f is uniformly continuous on X.
(27) For every partial function f from R_{1} to C_{1} such that f is Lipschitzian on X holds f is uniformly continuous on X.
(28) Let f be a partial function from C_{2} to C_{3} and Y be a subset of C_{2}. Suppose Y is compact and f is continuous on Y. Then f is uniformly continuous on Y.
(29) Let f be a partial function from C_{1} to R_{1} and Y be a subset of C_{1}. Suppose Y is compact and f is continuous on Y. Then f is uniformly continuous on Y.
(30) Let f be a partial function from R_{1} to C_{1} and Y be a subset of R_{1}. Suppose Y is compact and f is continuous on Y. Then f is uniformly continuous on Y.
(31) Let f be a partial function from C_{2} to C_{3} and Y be a subset of C_{2}. Suppose $Y \subseteq \operatorname{dom} f$ and Y is compact and f is uniformly continuous on Y. Then $f^{\circ} Y$ is compact.
(32) Let f be a partial function from C_{1} to R_{1} and Y be a subset of C_{1}. Suppose $Y \subseteq \operatorname{dom} f$ and Y is compact and f is uniformly continuous on Y. Then $f^{\circ} Y$ is compact.
(33) Let f be a partial function from R_{1} to C_{1} and Y be a subset of R_{1}. Suppose $Y \subseteq \operatorname{dom} f$ and Y is compact and f is uniformly continuous on Y. Then $f^{\circ} Y$ is compact.
(34) Let f be a partial function from the carrier of C_{1} to \mathbb{R} and Y be a subset of C_{1}. Suppose $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and Y is compact and f is uniformly continuous on Y. Then there exist points x_{1}, x_{2} of C_{1} such that $x_{1} \in Y$ and $x_{2} \in Y$ and $f_{x_{1}}=\sup \left(f^{\circ} Y\right)$ and $f_{x_{2}}=\inf \left(f^{\circ} Y\right)$.
(35) Let f be a partial function from C_{2} to C_{3}. If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is uniformly continuous on X.
(36) Let f be a partial function from C_{1} to R_{1}. If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is uniformly continuous on X.
(37) Let f be a partial function from R_{1} to C_{1}. If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is uniformly continuous on X.

2. Contraction Mapping Principle on Normed Complex Linear Spaces

Let M be a complex Banach space. A function from the carrier of M into the carrier of M is said to be a contraction of M if:
(Def. 7) There exists a real number L such that $0<L$ and $L<1$ and for all points x, y of M holds $\|\operatorname{it}(x)-\operatorname{it}(y)\| \leq L \cdot\|x-y\|$.
One can prove the following four propositions:
(38) For every complex normed space X and for all points x, y of X holds $\|x-y\|>0$ iff $x \neq y$.
(39) For every complex normed space X and for all points x, y of X holds $\|x-y\|=\|y-x\|$.
(40) Let X be a complex Banach space and f be a function from X into X. Suppose f is a contraction of X. Then there exists a point x_{3} of X such that $f\left(x_{3}\right)=x_{3}$ and for every point x of X such that $f(x)=x$ holds $x_{3}=x$.
(41) Let X be a complex Banach space and f be a function from X into X. Given a natural number n_{0} such that $f^{n_{0}}$ is a contraction of X. Then there exists a point x_{3} of X such that $f\left(x_{3}\right)=x_{3}$ and for every point x of X such that $f(x)=x$ holds $x_{3}=x$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Noboru Endou. Algebra of complex vector valued functions. Formalized Mathematics, 12(3):397-401, 2004.
[7] Noboru Endou. Complex Banach space of bounded linear operators. Formalized Mathematics, 12(2):201-209, 2004.
[8] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[9] Noboru Endou. Continuous functions on real and complex normed linear spaces. Formalized Mathematics, 12(3):403-419, 2004.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(1): 35-40,1990$.
[11] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[12] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[13] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathemat$i c s, 1(4): 697-702,1990$.
[14] Takaya Nishiyama, Artur Korniłowicz, and Yasunari Shidama. The uniform continuity of functions on normed linear spaces. Formalized Mathematics, 12(3):277-279, 2004.
[15] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[25] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received October 6, 2004

