A Theory of Matrices of Complex Elements

Wenpai Chang
Shinshu University
Nagano

Hiroshi Yamazaki
Shinshu University
Nagano

Yatsuka Nakamura
Shinshu University
Nagano

Summary. A concept of "Matrix of Complex" is defined here. Addition, subtraction, scalar multiplication and product are introduced using correspondent definitions of "Matrix of Field". Many equations for such operations consist of a case of "Matrix of Field". A calculation method of product of matrices is shown using a finite sequence of Complex in the last theorem.

MML Identifier: MATRIX_5.

The articles [11], [14], [1], [4], [2], [15], [6], [10], [9], [3], [8], [7], [13], [12], and [5] provide the terminology and notation for this paper.

The following two propositions are true:
(1) $1=1_{\mathbb{C}_{\mathrm{F}}}$.
(2) $0_{\mathbb{C}_{\mathrm{F}}}=0$.

Let A be a matrix over \mathbb{C}. The functor $A_{\mathbb{C}_{\mathrm{F}}}$ yields a matrix over \mathbb{C}_{F} and is defined by:
(Def. 1) $\quad A_{\mathbb{C}_{\mathrm{F}}}=A$.
Let A be a matrix over \mathbb{C}_{F}. The functor $A_{\mathbb{C}}$ yielding a matrix over \mathbb{C} is defined by:
(Def. 2) $\quad A_{\mathbb{C}}=A$.
We now state four propositions:
(3) For all matrices A, B over \mathbb{C} such that $A_{\mathbb{C}_{\mathrm{F}}}=B_{\mathbb{C}_{\mathrm{F}}}$ holds $A=B$.
(4) For all matrices A, B over \mathbb{C}_{F} such that $A_{\mathbb{C}}=B_{\mathbb{C}}$ holds $A=B$.
(5) For every matrix A over \mathbb{C} holds $A=\left(A_{\mathbb{C}_{\mathfrak{F}}}\right)_{\mathbb{C}}$.
(6) For every matrix A over \mathbb{C}_{F} holds $A=\left(A_{\mathbb{C}}\right)_{\mathbb{C}_{\mathrm{F}}}$.

Let A, B be matrices over \mathbb{C}. The functor $A+B$ yielding a matrix over \mathbb{C} is defined as follows:
(Def. 3) $\quad A+B=\left(A_{\mathbb{C}_{F}}+B_{\mathbb{C}_{\mathfrak{F}}}\right)_{\mathbb{C}}$.
Let A be a matrix over \mathbb{C}. The functor $-A$ yielding a matrix over \mathbb{C} is defined as follows:
(Def. 4) $-A=\left(-A_{\mathbb{C}_{\mathfrak{F}}}\right)_{\mathbb{C}}$.
Let A, B be matrices over \mathbb{C}. The functor $A-B$ yields a matrix over \mathbb{C} and is defined as follows:
(Def. 5) $\quad A-B=\left(A_{\mathbb{C}_{F}}-B_{\mathbb{C}_{\mathfrak{F}}}\right)_{\mathbb{C}}$.
Let A, B be matrices over \mathbb{C}. The functor $A \cdot B$ yielding a matrix over \mathbb{C} is defined as follows:
(Def. 6) $\quad A \cdot B=\left(A_{\mathbb{C}_{\mathfrak{F}}} \cdot B_{\mathbb{C}_{\mathrm{F}}}\right)_{\mathbb{C}}$.
Let x be a complex number and let A be a matrix over \mathbb{C}. The functor $x \cdot A$ yielding a matrix over \mathbb{C} is defined as follows:
(Def. 7) For every element e_{1} of \mathbb{C}_{F} such that $e_{1}=x$ holds $x \cdot A=\left(e_{1} \cdot A_{\mathbb{C}_{\mathfrak{F}}}\right)_{\mathbb{C}}$.
One can prove the following propositions:
(7) For every matrix A over \mathbb{C} holds len $A=\operatorname{len}\left(A_{\mathbb{C}_{\mathrm{F}}}\right)$ and width $A=$ $\operatorname{width}\left(A_{\mathbb{C}_{\mathrm{F}}}\right)$.
(8) For every matrix A over \mathbb{C}_{F} holds len $A=\operatorname{len}\left(A_{\mathbb{C}}\right)$ and width $A=$ width $\left(A_{\mathbb{C}}\right)$.
(9) For every matrix M over \mathbb{C} such that len $M>0$ holds $--M=M$.
(10) For every field K and for every matrix M over K holds $1_{K} \cdot M=M$.
(11) For every matrix M over \mathbb{C} holds $1 \cdot M=M$.
(12) For every field K and for all elements a, b of K and for every matrix M over K holds $a \cdot(b \cdot M)=(a \cdot b) \cdot M$.
(13) For every field K and for all elements a, b of K and for every matrix M over K holds $(a+b) \cdot M=a \cdot M+b \cdot M$.
(14) For every matrix M over \mathbb{C} holds $M+M=2 \cdot M$.
(15) For every matrix M over \mathbb{C} holds $M+M+M=3 \cdot M$.

