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Poland

Summary. Here, the so called Fashoda Meet Theorem is proven in the

case of rectangles. All cases of proper location of arcs are listed up, and it is

shown that the theorem is valid in each case. Such a list of cases will be useful

when one wants to apply the theorem.
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The articles [1], [6], [15], [17], [5], [2], [3], [16], [7], [14], [13], [10], [11], [8], [4],
[9], and [12] provide the notation and terminology for this paper.

One can prove the following propositions:
(1) For all real numbers a, b, d and for every point p of E2

T such that a < b

and p2 = d and a ≤ p1 and p1 ≤ b holds p ∈ L([a, d], [b, d]).
(2) Let n be a natural number, P be a subset of En

T, and p1, p2 be points of
En

T. Suppose P is an arc from p1 to p2. Then there exists a map f from
I into En

T such that f is continuous and one-to-one and rng f = P and
f(0) = p1 and f(1) = p2.

(3) Let p1, p2 be points of E2
T and b, c, d be real numbers. If (p1)1 < b

and (p1)1 = (p2)1 and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d, then
p1 ≤Rectangle((p1)1,b,c,d) p2.

(4) Let p1, p2 be points of E2
T and b, c be real numbers. Suppose (p1)1 < b

and c < (p2)2 and c ≤ (p1)2 and (p1)2 ≤ (p2)2 and (p1)1 ≤ (p2)1 and
(p2)1 ≤ b. Then p1 ≤Rectangle((p1)1,b,c,(p2)2) p2.

(5) Let p1, p2 be points of E2
T and c, d be real numbers. Suppose (p1)1 <

(p2)1 and c < d and c ≤ (p1)2 and (p1)2 ≤ d and c ≤ (p2)2 and (p2)2 ≤ d.

Then p1 ≤Rectangle((p1)1,(p2)1,c,d) p2.
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(6) Let p1, p2 be points of E2
T and b, d be real numbers. If (p2)2 < d and

(p2)2 ≤ (p1)2 and (p1)2 ≤ d and (p1)1 < (p2)1 and (p2)1 ≤ b, then
p1 ≤Rectangle((p1)1,b,(p2)2,d) p2.

(7) Let p1, p2 be points of E2
T and a, b, c, d be real numbers. Suppose a < b

and c < d and (p1)2 = d and (p2)2 = d and a ≤ (p1)1 and (p1)1 < (p2)1
and (p2)1 ≤ b. Then p1 ≤Rectangle(a,b,c,d) p2.

(8) Let p1, p2 be points of E2
T and a, b, c, d be real numbers. Suppose a < b

and c < d and (p1)2 = d and (p2)1 = b and a ≤ (p1)1 and (p1)1 ≤ b and
c ≤ (p2)2 and (p2)2 ≤ d. Then p1 ≤Rectangle(a,b,c,d) p2.

(9) Let p1, p2 be points of E2
T and a, b, c, d be real numbers. Suppose a < b

and c < d and (p1)2 = d and (p2)2 = c and a ≤ (p1)1 and (p1)1 ≤ b and
a < (p2)1 and (p2)1 ≤ b. Then p1 ≤Rectangle(a,b,c,d) p2.

(10) Let p1, p2 be points of E2
T and a, b, c, d be real numbers. Suppose a < b

and c < d and (p1)1 = b and (p2)1 = b and c ≤ (p2)2 and (p2)2 < (p1)2
and (p1)2 ≤ d. Then p1 ≤Rectangle(a,b,c,d) p2.

(11) Let p1, p2 be points of E2
T and a, b, c, d be real numbers. Suppose a < b

and c < d and (p1)1 = b and (p2)2 = c and c ≤ (p1)2 and (p1)2 ≤ d and
a < (p2)1 and (p2)1 ≤ b. Then p1 ≤Rectangle(a,b,c,d) p2.

(12) Let p1, p2 be points of E2
T and a, b, c, d be real numbers. Suppose a < b

and c < d and (p1)2 = c and (p2)2 = c and a < (p2)1 and (p2)1 < (p1)1
and (p1)1 ≤ b. Then p1 ≤Rectangle(a,b,c,d) p2.

