Consequences of the Sequent Calculus ${ }^{1}$

Patrick Braselmann
University of Bonn

Peter Koepke
University of Bonn

Abstract

Summary. This article is part of a series of Mizar articles which constitute a formal proof (of a basic version) of Kurt Gödel's famous completeness theorem (K. Gödel, "Die Vollständigkeit der Axiome des logischen Funktionenkalküls", Monatshefte für Mathematik und Physik 37 (1930), 349-360). The completeness theorem provides the theoretical basis for a uniform formalization of mathematics as in the Mizar project. We formalize first-order logic up to the completeness theorem as in H. D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical Logic, 1984, Springer Verlag New York Inc. The first main result of the present article is that the derivablility of a sequent doesn't depend on the ordering of the antecedent. The second main result says: if a sequent is derivable, then the formulas in the antecendent only need to occur once.

MML Identifier: CALCUL_2.

The articles [15], [16], [3], [14], [4], [1], [2], [17], [10], [6], [8], [13], [12], [9], [18], [11], [5], and [7] provide the terminology and notation for this paper.

1. f is a Subsequence of g^{f}

For simplicity, we adopt the following convention: p, q denote elements of CQC-WFF, k, m, n, i denote natural numbers, f, g denote finite sequences of elements of CQC-WFF, and a, b, b_{1}, b_{2}, c denote natural numbers.

Let m, n be natural numbers. The functor $\operatorname{seq}(m, n)$ yielding a set is defined as follows:

[^0](Def. 1) $\operatorname{seq}(m, n)=\{k: 1+m \leq k \wedge k \leq n+m\}$.
Let m, n be natural numbers. Then $\operatorname{seq}(m, n)$ is a subset of \mathbb{N}.
One can prove the following propositions:
(1) $c \in \operatorname{seq}(a, b)$ iff $1+a \leq c$ and $c \leq b+a$.
(2) $\operatorname{seq}(a, 0)=\emptyset$.
(3) $b=0$ or $b+a \in \operatorname{seq}(a, b)$.
(4) $b_{1} \leq b_{2}$ iff $\operatorname{seq}\left(a, b_{1}\right) \subseteq \operatorname{seq}\left(a, b_{2}\right)$.
(5) $\operatorname{seq}(a, b) \cup\{a+b+1\}=\operatorname{seq}(a, b+1)$.
(6) $\operatorname{seq}(m, n) \approx n$.

Let us consider m, n. Observe that $\operatorname{seq}(m, n)$ is finite.
Let us consider f. Observe that len f is finite.
Next we state a number of propositions:
(7) $\operatorname{seq}(m, n) \subseteq \operatorname{Seg}(m+n)$.
(8) $\operatorname{Seg} n$ misses $\operatorname{seq}(n, m)$.
(9) For all finite sequences f, g holds $\operatorname{Seg} \operatorname{len}(f \frown g)=\operatorname{Seg} \operatorname{len} f \cup$ seq(len $f, \operatorname{len} g)$.
(10) $\operatorname{len} \operatorname{Sgm} \operatorname{seq}(\operatorname{len} g, \operatorname{len} f)=\operatorname{len} f$.
(11) $\operatorname{dom} \operatorname{Sgm} \operatorname{seq}(\operatorname{len} g, \operatorname{len} f)=\operatorname{dom} f$.
(12) \quad rng $\operatorname{Sgmseq}(\operatorname{len} g, \operatorname{len} f)=\operatorname{seq}(\operatorname{len} g$, len $f)$.
(13) If $i \in \operatorname{dom} \operatorname{Sgm} \operatorname{seq}(\operatorname{len} g$, len $f)$, then $(\operatorname{Sgm} \operatorname{seq}(\operatorname{len} g$, len $f))(i)=\operatorname{len} g+i$.
(14) $\operatorname{seq}(\operatorname{len} g, \operatorname{len} f) \subseteq \operatorname{dom}\left(g^{\wedge} f\right)$.
(15) $\operatorname{dom}\left(\left(g^{\frown} f\right) \upharpoonright \operatorname{seq}(\operatorname{len} g, \operatorname{len} f)\right)=\operatorname{seq}(\operatorname{len} g, \operatorname{len} f)$.
(16) $\quad \operatorname{Seq}\left(\left(g^{\frown} f\right) \upharpoonright \operatorname{seq}(\operatorname{len} g, \operatorname{len} f)\right)=\operatorname{Sgm} \operatorname{seq}(\operatorname{len} g, \operatorname{len} f) \cdot\left(g^{\frown} f\right)$.
(17) $\quad \operatorname{dom} \operatorname{Seq}\left(\left(g^{\frown} f\right) \upharpoonright \operatorname{seq}(\operatorname{len} g, \operatorname{len} f)\right)=\operatorname{dom} f$.
(18) f is a subsequence of $g \frown f$.

