Propositional Calculus for Boolean Valued Functions. Part VIII

Shunichi Kobayashi
Matsumoto University
Nagano

Summary. In this paper, we proved some elementary propositional calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC26.

The articles [5], [6], [8], [7], [9], [1], [4], [3], and [2] provide the notation and terminology for this paper.

In this paper Y denotes a non empty set and a, b, c denote elements of Boolean ${ }^{Y}$.

Let p, q be boolean-valued functions. The functor p^{\prime} nand' q yielding a function is defined as follows:
(Def. 1) $\operatorname{dom}\left(p^{\prime}\right.$ nand $\left.^{\prime} q\right)=\operatorname{dom} p \cap \operatorname{dom} q$ and for every set x such that $x \in$ $\operatorname{dom}\left(p{ }^{\prime}\right.$ nand $\left.^{\prime} q\right)$ holds $\left(p^{\prime}\right.$ nand $\left.^{\prime} q\right)(x)=p(x)$ 'nand' $q(x)$.
Let us observe that the functor p^{\prime} nand ${ }^{\prime} q$ is commutative. The functor $p{ }^{\prime}$ nor $^{\prime} q$ yielding a function is defined as follows:
(Def. 2) $\operatorname{dom}\left(p^{\prime}\right.$ nor' $\left.^{\prime} q\right)=\operatorname{dom} p \cap \operatorname{dom} q$ and for every set x such that $x \in$ $\operatorname{dom}\left(p^{\prime}\right.$ nor' q) holds (p^{\prime} nor' $\left.q\right)(x)=p(x)$ 'nor $^{\prime} q(x)$.
Let us note that the functor p^{\prime} nor $^{\prime} q$ is commutative.
Let p, q be boolean-valued functions. Note that $p{ }^{\prime}$ nand' q is boolean-valued and p^{\prime} nor' q is boolean-valued.

Let A be a non empty set and let p, q be elements of Boolean ${ }^{A}$. Then p^{\prime} nand' q is an element of Boolean ${ }^{A}$ and it can be characterized by the condition:
(Def. 3) For every element x of A holds $\left(p^{\prime}\right.$ nand $\left.^{\prime} q\right)(x)=p(x)$ 'nand $^{\prime} q(x)$.

Then p^{\prime} nor $^{\prime} q$ is an element of Boolean ${ }^{A}$ and it can be characterized by the condition:
(Def. 4) For every element x of A holds (p^{\prime} nor $\left.^{\prime} q\right)(x)=p(x)^{\prime}$ nor $^{\prime} q(x)$.
Let us consider Y and let a, b be elements of $\operatorname{BVF}(Y)$. Then a^{\prime} nand $^{\prime} b$ is an element of $\operatorname{BVF}(Y)$. Then a^{\prime} nor' b is an element of $\operatorname{BVF}(Y)$.