(13) Let p1, p2 be points of E2
T and a, b, c, d be real numbers. Suppose a < b

and c < d and (p1)2 = d and (p2)1 = b and a ≤ (p1)1 and (p1)1 ≤ b and
c ≤ (p2)2 and (p2)2 ≤ d. Then p1 ≤Rectangle(a,b,c,d) p2.

(14) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = a and (p3)1 = a and (p4)1 = a

and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 < (p3)2 and (p3)2 < (p4)2 and
(p4)2 ≤ d. Then p1, p2, p3, p4 are in this order on Rectangle(a, b, c, d).

(15) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = a and (p3)1 = a and
(p4)2 = d and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 < (p3)2 and (p3)2 ≤ d

and a ≤ (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(16) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = a and (p3)1 = a and
(p4)1 = b and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 < (p3)2 and (p3)2 ≤ d

and c ≤ (p4)2 and (p4)2 ≤ d. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(17) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = a and (p3)1 = a and
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(p4)2 = c and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 < (p3)2 and (p3)2 ≤ d

and a < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(18) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = a and (p3)2 = d and
(p4)2 = d and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d and a ≤ (p3)1
and (p3)1 < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(19) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = a and (p3)2 = d and (p4)1 = b

and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d and a ≤ (p3)1 and
(p3)1 ≤ b and c ≤ (p4)2 and (p4)2 ≤ d. Then p1, p2, p3, p4 are in this
order on Rectangle(a, b, c, d).

(20) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = a and (p3)2 = d and (p4)2 = c

and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d and a ≤ (p3)1 and
(p3)1 ≤ b and a < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this
order on Rectangle(a, b, c, d).

(21) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = a and (p3)1 = b and
(p4)1 = b and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d and c ≤ (p4)2
and (p4)2 < (p3)2 and (p3)2 ≤ d. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(22) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = a and (p3)1 = b and
(p4)2 = c and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d and c ≤ (p3)2
and (p3)2 ≤ d and a < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this
order on Rectangle(a, b, c, d).

(23) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = a and (p3)2 = c and
(p4)2 = c and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d and a < (p4)1
and (p4)1 < (p3)1 and (p3)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(24) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)2 = d and (p3)2 = d and
(p4)2 = d and c ≤ (p1)2 and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 < (p3)1
and (p3)1 < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(25) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)2 = d and (p3)2 = d and (p4)1 = b

and c ≤ (p1)2 and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 < (p3)1 and
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(p3)1 ≤ b and c ≤ (p4)2 and (p4)2 ≤ d. Then p1, p2, p3, p4 are in this
order on Rectangle(a, b, c, d).

(26) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)2 = d and (p3)2 = d and (p4)2 = c

and c ≤ (p1)2 and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 < (p3)1 and
(p3)1 ≤ b and a < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this
order on Rectangle(a, b, c, d).

(27) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)2 = d and (p3)1 = b and (p4)1 = b

and c ≤ (p1)2 and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 ≤ b and c ≤ (p4)2
and (p4)2 < (p3)2 and (p3)2 ≤ d. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(28) Let p1, p2, p3, p4 be points of E2
T. Suppose (p1)1 6= (p3)1 and

(p4)2 6= (p2)2 and (p4)2 ≤ (p1)2 and (p1)2 ≤ (p2)2 and (p1)1 ≤ (p2)1
and (p2)1 ≤ (p3)1 and (p4)2 ≤ (p3)2 and (p3)2 ≤ (p2)2 and (p1)1 <

(p4)1 and (p4)1 ≤ (p3)1. Then p1, p2, p3, p4 are in this order on
Rectangle((p1)1, (p3)1, (p4)2, (p2)2).

