Lebesgue Integral of Simple Valued Function¹

Yasunari Shidama Shinshu University Nagano Noboru Endou Gifu National College of Technology

Summary. In this article, the authors introduce Lebesgue integral of simple valued function.

MML Identifier: MESFUNC3.

The terminology and notation used in this paper are introduced in the following papers: [23], [12], [25], [21], [26], [10], [11], [3], [22], [24], [7], [14], [1], [2], [20], [4], [5], [6], [8], [9], [19], [13], [15], [16], [17], and [18].

1. INTEGRAL OF SIMPLE VALUED FUNCTION

The following propositions are true:

- (1) Let n, m be natural numbers, a be a function from $[\operatorname{Seg} n, \operatorname{Seg} m]$ into \mathbb{R} , and p, q be finite sequences of elements of \mathbb{R} . Suppose that
- (i) $\operatorname{dom} p = \operatorname{Seg} n$,
- (ii) for every natural number *i* such that $i \in \text{dom } p$ there exists a finite sequence *r* of elements of \mathbb{R} such that dom r = Seg m and $p(i) = \sum r$ and for every natural number *j* such that $j \in \text{dom } r$ holds $r(j) = a(\langle i, j \rangle)$,
- (iii) $\operatorname{dom} q = \operatorname{Seg} m$, and
- (iv) for every natural number j such that $j \in \text{dom } q$ there exists a finite sequence s of elements of \mathbb{R} such that dom s = Seg n and $q(j) = \sum s$ and for every natural number i such that $i \in \text{dom } s$ holds $s(i) = a(\langle i, j \rangle)$. Then $\sum p = \sum q$.

¹This work has been partially supported by the MEXT grant Grant-in-Aid for Young Scientists (B)16700156.

C 2005 University of Białystok ISSN 1426-2630

- (2) Let F be a finite sequence of elements of \mathbb{R} and f be a finite sequence of elements of \mathbb{R} . If F = f, then $\sum F = \sum f$.
- (3) Let X be a non empty set, S be a σ -field of subsets of X, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S. Then there exists a finite sequence F of separated subsets of S and there exists a finite sequence a of elements of $\overline{\mathbb{R}}$ such that
- (i) $\operatorname{dom} f = \bigcup \operatorname{rng} F$,
- (ii) $\operatorname{dom} F = \operatorname{dom} a$,
- (iii) for every natural number n such that $n \in \text{dom } F$ and for every set x such that $x \in F(n)$ holds f(x) = a(n), and
- (iv) for every set x such that $x \in \text{dom } f$ there exists a finite sequence a_1 of elements of $\overline{\mathbb{R}}$ such that dom $a_1 = \text{dom } a$ and for every natural number n such that $n \in \text{dom } a_1$ holds $a_1(n) = a(n) \cdot \chi_{F(n),X}(x)$.
- (4) Let X be a set and F be a finite sequence of elements of X. Then F is disjoint valued if and only if for all natural numbers i, j such that $i \in \text{dom } F$ and $j \in \text{dom } F$ and $i \neq j$ holds F(i) misses F(j).
- (5) Let X be a non empty set, A be a set, S be a σ -field of subsets of X, F be a finite sequence of separated subsets of S, and G be a finite sequence of elements of S. Suppose dom G = dom F and for every natural number i such that $i \in \text{dom } G$ holds $G(i) = A \cap F(i)$. Then G is a finite sequence of separated subsets of S.
- (6) Let X be a non empty set, A be a set, and F, G be finite sequences of elements of X. Suppose dom G = dom F and for every natural number i such that $i \in \text{dom } G$ holds $G(i) = A \cap F(i)$. Then $\bigcup \text{rng } G = A \cap \bigcup \text{rng } F$.
- (7) Let X be a set, F be a finite sequence of elements of X, and i be a natural number. If $i \in \text{dom } F$, then $F(i) \subseteq \bigcup \operatorname{rng} F$ and $F(i) \cap \bigcup \operatorname{rng} F = F(i)$.
- (8) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ measure on S, and F be a finite sequence of separated subsets of S. Then
 dom $F = \text{dom}(M \cdot F)$.
- (9) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and F be a finite sequence of separated subsets of S. Then $M(\bigcup \operatorname{rng} F) = \sum (M \cdot F).$
- (10) Let F, G be finite sequences of elements of \mathbb{R} and a be an extended real number. Suppose that
 - (i) $a \neq +\infty$ and $a \neq -\infty$ or for every natural number i such that $i \in \text{dom } F$ holds $F(i) < 0_{\overline{\mathbb{R}}}$ or for every natural number i such that $i \in \text{dom } F$ holds $0_{\overline{\mathbb{R}}} < F(i)$,
- (ii) $\operatorname{dom} F = \operatorname{dom} G$, and
- (iii) for every natural number *i* such that $i \in \text{dom } G$ holds $G(i) = a \cdot F(i)$. Then $\sum G = a \cdot \sum F$.

68

(11) Every finite sequence of elements of \mathbb{R} is a finite sequence of elements of $\overline{\mathbb{R}}$.

