Lebesgue Integral of Simple Valued Function ${ }^{1}$

Yasunari Shidama
Shinshu University

Noboru Endou
Gifu National College of Technology

Nagano

Abstract

Summary. In this article, the authors introduce Lebesgue integral of simple valued function.

MML Identifier: MESFUNC3.

The terminology and notation used in this paper are introduced in the following papers: [23], [12], [25], [21], [26], [10], [11], [3], [22], [24], [7], [14], [1], [2], [20], [4], [5], [6], [8], [9], [19], [13], [15], [16], [17], and [18].

1. Integral of Simple Valued Function

The following propositions are true:
(1) Let n, m be natural numbers, a be a function from : $\operatorname{Seg} n, \operatorname{Seg} m$: into \mathbb{R}, and p, q be finite sequences of elements of \mathbb{R}. Suppose that
(i) $\operatorname{dom} p=\operatorname{Seg} n$,
(ii) for every natural number i such that $i \in \operatorname{dom} p$ there exists a finite sequence r of elements of \mathbb{R} such that $\operatorname{dom} r=\operatorname{Seg} m$ and $p(i)=\sum r$ and for every natural number j such that $j \in \operatorname{dom} r$ holds $r(j)=a(\langle i, j\rangle)$,
(iii) $\operatorname{dom} q=\operatorname{Seg} m$, and
(iv) for every natural number j such that $j \in \operatorname{dom} q$ there exists a finite sequence s of elements of \mathbb{R} such that $\operatorname{dom} s=\operatorname{Seg} n$ and $q(j)=\sum s$ and for every natural number i such that $i \in \operatorname{dom} s$ holds $s(i)=a(\langle i, j\rangle)$. Then $\sum p=\sum q$.

[^0](2) Let F be a finite sequence of elements of $\overline{\mathbb{R}}$ and f be a finite sequence of elements of \mathbb{R}. If $F=f$, then $\sum F=\sum f$.
(3) Let X be a non empty set, S be a σ-field of subsets of X, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S. Then there exists a finite sequence F of separated subsets of S and there exists a finite sequence a of elements of $\overline{\mathbb{R}}$ such that
(i) $\operatorname{dom} f=\bigcup \operatorname{rng} F$,
(ii) $\operatorname{dom} F=\operatorname{dom} a$,
(iii) for every natural number n such that $n \in \operatorname{dom} F$ and for every set x such that $x \in F(n)$ holds $f(x)=a(n)$, and
(iv) for every set x such that $x \in \operatorname{dom} f$ there exists a finite sequence a_{1} of elements of $\overline{\mathbb{R}}$ such that $\operatorname{dom} a_{1}=\operatorname{dom} a$ and for every natural number n such that $n \in \operatorname{dom} a_{1}$ holds $a_{1}(n)=a(n) \cdot \chi_{F(n), X}(x)$.
(4) Let X be a set and F be a finite sequence of elements of X. Then F is disjoint valued if and only if for all natural numbers i, j such that $i \in \operatorname{dom} F$ and $j \in \operatorname{dom} F$ and $i \neq j$ holds $F(i)$ misses $F(j)$.
(5) Let X be a non empty set, A be a set, S be a σ-field of subsets of X, F be a finite sequence of separated subsets of S, and G be a finite sequence of elements of S. Suppose $\operatorname{dom} G=\operatorname{dom} F$ and for every natural number i such that $i \in \operatorname{dom} G$ holds $G(i)=A \cap F(i)$. Then G is a finite sequence of separated subsets of S.
(6) Let X be a non empty set, A be a set, and F, G be finite sequences of elements of X. Suppose $\operatorname{dom} G=\operatorname{dom} F$ and for every natural number i such that $i \in \operatorname{dom} G$ holds $G(i)=A \cap F(i)$. Then $\bigcup \operatorname{rng} G=A \cap \bigcup \operatorname{rng} F$.
(7) Let X be a set, F be a finite sequence of elements of X, and i be a natural number. If $i \in \operatorname{dom} F$, then $F(i) \subseteq \bigcup \operatorname{rng} F$ and $F(i) \cap \bigcup \operatorname{rng} F=F(i)$.
(8) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and F be a finite sequence of separated subsets of S. Then $\operatorname{dom} F=\operatorname{dom}(M \cdot F)$.
(9) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and F be a finite sequence of separated subsets of S. Then $M(\bigcup \operatorname{rng} F)=\sum(M \cdot F)$.
(10) Let F, G be finite sequences of elements of $\overline{\mathbb{R}}$ and a be an extended real number. Suppose that
(i) $\quad a \neq+\infty$ and $a \neq-\infty$ or for every natural number i such that $i \in \operatorname{dom} F$ holds $F(i)<0_{\overline{\mathbb{R}}}$ or for every natural number i such that $i \in \operatorname{dom} F$ holds $0_{\overline{\mathbb{R}}}<F(i)$,
(ii) $\operatorname{dom} F=\operatorname{dom} G$, and
(iii) for every natural number i such that $i \in \operatorname{dom} G$ holds $G(i)=a \cdot F(i)$. Then $\sum G=a \cdot \sum F$.
(11) Every finite sequence of elements of \mathbb{R} is a finite sequence of elements of $\overline{\mathbb{R}}$.