(29) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)2 = d and (p3)2 = c and (p4)2 = c

and c ≤ (p1)2 and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 ≤ b and a < (p4)1
and (p4)1 < (p3)1 and (p3)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(30) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = b and (p3)1 = b and (p4)1 = b

and c ≤ (p1)2 and (p1)2 ≤ d and d ≥ (p2)2 and (p2)2 > (p3)2 and
(p3)2 > (p4)2 and (p4)2 ≥ c. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(31) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = b and (p3)1 = b and (p4)2 = c

and c ≤ (p1)2 and (p1)2 ≤ d and d ≥ (p2)2 and (p2)2 > (p3)2 and
(p3)2 ≥ c and a < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this
order on Rectangle(a, b, c, d).

(32) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)1 = b and (p3)2 = c and (p4)2 = c

and c ≤ (p1)2 and (p1)2 ≤ d and c ≤ (p2)2 and (p2)2 ≤ d and a < (p4)1
and (p4)1 < (p3)1 and (p3)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(33) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = a and (p2)2 = c and (p3)2 = c and (p4)2 = c

and c ≤ (p1)2 and (p1)2 ≤ d and a < (p4)1 and (p4)1 < (p3)1 and
(p3)1 < (p2)1 and (p2)1 ≤ b. Then p1, p2, p3, p4 are in this order on



the fashoda meet theorem for rectangles 203

Rectangle(a, b, c, d).

(34) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = d and (p2)2 = d and (p3)2 = d and (p4)2 = d

and a ≤ (p1)1 and (p1)1 < (p2)1 and (p2)1 < (p3)1 and (p3)1 < (p4)1 and
(p4)1 ≤ b. Then p1, p2, p3, p4 are in this order on Rectangle(a, b, c, d).

(35) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = d and (p2)2 = d and (p3)2 = d and
(p4)1 = b and a ≤ (p1)1 and (p1)1 < (p2)1 and (p2)1 < (p3)1 and (p3)1 ≤ b

and c ≤ (p4)2 and (p4)2 ≤ d. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(36) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = d and (p2)2 = d and (p3)2 = d and
(p4)2 = c and a ≤ (p1)1 and (p1)1 < (p2)1 and (p2)1 < (p3)1 and (p3)1 ≤ b

and a < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(37) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = d and (p2)2 = d and (p3)1 = b and (p4)1 = b

and a ≤ (p1)1 and (p1)1 < (p2)1 and (p2)1 ≤ b and c ≤ (p4)2 and
(p4)2 < (p3)2 and (p3)2 ≤ d. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(38) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = d and (p2)2 = d and (p3)1 = b and (p4)2 = c

and a ≤ (p1)1 and (p1)1 < (p2)1 and (p2)1 ≤ b and c ≤ (p3)2 and
(p3)2 ≤ d and a < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this
order on Rectangle(a, b, c, d).

(39) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = d and (p2)2 = d and (p3)2 = c and (p4)2 = c

and a ≤ (p1)1 and (p1)1 < (p2)1 and (p2)1 ≤ b and a < (p4)1 and
(p4)1 < (p3)1 and (p3)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(40) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = d and (p2)1 = b and (p3)1 = b and (p4)1 = b

and a ≤ (p1)1 and (p1)1 ≤ b and d ≥ (p2)2 and (p2)2 > (p3)2 and
(p3)2 > (p4)2 and (p4)2 ≥ c. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(41) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = d and (p2)1 = b and (p3)1 = b and (p4)2 = c

and a ≤ (p1)1 and (p1)1 ≤ b and d ≥ (p2)2 and (p2)2 > (p3)2 and
(p3)2 ≥ c and a < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this
order on Rectangle(a, b, c, d).
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(42) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = d and (p2)1 = b and (p3)2 = c and (p4)2 = c

and a ≤ (p1)1 and (p1)1 ≤ b and c ≤ (p2)2 and (p2)2 ≤ d and a < (p4)1
and (p4)1 < (p3)1 and (p3)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(43) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = d and (p2)2 = c and (p3)2 = c and (p4)2 = c

and a ≤ (p1)1 and (p1)1 ≤ b and a < (p4)1 and (p4)1 < (p3)1 and
(p3)1 < (p2)1 and (p2)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(44) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = b and (p2)1 = b and (p3)1 = b and (p4)1 = b

and d ≥ (p1)2 and (p1)2 > (p2)2 and (p2)2 > (p3)2 and (p3)2 > (p4)2 and
(p4)2 ≥ c. Then p1, p2, p3, p4 are in this order on Rectangle(a, b, c, d).

