Hölder's Inequality and Minkowski's Inequality

Yasumasa Suzuki Take, Yokosuka-shi Japan

Summary. In this article, Hölder's inequality and Minkowski's inequality are proved. These equalities are basic ones of functional analysis.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathrm{HOLDER_{-1}}.$

The papers [12], [13], [14], [3], [1], [11], [4], [2], [7], [5], [6], [10], [8], and [9] provide the notation and terminology for this paper.

1. HÖLDER'S INEQUALITY

In this paper a, b, p, q are real numbers.

Let x be a real number. One can verify that $[x, +\infty]$ is non empty. Next we state several propositions:

- (1) For all real numbers p, q such that 0 < p and 0 < q and for every real number a such that $0 \le a$ holds $a^p \cdot a^q = a^{p+q}$.
- (2) For all real numbers p, q such that 0 < p and 0 < q and for every real number a such that $0 \le a$ holds $(a^p)^q = a^{p \cdot q}$.
- (3) For every real number p such that 0 < p and for all real numbers a, b such that $0 \le a$ and $a \le b$ holds $a^p \le b^p$.
- (4) If 1 < p and $\frac{1}{p} + \frac{1}{q} = 1$ and 0 < a and 0 < b, then $a \cdot b \leq \frac{a_{\mathbb{R}}^p}{p} + \frac{b_{\mathbb{R}}^q}{q}$ and $a \cdot b = \frac{a_{\mathbb{R}}^p}{p} + \frac{b_{\mathbb{R}}^q}{q}$ iff $a_{\mathbb{R}}^p = b_{\mathbb{R}}^q$.
- (5) If 1 < p and $\frac{1}{p} + \frac{1}{q} = 1$ and $0 \le a$ and $0 \le b$, then $a \cdot b \le \frac{a^p}{p} + \frac{b^q}{q}$ and $a \cdot b = \frac{a^p}{p} + \frac{b^q}{q}$ iff $a^p = b^q$.

C 2005 University of Białystok ISSN 1426-2630

YASUMASA SUZUKI

2. Minkowski's Inequality

Next we state several propositions:

- (6) Let p, q be real numbers. Suppose 1 < p and $\frac{1}{p} + \frac{1}{q} = 1$. Let a, b, a_1, b_1, a_2 be sequences of real numbers. Suppose that for every natural number n holds $a_1(n) = |a(n)|^p$ and $b_1(n) = |b(n)|^q$ and $a_2(n) = |a(n) \cdot b(n)|$. Let n be a natural number. Then $(\sum_{\alpha=0}^{\kappa} (a_2)(\alpha))_{\kappa \in \mathbb{N}}(n) \leq (\sum_{\alpha=0}^{\kappa} (a_1)(\alpha))_{\kappa \in \mathbb{N}}(n)^{\frac{1}{p}} \cdot (\sum_{\alpha=0}^{\kappa} (b_1)(\alpha))_{\kappa \in \mathbb{N}}(n)^{\frac{1}{q}}$.
- (7) Let p be a real number. Suppose 1 < p. Let a, b, a_1 , b_2 , a_2 be sequences of real numbers. Suppose that for every natural number n holds $a_1(n) =$ $|a(n)|^p$ and $b_2(n) = |b(n)|^p$ and $a_2(n) = |a(n) + b(n)|^p$. Let n be a natural number. Then $(\sum_{\alpha=0}^{\kappa} (a_2)(\alpha))_{\kappa\in\mathbb{N}}(n)^{\frac{1}{p}} \leq (\sum_{\alpha=0}^{\kappa} (a_1)(\alpha))_{\kappa\in\mathbb{N}}(n)^{\frac{1}{p}} + (\sum_{\alpha=0}^{\kappa} (b_2)(\alpha))_{\kappa\in\mathbb{N}}(n)^{\frac{1}{p}}$.
- (8) Let a, b be sequences of real numbers. Suppose for every natural number n holds $a(n) \le b(n)$ and b is convergent and a is non-decreasing. Then a is convergent and $\lim a \le \lim b$.
- (9) Let a, b, c be sequences of real numbers. Suppose for every natural number n holds $a(n) \le b(n) + c(n)$ and b is convergent and c is convergent and a is non-decreasing. Then a is convergent and $\lim a \le \lim b + \lim c$.
- (10) Let p be a real number. Suppose 0 < p. Let a, a_1 be sequences of real numbers. Suppose a is convergent and for every natural number n holds $0 \le a(n)$ and for every natural number n holds $a_1(n) = a(n)^p$. Then a_1 is convergent and $\lim a_1 = (\lim a)^p$.
- (11) Let p be a real number. Suppose 0 < p. Let a, a_1 be sequences of real numbers. Suppose a is summable and for every natural number n holds $0 \le a(n)$ and for every natural number n holds $a_1(n) =$ $(\sum_{\alpha=0}^{\kappa} a(\alpha))_{\kappa \in \mathbb{N}}(n)^p$. Then a_1 is convergent and $\lim a_1 = (\sum a)^p$ and a_1 is non-decreasing and for every natural number n holds $a_1(n) \le (\sum a)^p$.
- (12) Let p, q be real numbers. Suppose 1 < p and $\frac{1}{p} + \frac{1}{q} = 1$. Let a, b, a_1, b_1, a_2 be sequences of real numbers. Suppose for every natural number n holds $a_1(n) = |a(n)|^p$ and $b_1(n) = |b(n)|^q$ and $a_2(n) = |a(n) \cdot b(n)|$ and a_1 is summable and b_1 is summable. Then a_2 is summable and $\sum a_2 \leq (\sum a_1)^{\frac{1}{p}} \cdot (\sum b_1)^{\frac{1}{q}}$.
- (13) Let p be a real number. Suppose 1 < p. Let a, b, a_1, b_2, a_2 be sequences of real numbers. Suppose that
 - (i) for every natural number n holds $a_1(n) = |a(n)|^p$ and $b_2(n) = |b(n)|^p$ and $a_2(n) = |a(n) + b(n)|^p$,
 - (ii) a_1 is summable, and
- (iii) b_2 is summable.

Then a_2 is summable and $(\sum a_2)^{\frac{1}{p}} \le (\sum a_1)^{\frac{1}{p}} + (\sum b_2)^{\frac{1}{p}}$.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Math*ematics*, 1(**2**):273–275, 1990.
- Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, [6]1(3):471-475, 1990.
- [7] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130. 1991.
- [9] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [10] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.
- [11] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received September 5, 2004