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The terminology and notation used in this paper are introduced in the following

papers: [23], [12], [25], [21], [26], [10], [11], [3], [22], [24], [7], [14], [1], [2], [20],

[4], [5], [6], [8], [9], [19], [13], [15], [16], [17], and [18].

1. Integral of Simple Valued Function

The following propositions are true:

(1) Let n, m be natural numbers, a be a function from [: Seg n, Seg m :] into

R, and p, q be finite sequences of elements of R. Suppose that

(i) dom p = Seg n,

(ii) for every natural number i such that i ∈ dom p there exists a finite

sequence r of elements of R such that dom r = Seg m and p(i) =
∑

r and

for every natural number j such that j ∈ dom r holds r(j) = a(〈〈i, j〉〉),

(iii) dom q = Seg m, and

(iv) for every natural number j such that j ∈ dom q there exists a finite

sequence s of elements of R such that dom s = Seg n and q(j) =
∑

s and

for every natural number i such that i ∈ dom s holds s(i) = a(〈〈i, j〉〉).

Then
∑

p =
∑

q.
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(2) Let F be a finite sequence of elements of R and f be a finite sequence

of elements of R. If F = f, then
∑

F =
∑

f.

(3) Let X be a non empty set, S be a σ-field of subsets of X, and f be a

partial function from X to R. Suppose f is simple function in S. Then

there exists a finite sequence F of separated subsets of S and there exists

a finite sequence a of elements of R such that

(i) dom f =
⋃

rng F,

(ii) domF = dom a,

(iii) for every natural number n such that n ∈ domF and for every set x

such that x ∈ F (n) holds f(x) = a(n), and

(iv) for every set x such that x ∈ dom f there exists a finite sequence a1 of

elements of R such that dom a1 = dom a and for every natural number n

such that n ∈ dom a1 holds a1(n) = a(n) · χF (n),X(x).

(4) Let X be a set and F be a finite sequence of elements of X. Then

F is disjoint valued if and only if for all natural numbers i, j such that

i ∈ domF and j ∈ domF and i 6= j holds F (i) misses F (j).

(5) Let X be a non empty set, A be a set, S be a σ-field of subsets of X, F

be a finite sequence of separated subsets of S, and G be a finite sequence

of elements of S. Suppose domG = domF and for every natural number

i such that i ∈ domG holds G(i) = A ∩ F (i). Then G is a finite sequence

of separated subsets of S.

(6) Let X be a non empty set, A be a set, and F , G be finite sequences of

elements of X. Suppose domG = domF and for every natural number i

such that i ∈ domG holds G(i) = A∩ F (i). Then
⋃

rng G = A∩
⋃

rng F.

(7) Let X be a set, F be a finite sequence of elements of X, and i be a natural

number. If i ∈ domF, then F (i) ⊆
⋃

rng F and F (i) ∩
⋃

rng F = F (i).

(8) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and F be a finite sequence of separated subsets of S. Then

domF = dom(M · F ).

(9) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and F be a finite sequence of separated subsets of S. Then

M(
⋃

rng F ) =
∑

(M · F ).

(10) Let F , G be finite sequences of elements of R and a be an extended real

number. Suppose that

(i) a 6= +∞ and a 6= −∞ or for every natural number i such that i ∈ domF

holds F (i) < 0
R

or for every natural number i such that i ∈ domF holds

0
R

< F (i),

(ii) domF = dom G, and

(iii) for every natural number i such that i ∈ domG holds G(i) = a · F (i).

Then
∑

G = a ·
∑

F.
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(11) Every finite sequence of elements of R is a finite sequence of elements of

R.

Let X be a non empty set, let S be a σ-field of subsets of X, let f be a

partial function from X to R, let F be a finite sequence of separated subsets of

S, and let a be a finite sequence of elements of R. We say that F and a are

re-presentation of f if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) dom f =
⋃

rng F,

(ii) domF = dom a, and

(iii) for every natural number n such that n ∈ domF and for every set x

such that x ∈ F (n) holds f(x) = a(n).

One can prove the following propositions:

(12) Let X be a non empty set, S be a σ-field of subsets of X, and f be a

partial function from X to R. Suppose f is simple function in S. Then

there exists a finite sequence F of separated subsets of S and there exists

a finite sequence a of elements of R such that F and a are re-presentation

of f .

(13) Let X be a non empty set, S be a σ-field of subsets of X, and F be

a finite sequence of separated subsets of S. Then there exists a finite

sequence G of separated subsets of S such that

(i)
⋃

rng F =
⋃

rng G, and

(ii) for every natural number n such that n ∈ domG holds G(n) 6= ∅ and

there exists a natural number m such that m ∈ domF and F (m) = G(n).

(14) Let X be a non empty set, S be a σ-field of subsets of X, and f be a

partial function from X to R. Suppose f is simple function in S and for

every set x such that x ∈ dom f holds 0
R
≤ f(x). Then there exists a finite

sequence F of separated subsets of S and there exists a finite sequence a

of elements of R such that

(i) F and a are re-presentation of f ,

(ii) a(1) = 0
R
, and

(iii) for every natural number n such that 2 ≤ n and n ∈ dom a holds

0
R

< a(n) and a(n) < +∞.

(15) Let X be a non empty set, S be a σ-field of subsets of X, f be a partial

function from X to R, F be a finite sequence of separated subsets of S, a

be a finite sequence of elements of R, and x be an element of X. Suppose

F and a are re-presentation of f and x ∈ dom f. Then there exists a finite

sequence a1 of elements of R such that dom a1 = dom a and for every

natural number n such that n ∈ dom a1 holds a1(n) = a(n) · χF (n),X(x)

and f(x) =
∑

a1.

(16) Let p be a finite sequence of elements of R and q be a finite sequence of

elements of R. If p = q, then
∑

p =
∑

q.
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(17) Let p be a finite sequence of elements of R. Suppose for every natural

number n such that n ∈ dom p holds 0
R
≤ p(n) and there exists a natural

number n such that n ∈ dom p and p(n) = +∞. Then
∑

p = +∞.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a

σ-measure on S, and let f be a partial function from X to R. Let us assume that

f is simple function in S and dom f 6= ∅ and for every set x such that x ∈ dom f

holds 0
R
≤ f(x). The functor integral(X, S, M, f) yielding an element of R is

defined by the condition (Def. 2).

(Def. 2) There exists a finite sequence F of separated subsets of S and there exist

finite sequences a, x of elements of R such that

(i) F and a are re-presentation of f ,

(ii) a(1) = 0
R
,

(iii) for every natural number n such that 2 ≤ n and n ∈ dom a holds

0
R

< a(n) and a(n) < +∞,

(iv) domx = domF,

(v) for every natural number n such that n ∈ domx holds x(n) = a(n) ·

(M · F )(n), and

(vi) integral(X, S, M, f) =
∑

x.

2. Additional Lemma

We now state the proposition

(18) Let a be a finite sequence of elements of R and p, N be elements of R.

Suppose N = len a and for every natural number n such that n ∈ dom a

holds a(n) = p. Then
∑

a = N · p.
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[10] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.



lebesgue integral of simple valued function 71
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