Let n, m be natural numbers. The functor $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{n \times m}$ yields a matrix over \mathbb{C} and is defined by:
(Def. 8) $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{n \times m}=\left(\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}_{\mathrm{F}}} \quad \mathbb{C}\right.$
One can prove the following propositions:
(16) For all natural numbers $n, \quad m$ holds $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}} \mathbb{C}_{F}=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}_{F}}^{n \times m}$.
(17) For every matrix M over \mathbb{C} such that len $M>0$ holds $M+-M=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{(\operatorname{len} M) \times(\operatorname{width} M)}$
(18) For every matrix M over \mathbb{C} such that len $M>0$ holds $M-M=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{(\operatorname{len} M) \times(\text { width } M)}$.
(19) For all matrices M_{1}, M_{2}, M_{3} over \mathbb{C} such that len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=$ len M_{3} and width $M_{1}=$ width M_{2} and width $M_{2}=$ width M_{3} and len $M_{1}>0$ and $M_{1}+M_{3}=M_{2}+M_{3}$ holds $M_{1}=M_{2}$.
(20) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{2}>0$ holds $M_{1}--M_{2}=$ $M_{1}+M_{2}$.
(21) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} and $\operatorname{len} M_{1}>0$ and $M_{1}=M_{1}+M_{2}$ holds $M_{2}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)}$.
(22) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1} \underset{\left(\text { len } M_{1}\right) \times\left(\text { width } M_{1}\right)}{=}$ width M_{2} and $M_{1}>0$ and $M_{1}-M_{2}=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)} \quad$ holds $M_{1}=M_{2}$.
(23) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} and $\operatorname{len} M_{1}>0$ and $M_{1}+M_{2}=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)} \quad$ holds $M_{2}=-M_{1}$.
(24) For all natural numbers n, m such that $n>0$ holds

$$
-\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right)_{\mathbb{C}}^{n \times m}=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right)_{\mathbb{C}}^{n \times m} .
$$