We now state a number of propositions:
(1) $\quad a$ 'nand' $b=\neg(a \wedge b)$.
(2) a^{\prime} nor $^{\prime} b=\neg(a \vee b)$.
(3) $\operatorname{true}(Y)$ ' nand $^{\prime} a=\neg a$.
(4) false (Y) 'nand' $a=\operatorname{true}(Y)$.
(5) false (Y) 'nand' false $(Y)=$ true (Y) and false $(Y)^{\prime}$ 'nand' true $(Y)=$ $\operatorname{true}(Y)$ and true (Y) 'nand' true $(Y)=$ false (Y).
(6) $\quad a$ ' nand $^{\prime} a=\neg a$ and $\neg\left(a^{\prime}\right.$ nand $\left.^{\prime} a\right)=a$.
(7) $\neg\left(a\right.$ ' $\left.^{\prime}{ }^{\prime}{ }^{\prime} b\right)=a \wedge b$.
(8) $a{ }^{\prime}$ nand $^{\prime} \neg a=\operatorname{true}(Y)$ and $\neg\left(a^{\prime}\right.$ nand $\left.^{\prime} \neg a\right)=$ false (Y).
(9) a^{\prime} nand $^{\prime} b \wedge c=\neg(a \wedge b \wedge c)$.
(10) a 'nand $^{\prime} b \wedge c=a \wedge b^{\prime}$ nand $^{\prime} c$.
(11) $a{ }^{\prime}$ nand $^{\prime}(b \vee c)=\neg(a \wedge b) \wedge \neg(a \wedge c)$.
(12) $\quad a{ }^{\prime}$ nand $^{\prime}(b \oplus c)=a \wedge b \Leftrightarrow a \wedge c$.
(13) $\quad a$ 'nand' $\left(b^{\prime}\right.$ nand $\left.^{\prime} c\right)=\neg a \vee b \wedge c$ and $a ~ ' n a n d ' ~_{\prime}\left(b^{\prime}\right.$ nand $\left.^{\prime} c\right)=a \Rightarrow b \wedge c$.
(14) $\quad a$ 'nand $^{\prime}\left(b^{\prime}\right.$ nor $\left.^{\prime} c\right)=\neg a \vee b \vee c$ and a^{\prime} nand $^{\prime}\left(b^{\prime}\right.$ nor $\left.^{\prime} c\right)=a \Rightarrow b \vee c$.
(15) $\quad a$ ' nand $^{\prime}(b \Leftrightarrow c)=a \Rightarrow b \oplus c$.
(16) a 'nand' $a \wedge b=a^{\prime}$ nand $^{\prime} b$.
(17) $a{ }^{\prime}$ nand $^{\prime}(a \vee b)=\neg a \wedge \neg(a \wedge b)$.
(18) $\quad a$ ' nand $^{\prime}(a \Leftrightarrow b)=a \Rightarrow a \oplus b$.
(19) a 'nand' $\left(a^{\prime}\right.$ nand $\left.^{\prime} b\right)=\neg a \vee b$ and a^{\prime} nand $^{\prime}\left(a^{\prime}\right.$ nand $\left.^{\prime} b\right)=a \Rightarrow b$.
(20) a 'nand' $\left(a{ }^{\prime}\right.$ nor' $\left.^{\prime} b\right)=\operatorname{true}(Y)$.
(21) a ' $\operatorname{nand}^{\prime}(a \Leftrightarrow b)=\neg a \vee \neg b$.
(22) $a \wedge b=a^{\prime}$ nand $^{\prime} b^{\prime}$ nand $^{\prime}\left(a^{\prime}\right.$ nand $\left.^{\prime} b\right)$.
(23) $\quad a$ 'nand $b^{\prime} b^{\prime}$ nand $^{\prime}\left(a{ }^{\prime}\right.$ nand $\left.^{\prime} c\right)=a \wedge(b \vee c)$.
(24) $\quad a$ ' nand $^{\prime}(b \Rightarrow c)=(\neg a \vee b) \wedge \neg(a \wedge c)$.
(25) $\quad a$ 'nand $^{\prime}(a \Rightarrow b)=\neg(a \wedge b)$.
(26) true (Y) 'nor' $a=$ false (Y).
(27) false (Y) ' nor' $^{\prime} a=\neg a$.
(28) false (Y) 'nor' false $(Y)=$ true (Y) and false $(Y)^{\prime}$ 'nor' true $(Y)=$ false (Y) and true $(Y)^{\prime}$ 'nor' $\operatorname{true}(Y)=$ false (Y).
(29) $\quad a{ }^{\prime}$ nor $^{\prime} a=\neg a$ and $\neg\left(a{ }^{\prime}\right.$ nor $\left.^{\prime} a\right)=a$.
(30) $\neg\left(a{ }^{\prime}\right.$ nor $\left.^{\prime} b\right)=a \vee b$.
(31) $a^{\prime} \operatorname{nor}^{\prime} \neg a=\operatorname{false}(Y)$ and $\neg\left(a^{\prime}\right.$ nor' $\left.^{\prime} \neg a\right)=\operatorname{true}(Y)$.
(32) $\neg a \wedge(a \oplus b)=\neg a \wedge b$.
(33) $a{ }^{\prime}$ nor' $^{\prime} b \wedge c=\neg(a \vee b) \vee \neg(a \vee c)$.
(34) $a{ }^{\prime}$ nor' $^{\prime}(b \vee c)=\neg(a \vee b \vee c)$.
(35) $a ~^{\prime} \mathrm{nor}^{\prime}(b \Leftrightarrow c)=\neg a \wedge(b \oplus c)$.
(36) a^{\prime} nor' $^{\prime}(b \Rightarrow c)=\neg a \wedge b \wedge \neg c$.
(37) $a{ }^{\prime}$ nor $^{\prime}\left(b{ }^{\prime}\right.$ nand $\left.^{\prime} c\right)=\neg a \wedge b \wedge c$.
(38) $a^{\prime} \mathrm{nor}^{\prime}\left(b^{\prime} \mathrm{nor}^{\prime} c\right)=\neg a \wedge(b \vee c)$.
