Hölder's Inequality and Minkowski's Inequality

Yasumasa Suzuki
Take, Yokosuka-shi

Japan

Summary. In this article, Hölder's inequality and Minkowski's inequality are proved. These equalities are basic ones of functional analysis.

MML Identifier: HOLDER_1.

The papers [12], [13], [14], [3], [1], [11], [4], [2], [7], [5], [6], [10], [8], and [9] provide the notation and terminology for this paper.

1. HÖLDER's Inequality

In this paper a, b, p, q are real numbers
Let x be a real number. One can verify that $[x,+\infty[$ is non empty.
Next we state several propositions:
(1) For all real numbers p, q such that $0<p$ and $0<q$ and for every real number a such that $0 \leq a$ holds $a^{p} \cdot a^{q}=a^{p+q}$.
(2) For all real numbers p, q such that $0<p$ and $0<q$ and for every real number a such that $0 \leq a$ holds $\left(a^{p}\right)^{q}=a^{p \cdot q}$.
(3) For every real number p such that $0<p$ and for all real numbers a, b such that $0 \leq a$ and $a \leq b$ holds $a^{p} \leq b^{p}$.
(4) If $1<p$ and $\frac{1}{p}+\frac{1}{q}=1$ and $0<a$ and $0<b$, then $a \cdot b \leq \frac{a_{\mathrm{R}}^{p}}{p}+\frac{b_{\mathrm{R}}^{q}}{q}$ and $a \cdot b=\frac{a_{\mathbb{R}}^{p}}{p}+\frac{b_{\mathbb{R}}^{q}}{q}$ iff $a_{\mathbb{R}}^{p}=b_{\mathbb{R}}^{q}$.
(5) If $1<p$ and $\frac{1}{p}+\frac{1}{q}=1$ and $0 \leq a$ and $0 \leq b$, then $a \cdot b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$ and $a \cdot b=\frac{a^{p}}{p}+\frac{b^{q}}{q}$ iff $a^{p}=b^{q}$.

2. Minkowski's Inequality

Next we state several propositions:
(6) Let p, q be real numbers. Suppose $1<p$ and $\frac{1}{p}+\frac{1}{q}=1$. Let a, b, a_{1}, b_{1}, a_{2} be sequences of real numbers. Suppose that for every natural number n holds $a_{1}(n)=|a(n)|^{p}$ and $b_{1}(n)=|b(n)|^{q}$ and $a_{2}(n)=|a(n) \cdot b(n)|$. Let n be a natural number. Then $\left(\sum_{\alpha=0}^{\kappa}\left(a_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\sum_{\alpha=0}^{\kappa}\left(a_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)^{\frac{1}{p}}$. $\left(\sum_{\alpha=0}^{\kappa}\left(b_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)^{\frac{1}{q}}$.
(7) Let p be a real number. Suppose $1<p$. Let $a, b, a_{1}, b_{2}, a_{2}$ be sequences of real numbers. Suppose that for every natural number n holds $a_{1}(n)=$ $|a(n)|^{p}$ and $b_{2}(n)=|b(n)|^{p}$ and $a_{2}(n)=|a(n)+b(n)|^{p}$. Let n be a natural number. Then $\left(\sum_{\alpha=0}^{\kappa}\left(a_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)^{\frac{1}{p}} \leq\left(\sum_{\alpha=0}^{\kappa}\left(a_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)^{\frac{1}{p}}+$ $\left(\sum_{\alpha=0}^{\kappa}\left(b_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)^{\frac{1}{p}}$.
(8) Let a, b be sequences of real numbers. Suppose for every natural number n holds $a(n) \leq b(n)$ and b is convergent and a is non-decreasing. Then a is convergent and $\lim a \leq \lim b$.
(9) Let a, b, c be sequences of real numbers. Suppose for every natural number n holds $a(n) \leq b(n)+c(n)$ and b is convergent and c is convergent and a is non-decreasing. Then a is convergent and $\lim a \leq \lim b+\lim c$.
(10) Let p be a real number. Suppose $0<p$. Let a, a_{1} be sequences of real numbers. Suppose a is convergent and for every natural number n holds $0 \leq a(n)$ and for every natural number n holds $a_{1}(n)=a(n)^{p}$. Then a_{1} is convergent and $\lim a_{1}=(\lim a)^{p}$.
(11) Let p be a real number. Suppose $0<p$. Let a, a_{1} be sequences of real numbers. Suppose a is summable and for every natural number n holds $0 \leq a(n)$ and for every natural number n holds $a_{1}(n)=$ $\left(\sum_{\alpha=0}^{\kappa} a(\alpha)\right)_{\kappa \in \mathbb{N}}(n)^{p}$. Then a_{1} is convergent and $\lim a_{1}=\left(\sum a\right)^{p}$ and a_{1} is non-decreasing and for every natural number n holds $a_{1}(n) \leq\left(\sum a\right)^{p}$.
(12) Let p, q be real numbers. Suppose $1<p$ and $\frac{1}{p}+\frac{1}{q}=1$. Let a, b, a_{1}, b_{1}, a_{2} be sequences of real numbers. Suppose for every natural number n holds $a_{1}(n)=|a(n)|^{p}$ and $b_{1}(n)=|b(n)|^{q}$ and $a_{2}(n)=|a(n) \cdot b(n)|$ and a_{1} is summable and b_{1} is summable. Then a_{2} is summable and $\sum a_{2} \leq$ $\left(\sum a_{1}\right)^{\frac{1}{p}} \cdot\left(\sum b_{1}\right)^{\frac{1}{q}}$.
(13) Let p be a real number. Suppose $1<p$. Let $a, b, a_{1}, b_{2}, a_{2}$ be sequences of real numbers. Suppose that
(i) for every natural number n holds $a_{1}(n)=|a(n)|^{p}$ and $b_{2}(n)=|b(n)|^{p}$ and $a_{2}(n)=|a(n)+b(n)|^{p}$,
(ii) a_{1} is summable, and
(iii) b_{2} is summable.

Then a_{2} is summable and $\left(\sum a_{2}\right)^{\frac{1}{p}} \leq\left(\sum a_{1}\right)^{\frac{1}{p}}+\left(\sum b_{2}\right)^{\frac{1}{p}}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[7] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[9] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[10] Konrad Raczkowski and Andrzej Nȩdzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[11] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received September 5, 2004