(25) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} and len $M_{1}>0$ and $M_{2}-M_{1}=M_{2}$ holds $M_{1}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)}$.
(26) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{1}=$ len M_{2} and width $M_{1}=$ width M_{2} and len $M_{1}>0$ holds $M_{1}=M_{1}-\left(M_{2}-M_{2}\right)$.
(27) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} and len $M_{1}>0$ holds $-\left(M_{1}+M_{2}\right)=-M_{1}+-M_{2}$.
(28) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{1}=$ len M_{2} and width $M_{1}=$ width M_{2} and len $M_{1}>0$ holds $M_{1}-\left(M_{1}-M_{2}\right)=M_{2}$.
(29) For all matrices M_{1}, M_{2}, M_{3} over \mathbb{C} such that len $M_{1}=$ len M_{2} and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and $\operatorname{width} M_{2}=\operatorname{width} M_{3}$ and len $M_{1}>0$ and $M_{1}-M_{3}=M_{2}-M_{3}$ holds $M_{1}=M_{2}$.
(30) For all matrices M_{1}, M_{2}, M_{3} over \mathbb{C} such that len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=$ width M_{2} and width $M_{2}=$ width M_{3} and len $M_{1}>0$ and $M_{3}-M_{1}=M_{3}-M_{2}$ holds $M_{1}=M_{2}$.
(31) For all matrices M_{1}, M_{2}, M_{3} over \mathbb{C} such that len $M_{2}=\operatorname{len} M_{3}$ and width $M_{2}=$ width M_{3} and width $M_{1}=\operatorname{len} M_{2}$ and len $M_{1}>0$ and len $M_{2}>0$ holds $M_{1} \cdot\left(M_{2}+M_{3}\right)=M_{1} \cdot M_{2}+M_{1} \cdot M_{3}$.
(32) For all matrices M_{1}, M_{2}, M_{3} over \mathbb{C} such that len $M_{2}=\operatorname{len} M_{3}$ and width $M_{2}=$ width M_{3} and len $M_{1}=$ width M_{2} and len $M_{2}>0$ and len $M_{1}>0$ holds $\left(M_{2}+M_{3}\right) \cdot M_{1}=M_{2} \cdot M_{1}+M_{3} \cdot M_{1}$.
(33) For all matrices M_{1}, M_{2} over \mathbb{C} such that len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} holds $M_{1}+M_{2}=M_{2}+M_{1}$.
(34) For all matrices M_{1}, M_{2}, M_{3} over \mathbb{C} such that len $M_{1}=$ len M_{2} and len $M_{1}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and $\operatorname{width} M_{1}=\operatorname{width} M_{3}$ holds $\left(M_{1}+M_{2}\right)+M_{3}=M_{1}+\left(M_{2}+M_{3}\right)$.
(35) For every matrix M over \mathbb{C} such that len $M>0$ holds $M+$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{(\operatorname{len} M) \times(\text { width } M)}=M$.
(36) Let K be a field, b be an element of K, and M_{1}, M_{2} be matrices over K. If len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} and len $M_{1}>0$, then $b \cdot\left(M_{1}+M_{2}\right)=b \cdot M_{1}+b \cdot M_{2}$.
(37) Let M_{1}, M_{2} be matrices over \mathbb{C} and a be a complex number. If len $M_{1}=$ len M_{2} and width $M_{1}=$ width M_{2} and len $M_{1}>0$, then $a \cdot\left(M_{1}+M_{2}\right)=$ $a \cdot M_{1}+a \cdot M_{2}$.
(38) For every field K and for all matrices M_{1}, M_{2} over K such that width $M_{1}=\operatorname{len} M_{2}$ and len $M_{1}>0$ and len $M_{2}>0$ holds $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)} \quad \cdot M_{2}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{2}\right)}$.
(39) For all matrices M_{1}, M_{2} over \mathbb{C} such that width $M_{1}=\operatorname{len} M_{2}$ and len $M_{1}>0$ and len $M_{2}>0$ holds $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)} \cdot M_{2}=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{2}\right)}$.
(40) For every field K and for every matrix M_{1} over K such that len $M_{1}>0$ holds $0_{K} \cdot M_{1}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)}$.
(41) For every matrix M_{1} over \mathbb{C} such that len $M_{1}>0$ holds $0 \cdot M_{1}=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{C}}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)}$
Let s be a finite sequence of elements of \mathbb{C} and let k be a natural number. Then $s(k)$ is an element of \mathbb{C}.

We now state the proposition
(42) Let i, j be natural numbers and M_{1}, M_{2} be matrices over \mathbb{C}. Suppose len $M_{1}>0$ and len $M_{2}>0$ and width $M_{1}=\operatorname{len} M_{2}$ and $1 \leq i$ and $i \leq$ len M_{1} and $1 \leq j$ and $j \leq$ width M_{2}. Then there exists a finite sequence s of elements of \mathbb{C} such that len $s=$ len M_{2} and $s(1)=\left(M_{1} \circ(i, 1)\right) \cdot\left(M_{2} \circ(1, j)\right)$ and for every natural number k such that $1 \leq k$ and $k<\operatorname{len} M_{2}$ holds $s(k+1)=s(k)+\left(M_{1} \circ(i, k+1)\right) \cdot\left(M_{2} \circ(k+1, j)\right)$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Library Committee. Binary operations on numbers. To appear in Formalized Mathematics.
[6] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[8] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265-269, 2001.
[9] Yatsuka Nakamura and Hiroshi Yamazaki. Calculation of matrices of field elements. Part I. Formalized Mathematics, 11(4):385-391, 2003.
[10] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990
[13] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Received December 10, 2004