(45) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = b and (p2)1 = b and (p3)1 = b and (p4)2 =
c and d ≥ (p1)2 and (p1)2 > (p2)2 and (p2)2 > (p3)2 and (p3)2 ≥ c

and a < (p4)1 and (p4)1 ≤ b. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(46) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = b and (p2)1 = b and (p3)2 = c and (p4)2 = c

and d ≥ (p1)2 and (p1)2 > (p2)2 and (p2)2 ≥ c and b ≥ (p3)1 and
(p3)1 > (p4)1 and (p4)1 > a. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(47) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)1 = b and (p2)2 = c and (p3)2 = c and (p4)2 = c

and c ≤ (p1)2 and (p1)2 ≤ d and b ≥ (p2)1 and (p2)1 > (p3)1 and
(p3)1 > (p4)1 and (p4)1 > a. Then p1, p2, p3, p4 are in this order on
Rectangle(a, b, c, d).

(48) Let p1, p2, p3, p4 be points of E2
T and a, b, c, d be real numbers. Suppose

a < b and c < d and (p1)2 = c and (p2)2 = c and (p3)2 = c and (p4)2 = c

and b ≥ (p1)1 and (p1)1 > (p2)1 and (p2)1 > (p3)1 and (p3)1 > (p4)1 and
(p4)1 > a. Then p1, p2, p3, p4 are in this order on Rectangle(a, b, c, d).

(49) Let A, B, C, D be real numbers and h, g be maps from E2
T into E2

T.
Suppose A > 0 and C > 0 and h = AffineMap(A,B, C, D) and g =
AffineMap( 1

A ,−B
A , 1

C ,−D
C ). Then g = h−1 and h = g−1.

(50) Let A, B, C, D be real numbers and h be a map from E2
T into E2

T.
Suppose A > 0 and C > 0 and h = AffineMap(A,B, C, D). Then h is a
homeomorphism and for all points p1, p2 of E2

T such that (p1)1 < (p2)1
holds h(p1)1 < h(p2)1.
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(51) Let A, B, C, D be real numbers and h be a map from E2
T into E2

T.
Suppose A > 0 and C > 0 and h = AffineMap(A,B, C, D). Then h is a
homeomorphism and for all points p1, p2 of E2

T such that (p1)2 < (p2)2
holds h(p1)2 < h(p2)2.

(52) Let a, b, c, d be real numbers, h be a map from E2
T

into E2
T, and f be a map from I into E2

T. Suppose a <

b and c < d and h = AffineMap( 2
b−a ,− b+a

b−a , 2
d−c ,−

d+c
d−c) and

rng f ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng(h · f) ⊆
ClosedInsideOfRectangle(−1, 1,−1, 1).

(53) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, and
f be a map from I into E2

T. Suppose a < b and c < d and h =
AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and f is continuous and one-to-one.

Then h · f is continuous and one-to-one.

(54) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O be a point of I. Suppose a < b and c < d and h =
AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and f(O)1 = a. Then (h · f)(O)1 = −1.

(55) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and I be a point of I. Suppose a < b and c < d and h =
AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and f(I)2 = d. Then (h · f)(I)2 = 1.

(56) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and I be a point of I. Suppose a < b and c < d and h =
AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and f(I)1 = b. Then (h · f)(I)1 = 1.

(57) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and I be a point of I. Suppose a < b and c < d and h =
AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and f(I)2 = c. Then (h · f)(I)2 = −1.

(58) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O, I be points of I. Suppose a < b and c < d and
h = AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and c ≤ f(O)2 and f(O)2 < f(I)2

and f(I)2 ≤ d. Then −1 ≤ (h · f)(O)2 and (h · f)(O)2 < (h · f)(I)2 and
(h · f)(I)2 ≤ 1.

