A Theory of Matrices of Complex Elements

Wenpai Chang Shinshu University Nagano Hiroshi Yamazaki Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. A concept of "Matrix of Complex" is defined here. Addition, subtraction, scalar multiplication and product are introduced using correspondent definitions of "Matrix of Field". Many equations for such operations consist of a case of "Matrix of Field". A calculation method of product of matrices is shown using a finite sequence of Complex in the last theorem.

 ${\rm MML} \ {\rm Identifier:} \ {\tt MATRIX_5}.$

The articles [11], [14], [1], [4], [2], [15], [6], [10], [9], [3], [8], [7], [13], [12], and [5] provide the terminology and notation for this paper.

The following two propositions are true:

- (1) $1 = 1_{\mathbb{C}_{\mathrm{F}}}.$
- (2) $0_{\mathbb{C}_{\mathrm{F}}} = 0.$

Let A be a matrix over \mathbb{C} . The functor $A_{\mathbb{C}_{\mathrm{F}}}$ yields a matrix over \mathbb{C}_{F} and is defined by:

(Def. 1) $A_{\mathbb{C}_{\mathrm{F}}} = A$.

Let A be a matrix over \mathbb{C}_{F} . The functor $A_{\mathbb{C}}$ yielding a matrix over \mathbb{C} is defined by:

(Def. 2) $A_{\mathbb{C}} = A$.

We now state four propositions:

- (3) For all matrices A, B over \mathbb{C} such that $A_{\mathbb{C}_{\mathrm{F}}} = B_{\mathbb{C}_{\mathrm{F}}}$ holds A = B.
- (4) For all matrices A, B over \mathbb{C}_{F} such that $A_{\mathbb{C}} = B_{\mathbb{C}}$ holds A = B.
- (5) For every matrix A over \mathbb{C} holds $A = (A_{\mathbb{C}_{\mathrm{F}}})_{\mathbb{C}}$.
- (6) For every matrix A over \mathbb{C}_{F} holds $A = (A_{\mathbb{C}})_{\mathbb{C}_{\mathrm{F}}}$.

Let A, B be matrices over \mathbb{C} . The functor A + B yielding a matrix over \mathbb{C} is defined as follows:

C 2005 University of Białystok ISSN 1426-2630 (Def. 3) $A + B = (A_{\mathbb{C}_{\mathrm{F}}} + B_{\mathbb{C}_{\mathrm{F}}})_{\mathbb{C}}.$

Let A be a matrix over \mathbb{C} . The functor -A yielding a matrix over \mathbb{C} is defined as follows:

(Def. 4) $-A = (-A_{\mathbb{C}_{\mathrm{F}}})_{\mathbb{C}}.$

Let A, B be matrices over \mathbb{C} . The functor A - B yields a matrix over \mathbb{C} and is defined as follows:

(Def. 5) $A - B = (A_{\mathbb{C}_{\mathrm{F}}} - B_{\mathbb{C}_{\mathrm{F}}})_{\mathbb{C}}.$

Let A, B be matrices over \mathbb{C} . The functor $A \cdot B$ yielding a matrix over \mathbb{C} is defined as follows:

(Def. 6) $A \cdot B = (A_{\mathbb{C}_{\mathrm{F}}} \cdot B_{\mathbb{C}_{\mathrm{F}}})_{\mathbb{C}}.$

Let x be a complex number and let A be a matrix over \mathbb{C} . The functor $x \cdot A$ yielding a matrix over \mathbb{C} is defined as follows:

- (Def. 7) For every element e_1 of \mathbb{C}_F such that $e_1 = x$ holds $x \cdot A = (e_1 \cdot A_{\mathbb{C}_F})_{\mathbb{C}}$. One can prove the following propositions:
 - (7) For every matrix A over \mathbb{C} holds len $A = \text{len}(A_{\mathbb{C}_{\mathrm{F}}})$ and width $A = \text{width}(A_{\mathbb{C}_{\mathrm{F}}})$.
 - (8) For every matrix A over \mathbb{C}_{F} holds len $A = \operatorname{len}(A_{\mathbb{C}})$ and width $A = \operatorname{width}(A_{\mathbb{C}})$.
 - (9) For every matrix M over \mathbb{C} such that len M > 0 holds --M = M.
 - (10) For every field K and for every matrix M over K holds $1_K \cdot M = M$.
 - (11) For every matrix M over \mathbb{C} holds $1 \cdot M = M$.
 - (12) For every field K and for all elements a, b of K and for every matrix M over K holds $a \cdot (b \cdot M) = (a \cdot b) \cdot M$.
 - (13) For every field K and for all elements a, b of K and for every matrix M over K holds $(a + b) \cdot M = a \cdot M + b \cdot M$.
 - (14) For every matrix M over \mathbb{C} holds $M + M = 2 \cdot M$.
 - (15) For every matrix M over \mathbb{C} holds $M + M + M = 3 \cdot M$.

Let *n*, *m* be natural numbers. The functor $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}^{n \times m}$ yields a

matrix over \mathbb{C} and is defined by:

(Def. 8)
$$\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}^{n \times m} = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}_{F} \in \mathbb{C}}^{n \times m}$$

One can prove the following propositions:

158

(16) For all natural numbers n, m holds $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{C} =$

 $\left(\begin{array}{ccc} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{array}\right)_{\mathbb{C}_{\mathrm{F}}}^{n \times m}.$

- (17) For every matrix M over \mathbb{C} such that $\operatorname{len} M > 0$ holds $M + -M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}^{(\operatorname{len} M) \times (\operatorname{width} M)}$.
- (18) For every matrix M over \mathbb{C} such that $\operatorname{len} M > 0$ holds $M M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}^{(\operatorname{len} M) \times (\operatorname{width} M)}$.
- (19) For all matrices M_1 , M_2 , M_3 over \mathbb{C} such that len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$ and $M_1 + M_3 = M_2 + M_3$ holds $M_1 = M_2$.
- (20) For all matrices M_1 , M_2 over \mathbb{C} such that len $M_2 > 0$ holds $M_1 M_2 = M_1 + M_2$.
- (21) For all matrices M_1 , M_2 over \mathbb{C} such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and width $M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ and $M_1 = M_1 + M_2$ holds $M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}^{(\operatorname{len} M_1) \times (\operatorname{width} M_1)}$.
- (22) For all matrices M_1 , M_2 over \mathbb{C} such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and width $M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ and $M_1 - M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}$ holds $M_1 = M_2$.
- (23) For all matrices M_1 , M_2 over \mathbb{C} such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and width $M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ and $M_1 + M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}$ holds $M_2 = -M_1$.

(24) For all natural numbers n, m such that n > 0 holds

WENPAI CHANG et al.

$$-\left(\begin{array}{ccc} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{array}\right)_{\mathbb{C}}^{n \times m} = \left(\begin{array}{ccc} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{array}\right)_{\mathbb{C}}^{n \times m}.$$

- (25) For all matrices M_1 , M_2 over \mathbb{C} such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and width $M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ and $M_2 - M_1 = M_2$ holds $M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}^{(\operatorname{len} M_1) \times (\operatorname{width} M_1)}$.
- (26) For all matrices M_1 , M_2 over \mathbb{C} such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 = M_1 (M_2 M_2)$.
- (27) For all matrices M_1 , M_2 over \mathbb{C} such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and width $M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ holds $-(M_1 + M_2) = -M_1 + -M_2$.
- (28) For all matrices M_1 , M_2 over \mathbb{C} such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and width $M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ holds $M_1 (M_1 M_2) = M_2$.
- (29) For all matrices M_1 , M_2 , M_3 over \mathbb{C} such that len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$ and $M_1 - M_3 = M_2 - M_3$ holds $M_1 = M_2$.
- (30) For all matrices M_1 , M_2 , M_3 over \mathbb{C} such that len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$ and $M_3 - M_1 = M_3 - M_2$ holds $M_1 = M_2$.
- (31) For all matrices M_1 , M_2 , M_3 over \mathbb{C} such that len $M_2 = \text{len } M_3$ and width $M_2 = \text{width } M_3$ and width $M_1 = \text{len } M_2$ and $\text{len } M_1 > 0$ and $\text{len } M_2 > 0$ holds $M_1 \cdot (M_2 + M_3) = M_1 \cdot M_2 + M_1 \cdot M_3$.
- (32) For all matrices M_1 , M_2 , M_3 over \mathbb{C} such that len $M_2 = \text{len } M_3$ and width $M_2 = \text{width } M_3$ and len $M_1 = \text{width } M_2$ and len $M_2 > 0$ and len $M_1 > 0$ holds $(M_2 + M_3) \cdot M_1 = M_2 \cdot M_1 + M_3 \cdot M_1$.
- (33) For all matrices M_1 , M_2 over \mathbb{C} such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and width $M_1 = \operatorname{width} M_2$ holds $M_1 + M_2 = M_2 + M_1$.
- (34) For all matrices M_1 , M_2 , M_3 over \mathbb{C} such that len $M_1 = \text{len } M_2$ and len $M_1 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_1 = \text{width } M_3$ holds $(M_1 + M_2) + M_3 = M_1 + (M_2 + M_3)$.
- (35) For every matrix M over \mathbb{C} such that $\operatorname{len} M > 0$ holds $M + \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}^{(\operatorname{len} M) \times (\operatorname{width} M)} = M.$
- (36) Let K be a field, b be an element of K, and M_1 , M_2 be matrices over K. If len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$, then $b \cdot (M_1 + M_2) = b \cdot M_1 + b \cdot M_2$.