(39) a^{\prime} nor' $^{\prime} a \wedge b=\neg(a \wedge(a \vee b))$.
(40) a^{\prime} nor $^{\prime}(a \vee b)=\neg(a \vee b)$.
(41) $a{ }^{\prime}$ nor' $^{\prime}(a \Leftrightarrow b)=\neg a \wedge b$.
(42) a^{\prime} nor' $^{\prime}(a \Rightarrow b)=\operatorname{false}(Y)$.
(43) a 'nor' $(a$ 'nand' $b)=$ false (Y).
(44) $a{ }^{\prime}$ nor' $^{\prime}\left(a{ }^{\prime}\right.$ nor $\left.^{\prime} b\right)=\neg a \wedge b$.
(45) $\quad \operatorname{false}(Y) \Leftrightarrow \operatorname{false}(Y)=\operatorname{true}(Y)$.
(46) $\quad \operatorname{false}(Y) \Leftrightarrow \operatorname{true}(Y)=\operatorname{false}(Y)$.
(47) $\quad \operatorname{true}(Y) \Leftrightarrow \operatorname{true}(Y)=\operatorname{true}(Y)$.
(48) $\quad a \Leftrightarrow a=\operatorname{true}(Y)$ and $\neg(a \Leftrightarrow a)=\operatorname{false}(Y)$.
(49) $a \Leftrightarrow a \vee b=a \vee \neg b$.
(50) $a \wedge\left(b\right.$ 'nand $\left.^{\prime} c\right)=a \wedge \neg b \vee a \wedge \neg c$.
(51) $a \vee\left(b\right.$ 'nand $\left.^{\prime} c\right)=a \vee \neg b \vee \neg c$.
(52) $a \oplus\left(b^{\prime}\right.$ nand $\left.^{\prime} c\right)=\neg a \wedge \neg(b \wedge c) \vee a \wedge b \wedge c$.
(53) $a \Leftrightarrow b$ 'nand' $^{\prime} c=a \wedge \neg(b \wedge c) \vee \neg a \wedge b \wedge c$.
(54) $a \Rightarrow b$ ' $^{\prime}$ and ${ }^{\prime} c=\neg(a \wedge b \wedge c)$.
(55) a 'nor' $\left(b{ }^{\prime}\right.$ nand $\left.^{\prime} c\right)=\neg(a \vee \neg b \vee \neg c)$.
(56) $a \wedge\left(a^{\prime}\right.$ nand $\left.^{\prime} b\right)=a \wedge \neg b$.
(57) $a \vee\left(a\right.$ 'nand' $\left.^{\prime} b\right)=\operatorname{true}(Y)$.
(58) $a \oplus\left(a{ }^{\prime}\right.$ nand' $\left.^{\prime} b\right)=\neg a \vee b$.
(59) $a \Leftrightarrow a a^{\prime}$ nand $^{\prime} b=a \wedge \neg b$.
(60) $a \Rightarrow a^{\prime}$ nand' $^{\prime} b=\neg(a \wedge b)$.
(61) a 'nor' $\left(a{ }^{\prime}\right.$ nand $\left.^{\prime} b\right)=$ false (Y).
(62) $a \wedge\left(b^{\prime}\right.$ nor' $\left.^{\prime} c\right)=a \wedge \neg b \wedge \neg c$.
(63) $a \vee\left(b^{\prime}\right.$ nor' $\left.^{\prime} c\right)=(a \vee \neg b) \wedge(a \vee \neg c)$.
(64) $a \oplus\left(b^{\prime}\right.$ nor' $\left.^{\prime} c\right)=(a \vee \neg(b \vee c)) \wedge(\neg a \vee b \vee c)$.
(65) $a \Leftrightarrow b^{\prime}$ nor' $^{\prime} c=(a \vee b \vee c) \wedge(\neg a \vee \neg(b \vee c))$.
(66) $a \Rightarrow b^{\prime}$ nor $^{\prime} c=\neg(a \wedge(b \vee c))$.
(67) a 'nand' $\left(b\right.$ 'nor' $\left.^{\prime} c\right)=\neg a \vee b \vee c$.
(68) $a \wedge\left(a^{\prime}\right.$ nor $\left.^{\prime} b\right)=$ false (Y).
(69) $a \vee\left(a^{\prime}\right.$ nor $\left.^{\prime} b\right)=a \vee \neg b$.
(70) $\quad a \oplus\left(a^{\prime}\right.$ nor $\left.^{\prime} b\right)=a \vee \neg b$.
(71) $\quad a \Leftrightarrow a^{\prime}$ nor' $^{\prime} b=\neg a \wedge b$.
(72) $\quad a \Rightarrow a^{\prime}$ nor $^{\prime} b=\neg(a \vee a \wedge b)$.
(73) a 'nand' $\left(a^{\prime}\right.$ nor' $\left.^{\prime} b\right)=\operatorname{true}(Y)$.

Acknowledgments

This research was partially supported by the research funds of the Matsumoto University.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Shunichi Kobayashi. On the calculus of binary arithmetics. Formalized Mathematics, 11(4):417-419, 2003.
[3] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
[4] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, $1(3): 495-500,1990$.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[7] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. Formalized Mathematics, 1(4):739-743, 1990.
[8] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[9] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, $1(\mathbf{1}): 73-83,1990$.

Received September 5, 2004