(59) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O, I be points of I. Suppose a < b and c < d and
h = AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and c ≤ f(O)2 and f(O)2 ≤ d and

a ≤ f(I)1 and f(I)1 ≤ b. Then −1 ≤ (h · f)(O)2 and (h · f)(O)2 ≤ 1 and
−1 ≤ (h · f)(I)1 and (h · f)(I)1 ≤ 1.

(60) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O, I be points of I. Suppose a < b and c < d and
h = AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and c ≤ f(O)2 and f(O)2 ≤ d and

c ≤ f(I)2 and f(I)2 ≤ d. Then −1 ≤ (h · f)(O)2 and (h · f)(O)2 ≤ 1 and
−1 ≤ (h · f)(I)2 and (h · f)(I)2 ≤ 1.
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(61) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O, I be points of I. Suppose a < b and c < d and
h = AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and c ≤ f(O)2 and f(O)2 ≤ d and

a < f(I)1 and f(I)1 ≤ b. Then −1 ≤ (h · f)(O)2 and (h · f)(O)2 ≤ 1 and
−1 < (h · f)(I)1 and (h · f)(I)1 ≤ 1.

(62) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O, I be points of I. Suppose a < b and c < d and
h = AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and a ≤ f(O)1 and f(O)1 < f(I)1

and f(I)1 ≤ b. Then −1 ≤ (h · f)(O)1 and (h · f)(O)1 < (h · f)(I)1 and
(h · f)(I)1 ≤ 1.

(63) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O, I be points of I. Suppose a < b and c < d and
h = AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and a ≤ f(O)1 and f(O)1 ≤ b and

c ≤ f(I)2 and f(I)2 ≤ d. Then −1 ≤ (h · f)(O)1 and (h · f)(O)1 ≤ 1 and
−1 ≤ (h · f)(I)2 and (h · f)(I)2 ≤ 1.

(64) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O, I be points of I. Suppose a < b and c < d and
h = AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and a ≤ f(O)1 and f(O)1 ≤ b and

a < f(I)1 and f(I)1 ≤ b. Then −1 ≤ (h · f)(O)1 and (h · f)(O)1 ≤ 1 and
−1 < (h · f)(I)1 and (h · f)(I)1 ≤ 1.

(65) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O, I be points of I. Suppose a < b and c < d and
h = AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and d ≥ f(O)2 and f(O)2 > f(I)2

and f(I)2 ≥ c. Then 1 ≥ (h · f)(O)2 and (h · f)(O)2 > (h · f)(I)2 and
(h · f)(I)2 ≥ −1.

(66) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O, I be points of I. Suppose a < b and c < d and
h = AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and c ≤ f(O)2 and f(O)2 ≤ d and

a < f(I)1 and f(I)1 ≤ b. Then −1 ≤ (h · f)(O)2 and (h · f)(O)2 ≤ 1 and
−1 < (h · f)(I)1 and (h · f)(I)1 ≤ 1.

(67) Let a, b, c, d be real numbers, h be a map from E2
T into E2

T, f be a map
from I into E2

T, and O, I be points of I. Suppose a < b and c < d and
h = AffineMap( 2

b−a ,− b+a
b−a , 2

d−c ,−
d+c
d−c) and a < f(I)1 and f(I)1 < f(O)1

and f(O)1 ≤ b. Then −1 < (h · f)(I)1 and (h · f)(I)1 < (h · f)(O)1 and
(h · f)(O)1 ≤ 1.