Let D be a non empty set, let f be a finite sequence of elements of D, and let P be a permutation of $\operatorname{dom} f$. The functor $\operatorname{Per}(f, P)$ yielding a finite sequence of elements of D is defined as follows:
(Def. 2) $\operatorname{Per}(f, P)=P \cdot f$.
In the sequel P denotes a permutation of $\operatorname{dom} f$.
The following propositions are true:
(19) dom $\operatorname{Per}(f, P)=\operatorname{dom} f$.
(20) If $\vdash f \frown\langle p\rangle$, then $\vdash g^{\frown} f \frown\langle p\rangle$.

2. The Ordering of the Antecedent is Irrelevant

Let us consider f. The functor $\operatorname{Begin}(f)$ yielding an element of CQC-WFF is defined by:
(Def. 3) $\operatorname{Begin}(f)=\left\{\begin{array}{l}f(1), \text { if } 1 \leq \operatorname{len} f, \\ \text { VERUM, otherwise. }\end{array}\right.$
Let us consider f. Let us assume that $1 \leq \operatorname{len} f$. The functor $\operatorname{Impl}(f)$ yields an element of CQC-WFF and is defined by the condition (Def. 4).
(Def. 4) There exists a finite sequence F of elements of CQC-WFF such that
(i) $\operatorname{Impl}(f)=F(\operatorname{len} f)$,
(ii) $\operatorname{len} F=\operatorname{len} f$,
(iii) $\quad F(1)=\operatorname{Begin}(f)$ or len $f=0$, and
(iv) for every n such that $1 \leq n$ and $n<\operatorname{len} f$ there exist p, q such that $p=f(n+1)$ and $q=F(n)$ and $F(n+1)=p \Rightarrow q$.
We now state a number of propositions:
(21) $\vdash f \frown\langle p\rangle \frown\langle p\rangle$.
(22) If $\vdash f \frown\langle p \wedge q\rangle$, then $\vdash f \frown\langle p\rangle$.
(23) If $\vdash f \frown\langle p \wedge q\rangle$, then $\vdash f \frown\langle q\rangle$.
(24) If $\vdash f \frown\langle p\rangle$ and $\vdash f \frown\langle p\rangle \frown\langle q\rangle$, then $\vdash f \frown\langle q\rangle$.
(25) If $\vdash f \frown\langle p\rangle$ and $\vdash f \frown\langle\neg p\rangle$, then $\vdash f \frown\langle q\rangle$.
(26) If $\vdash f \frown\langle p\rangle \frown\langle q\rangle$ and $\vdash f \frown\langle\neg p\rangle \frown\langle q\rangle$, then $\vdash f \frown\langle q\rangle$.
(27) If $\vdash f \frown\langle p\rangle \frown\langle q\rangle$, then $\vdash f \frown\langle p \Rightarrow q\rangle$.
(28) If $1 \leq \operatorname{len} g$ and $\vdash f \frown g$, then $\vdash f \frown\langle\operatorname{Impl}(\operatorname{Rev}(g))\rangle$.
(29) If $\vdash(\operatorname{Per}(f, P))^{\wedge}\langle\operatorname{Impl}(\operatorname{Rev}(f \frown\langle p\rangle))\rangle$, then $\vdash(\operatorname{Per}(f, P))^{\wedge}\langle p\rangle$.
(30) If $\vdash f^{\frown}\langle p\rangle$, then $\vdash(\operatorname{Per}(f, P))^{\frown}\langle p\rangle$.

3. Multiple Occurrence in the Antecedent is Irrelevant

Let us consider n and let c be a set. We introduce $\operatorname{IdFinS}(c, n)$ as a synonym of $n \mapsto c$.

We now state the proposition
(31) For every set c such that $1 \leq n$ holds $\operatorname{rng} \operatorname{IdFinS}(c, n)=\operatorname{rng}\langle c\rangle$.

Let D be a non empty set, let n be a natural number, and let p be an element of D. Then $\operatorname{IdFinS}(p, n)$ is a finite sequence of elements of D.

The following proposition is true
(32) If $1 \leq n$ and $\vdash f \frown \operatorname{IdFinS}(p, n) \frown\langle q\rangle$, then $\vdash f \frown\langle p\rangle \frown\langle q\rangle$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[5] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Patrick Braselmann and Peter Koepke. A sequent calculus for first-order logic. Formalized Mathematics, 13(1):33-39, 2005.
[8] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[12] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ This research was carried out within the project "Wissensformate" and was financially supported by the Mathematical Institute of the University of Bonn (http://www.-wissensformate.uni-bonn.de). Preparation of the Mizar code was part of the first author's graduate work under the supervision of the second author. The authors thank Jip Veldman for his work on the final version of this article.