- (37) Let M_1 , M_2 be matrices over \mathbb{C} and a be a complex number. If len $M_1 =$ len M_2 and width $M_1 =$ width M_2 and len $M_1 > 0$, then $a \cdot (M_1 + M_2) =$ $a \cdot M_1 + a \cdot M_2$.
- (38) For every field K and for all matrices M_1 , M_2 over K such that width $M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_1 > 0$ and $\operatorname{len} M_2 > 0$ holds $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(\operatorname{len} M_1) \times (\operatorname{width} M_1)} \cdot M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(\operatorname{len} M_1) \times (\operatorname{width} M_2)} \cdot M_2$
- (39) For all matrices M_1 , M_2 over \mathbb{C} such that width $M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_1 > 0$ and $\operatorname{len} M_2 > 0$ holds $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}^{(\operatorname{len} M_1) \times (\operatorname{width} M_2)} \cdot M_2 =$

$$\left(\begin{array}{ccc} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{array}\right)_{\mathbb{C}}^{(\operatorname{len} M_1) \times (\operatorname{width} M_2)}$$

(40) For every field K and for every matrix M_1 over K such that $\operatorname{len} M_1 > 0$

holds $0_K \cdot M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(\operatorname{len} M_1) \times (\operatorname{width} M_1)}$.

(41) For every matrix M_1 over \mathbb{C} such that $\operatorname{len} M_1 > 0$ holds $0 \cdot M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{\mathbb{C}}^{(\operatorname{len} M_1) \times (\operatorname{width} M_1)}$.

Let s be a finite sequence of elements of \mathbb{C} and let k be a natural number. Then s(k) is an element of \mathbb{C} .

We now state the proposition

(42) Let i, j be natural numbers and M_1, M_2 be matrices over \mathbb{C} . Suppose len $M_1 > 0$ and len $M_2 > 0$ and width $M_1 = \text{len } M_2$ and $1 \leq i$ and $i \leq \text{len } M_1$ and $1 \leq j$ and $j \leq \text{width } M_2$. Then there exists a finite sequence s of elements of \mathbb{C} such that len $s = \text{len } M_2$ and $s(1) = (M_1 \circ (i, 1)) \cdot (M_2 \circ (1, j))$ and for every natural number k such that $1 \leq k$ and $k < \text{len } M_2$ holds $s(k+1) = s(k) + (M_1 \circ (i, k+1)) \cdot (M_2 \circ (k+1, j)).$

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.

WENPAI CHANG et al.

- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Library Committee. Binary operations on numbers. To appear in Formalized Mathemat-
- [6] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [8] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265-269, 2001.
 [9] M. J. N. J. M. J. M
- [9] Yatsuka Nakamura and Hiroshi Yamazaki. Calculation of matrices of field elements. Part I. Formalized Mathematics, 11(4):385–391, 2003.
- [10] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [12] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [13] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [15] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1–8, 1993.

Received December 10, 2004