One can prove the following propositions:
(68) Let p1, p2, p3, p4 be points of E2

T, a, b, c, d be real numbers, and f , g

be maps from I into E2
T. Suppose that a < b and c < d and (p1)1 = a and

(p2)1 = a and (p3)1 = a and (p4)1 = a and c ≤ (p1)2 and (p1)2 < (p2)2 and
(p2)2 < (p3)2 and (p3)2 < (p4)2 and (p4)2 ≤ d and f(0) = p1 and f(1) =
p3 and g(0) = p2 and g(1) = p4 and f is continuous and one-to-one and g is
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continuous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d)
and rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(69) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a and

(p2)1 = a and (p3)1 = a and (p4)1 = a and c ≤ (p1)2 and (p1)2 < (p2)2 and
(p2)2 < (p3)2 and (p3)2 < (p4)2 and (p4)2 ≤ d and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(70) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = a and (p3)1 = a and (p4)2 = d and c ≤ (p1)2
and (p1)2 < (p2)2 and (p2)2 < (p3)2 and (p3)2 ≤ d and a ≤ (p4)1
and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(71) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)1 = a and (p3)1 = a and (p4)2 = d and c ≤ (p1)2 and
(p1)2 < (p2)2 and (p2)2 < (p3)2 and (p3)2 ≤ d and a ≤ (p4)1
and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is an arc
from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and Q ⊆
ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(72) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = a and (p3)1 = a and (p4)1 = b and c ≤ (p1)2
and (p1)2 < (p2)2 and (p2)2 < (p3)2 and (p3)2 ≤ d and c ≤ (p4)2
and (p4)2 ≤ d and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(73) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)1 = a and (p3)1 = a and (p4)1 = b and c ≤ (p1)2 and
(p1)2 < (p2)2 and (p2)2 < (p3)2 and (p3)2 ≤ d and c ≤ (p4)2
and (p4)2 ≤ d and P is an arc from p1 to p3 and Q is an arc
from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and Q ⊆
ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(74) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = a and (p3)1 = a and (p4)2 = c and c ≤ (p1)2
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and (p1)2 < (p2)2 and (p2)2 < (p3)2 and (p3)2 ≤ d and a < (p4)1
and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(75) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)1 = a and (p3)1 = a and (p4)2 = c and c ≤ (p1)2 and
(p1)2 < (p2)2 and (p2)2 < (p3)2 and (p3)2 ≤ d and a < (p4)1
and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is an arc
from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and Q ⊆
ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(76) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = a and (p3)2 = d and (p4)2 = d and c ≤ (p1)2
and (p1)2 < (p2)2 and (p2)2 ≤ d and a ≤ (p3)1 and (p3)1 < (p4)1
and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(77) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a and (p2)1 = a

and (p3)2 = d and (p4)2 = d and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d

and a ≤ (p3)1 and (p3)1 < (p4)1 and (p4)1 ≤ b and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(78) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = a and (p3)2 = d and (p4)1 = b and c ≤ (p1)2
and (p1)2 < (p2)2 and (p2)2 ≤ d and a ≤ (p3)1 and (p3)1 ≤ b and
c ≤ (p4)2 and (p4)2 ≤ d and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(79) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)1 = a and (p3)2 = d and (p4)1 = b and c ≤ (p1)2 and
(p1)2 < (p2)2 and (p2)2 ≤ d and a ≤ (p3)1 and (p3)1 ≤ b and
c ≤ (p4)2 and (p4)2 ≤ d and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.
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(80) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = a and (p3)2 = d and (p4)2 = c and c ≤ (p1)2
and (p1)2 < (p2)2 and (p2)2 ≤ d and a ≤ (p3)1 and (p3)1 ≤ b and
a < (p4)1 and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(81) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)1 = a and (p3)2 = d and (p4)2 = c and c ≤ (p1)2 and
(p1)2 < (p2)2 and (p2)2 ≤ d and a ≤ (p3)1 and (p3)1 ≤ b and
a < (p4)1 and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(82) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = a and (p3)1 = b and (p4)1 = b and c ≤ (p1)2
and (p1)2 < (p2)2 and (p2)2 ≤ d and c ≤ (p4)2 and (p4)2 < (p3)2
and (p3)2 ≤ d and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(83) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a and (p2)1 = a

and (p3)1 = b and (p4)1 = b and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d