Let X be a non empty set, let S be a σ-field of subsets of X, let f be a partial function from X to $\overline{\mathbb{R}}$, let F be a finite sequence of separated subsets of S, and let a be a finite sequence of elements of $\overline{\mathbb{R}}$. We say that F and a are re-presentation of f if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) $\quad \operatorname{dom} f=\bigcup \operatorname{rng} F$,
(ii) $\operatorname{dom} F=\operatorname{dom} a$, and
(iii) for every natural number n such that $n \in \operatorname{dom} F$ and for every set x such that $x \in F(n)$ holds $f(x)=a(n)$.
One can prove the following propositions:
(12) Let X be a non empty set, S be a σ-field of subsets of X, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S. Then there exists a finite sequence F of separated subsets of S and there exists a finite sequence a of elements of $\overline{\mathbb{R}}$ such that F and a are re-presentation of f.
(13) Let X be a non empty set, S be a σ-field of subsets of X, and F be a finite sequence of separated subsets of S. Then there exists a finite sequence G of separated subsets of S such that
(i) $\bigcup \operatorname{rng} F=\bigcup \operatorname{rng} G$, and
(ii) for every natural number n such that $n \in \operatorname{dom} G$ holds $G(n) \neq \emptyset$ and there exists a natural number m such that $m \in \operatorname{dom} F$ and $F(m)=G(n)$.
(14) Let X be a non empty set, S be a σ-field of subsets of X, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and for every set x such that $x \in \operatorname{dom} f$ holds $0_{\overline{\mathbb{R}}} \leq f(x)$. Then there exists a finite sequence F of separated subsets of S and there exists a finite sequence a of elements of $\overline{\mathbb{R}}$ such that
(i) $\quad F$ and a are re-presentation of f,
(ii) $a(1)=0_{\overline{\mathbb{R}}}$, and
(iii) for every natural number n such that $2 \leq n$ and $n \in \operatorname{dom} a$ holds $0_{\overline{\mathbb{R}}}<a(n)$ and $a(n)<+\infty$.
(15) Let X be a non empty set, S be a σ-field of subsets of X, f be a partial function from X to $\overline{\mathbb{R}}, F$ be a finite sequence of separated subsets of S, a be a finite sequence of elements of $\overline{\mathbb{R}}$, and x be an element of X. Suppose F and a are re-presentation of f and $x \in \operatorname{dom} f$. Then there exists a finite sequence a_{1} of elements of $\overline{\mathbb{R}}$ such that $\operatorname{dom} a_{1}=\operatorname{dom} a$ and for every natural number n such that $n \in \operatorname{dom} a_{1}$ holds $a_{1}(n)=a(n) \cdot \chi_{F(n), X}(x)$ and $f(x)=\sum a_{1}$.
(16) Let p be a finite sequence of elements of $\overline{\mathbb{R}}$ and q be a finite sequence of elements of \mathbb{R}. If $p=q$, then $\sum p=\sum q$.
(17) Let p be a finite sequence of elements of $\overline{\mathbb{R}}$. Suppose for every natural number n such that $n \in \operatorname{dom} p$ holds $0_{\overline{\mathbb{R}}} \leq p(n)$ and there exists a natural number n such that $n \in \operatorname{dom} p$ and $p(n)=+\infty$. Then $\sum p=+\infty$.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, and let f be a partial function from X to $\overline{\mathbb{R}}$. Let us assume that f is simple function in S and $\operatorname{dom} f \neq \emptyset$ and for every set x such that $x \in \operatorname{dom} f$ holds $0_{\overline{\mathbb{R}}} \leq f(x)$. The functor integral (X, S, M, f) yielding an element of $\overline{\mathbb{R}}$ is defined by the condition (Def. 2).
(Def. 2) There exists a finite sequence F of separated subsets of S and there exist finite sequences a, x of elements of $\overline{\mathbb{R}}$ such that
(i) F and a are re-presentation of f,
(ii) $a(1)=0_{\overline{\mathbb{R}}}$,
(iii) for every natural number n such that $2 \leq n$ and $n \in \operatorname{dom} a$ holds $0_{\overline{\mathbb{R}}}<a(n)$ and $a(n)<+\infty$,
(iv) $\operatorname{dom} x=\operatorname{dom} F$,
(v) for every natural number n such that $n \in \operatorname{dom} x$ holds $x(n)=a(n)$. $(M \cdot F)(n)$, and
(vi) $\quad \operatorname{integral}(X, S, M, f)=\sum x$.

2. Additional Lemma

We now state the proposition
(18) Let a be a finite sequence of elements of $\overline{\mathbb{R}}$ and p, N be elements of $\overline{\mathbb{R}}$. Suppose $N=\operatorname{len} a$ and for every natural number n such that $n \in \operatorname{dom} a$ holds $a(n)=p$. Then $\sum a=N \cdot p$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[6] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[7] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[8] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[12] Czesłław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Czestaw Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
[16] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
[17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.
[18] Grigory E. Ivanov. Definition of convex function and Jensen's inequality. Formalized Mathematics, 11(4):349-354, 2003.
[19] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[20] Andrzej Nȩdzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
[21] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[22] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received September 5, 2004

[^0]: ${ }^{1}$ This work has been partially supported by the MEXT grant Grant-in-Aid for Young Scientists (B)16700156.