Let X be a non empty set, let S be a σ -field of subsets of X, let f be a partial function from X to $\overline{\mathbb{R}}$, let F be a finite sequence of separated subsets of S, and let a be a finite sequence of elements of $\overline{\mathbb{R}}$. We say that F and a are re-presentation of f if and only if the conditions (Def. 1) are satisfied.

- (Def. 1)(i) $\operatorname{dom} f = \bigcup \operatorname{rng} F$,
 - (ii) $\operatorname{dom} F = \operatorname{dom} a$, and
 - (iii) for every natural number n such that $n \in \text{dom } F$ and for every set x such that $x \in F(n)$ holds f(x) = a(n).

One can prove the following propositions:

- (12) Let X be a non empty set, S be a σ -field of subsets of X, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S. Then there exists a finite sequence F of separated subsets of S and there exists a finite sequence a of elements of $\overline{\mathbb{R}}$ such that F and a are re-presentation of f.
- (13) Let X be a non empty set, S be a σ -field of subsets of X, and F be a finite sequence of separated subsets of S. Then there exists a finite sequence G of separated subsets of S such that
 - (i) $\bigcup \operatorname{rng} F = \bigcup \operatorname{rng} G$, and
 - (ii) for every natural number n such that $n \in \text{dom } G$ holds $G(n) \neq \emptyset$ and there exists a natural number m such that $m \in \text{dom } F$ and F(m) = G(n).
- (14) Let X be a non empty set, S be a σ -field of subsets of X, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and for every set x such that $x \in \text{dom } f$ holds $0_{\overline{\mathbb{R}}} \leq f(x)$. Then there exists a finite sequence F of separated subsets of S and there exists a finite sequence a of elements of $\overline{\mathbb{R}}$ such that
 - (i) F and a are re-presentation of f,
- (ii) $a(1) = 0_{\overline{\mathbb{R}}}$, and
- (iii) for every natural number n such that $2 \leq n$ and $n \in \text{dom } a$ holds $0_{\overline{\mathbb{R}}} < a(n)$ and $a(n) < +\infty$.
- (15) Let X be a non empty set, S be a σ -field of subsets of X, f be a partial function from X to $\overline{\mathbb{R}}$, F be a finite sequence of separated subsets of S, a be a finite sequence of elements of $\overline{\mathbb{R}}$, and x be an element of X. Suppose F and a are re-presentation of f and $x \in \text{dom } f$. Then there exists a finite sequence a_1 of elements of $\overline{\mathbb{R}}$ such that dom $a_1 = \text{dom } a$ and for every natural number n such that $n \in \text{dom } a_1$ holds $a_1(n) = a(n) \cdot \chi_{F(n),X}(x)$ and $f(x) = \sum a_1$.
- (16) Let p be a finite sequence of elements of $\overline{\mathbb{R}}$ and q be a finite sequence of elements of \mathbb{R} . If p = q, then $\sum p = \sum q$.

(17) Let p be a finite sequence of elements of \mathbb{R} . Suppose for every natural number n such that $n \in \text{dom } p$ holds $0_{\overline{\mathbb{R}}} \leq p(n)$ and there exists a natural number n such that $n \in \text{dom } p$ and $p(n) = +\infty$. Then $\sum p = +\infty$.

Let X be a non empty set, let S be a σ -field of subsets of X, let M be a σ -measure on S, and let f be a partial function from X to $\overline{\mathbb{R}}$. Let us assume that f is simple function in S and dom $f \neq \emptyset$ and for every set x such that $x \in \text{dom } f$ holds $0_{\overline{\mathbb{R}}} \leq f(x)$. The functor integral(X, S, M, f) yielding an element of $\overline{\mathbb{R}}$ is defined by the condition (Def. 2).

- (Def. 2) There exists a finite sequence F of separated subsets of S and there exist finite sequences a, x of elements of $\overline{\mathbb{R}}$ such that
 - (i) F and a are re-presentation of f,
 - (ii) $a(1) = 0_{\overline{\mathbb{R}}},$
 - (iii) for every natural number n such that $2 \leq n$ and $n \in \text{dom } a$ holds $0_{\overline{\mathbb{R}}} < a(n)$ and $a(n) < +\infty$,
 - (iv) $\operatorname{dom} x = \operatorname{dom} F$,
 - (v) for every natural number n such that $n \in \text{dom } x$ holds $x(n) = a(n) \cdot (M \cdot F)(n)$, and
 - (vi) integral $(X, S, M, f) = \sum x$.

2. Additional Lemma

We now state the proposition

(18) Let a be a finite sequence of elements of $\overline{\mathbb{R}}$ and p, N be elements of $\overline{\mathbb{R}}$. Suppose N = len a and for every natural number n such that $n \in \text{dom } a$ holds a(n) = p. Then $\sum a = N \cdot p$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65–69, 1991.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
- [5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [6] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.
- [7] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
- [8] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.

70

- [11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
- 1990. [12] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [13] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. *Formalized Mathematics*, 9(3):491–494, 2001.
- [16] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(3):495–500, 2001.
- [17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525–529, 2001.
- [18] Grigory E. Ivanov. Definition of convex function and Jensen's inequality. Formalized Mathematics, 11(4):349–354, 2003.
- [19] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [20] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
- [21] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [22] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [24] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received September 5, 2004