and c ≤ (p4)2 and (p4)2 < (p3)2 and (p3)2 ≤ d and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(84) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = a and (p3)1 = b and (p4)2 = c and c ≤ (p1)2
and (p1)2 < (p2)2 and (p2)2 ≤ d and c ≤ (p3)2 and (p3)2 ≤ d and
a < (p4)1 and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(85) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)1 = a and (p3)1 = b and (p4)2 = c and c ≤ (p1)2 and
(p1)2 < (p2)2 and (p2)2 ≤ d and c ≤ (p3)2 and (p3)2 ≤ d and
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a < (p4)1 and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(86) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = a and (p3)2 = c and (p4)2 = c and c ≤ (p1)2
and (p1)2 < (p2)2 and (p2)2 ≤ d and a < (p4)1 and (p4)1 < (p3)1
and (p3)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(87) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a and (p2)1 = a

and (p3)2 = c and (p4)2 = c and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d

and a < (p4)1 and (p4)1 < (p3)1 and (p3)1 ≤ b and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(88) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)2 = d and (p3)2 = d and (p4)2 = d and c ≤ (p1)2
and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 < (p3)1 and (p3)1 < (p4)1
and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(89) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)2 = d and (p3)2 = d and (p4)2 = d and c ≤ (p1)2 and
(p1)2 ≤ d and a ≤ (p2)1 and (p2)1 < (p3)1 and (p3)1 < (p4)1
and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is an arc
from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and Q ⊆
ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(90) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)2 = d and (p3)2 = d and (p4)1 = b and c ≤ (p1)2
and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 < (p3)1 and (p3)1 ≤ b and
c ≤ (p4)2 and (p4)2 ≤ d and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(91) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,
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Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)2 = d and (p3)2 = d and (p4)1 = b and c ≤ (p1)2 and
(p1)2 ≤ d and a ≤ (p2)1 and (p2)1 < (p3)1 and (p3)1 ≤ b and
c ≤ (p4)2 and (p4)2 ≤ d and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(92) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)2 = d and (p3)2 = d and (p4)2 = c and c ≤ (p1)2
and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 < (p3)1 and (p3)1 ≤ b and
a < (p4)1 and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(93) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)2 = d and (p3)2 = d and (p4)2 = c and c ≤ (p1)2 and
(p1)2 ≤ d and a ≤ (p2)1 and (p2)1 < (p3)1 and (p3)1 ≤ b and
a < (p4)1 and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(94) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)2 = d and (p3)1 = b and (p4)1 = b and c ≤ (p1)2
and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 ≤ b and c ≤ (p4)2 and
(p4)2 < (p3)2 and (p3)2 ≤ d and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(95) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers,

and P , Q be subsets of E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)2 = d and (p3)1 = b and (p4)1 = b and c ≤ (p1)2
and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 ≤ b and c ≤ (p4)2 and
(p4)2 < (p3)2 and (p3)2 ≤ d and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(96) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and f , g

be maps from I into E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)2 = d and (p3)1 = b and (p4)2 = c and c ≤ (p1)2 and (p1)2 ≤ d

and a ≤ (p2)1 and (p2)1 ≤ b and c ≤ (p3)2 and (p3)2 ≤ d and a <

(p4)1 and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
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g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(97) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)2 = d and (p3)1 = b and (p4)2 = c and c ≤ (p1)2 and
(p1)2 ≤ d and a ≤ (p2)1 and (p2)1 ≤ b and c ≤ (p3)2 and (p3)2 ≤ d

and a < (p4)1 and (p4)1 ≤ b and P is an arc from p1 to p3 and Q

is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(98) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)2 = d and (p3)2 = c and (p4)2 = c and c ≤ (p1)2
and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 ≤ b and a < (p4)1 and
(p4)1 < (p3)1 and (p3)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(99) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers,

and P , Q be subsets of E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)2 = d and (p3)2 = c and (p4)2 = c and c ≤ (p1)2
and (p1)2 ≤ d and a ≤ (p2)1 and (p2)1 ≤ b and a < (p4)1 and
(p4)1 < (p3)1 and (p3)1 ≤ b and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(100) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = b and (p3)1 = b and (p4)1 = b and c ≤ (p1)2
and (p1)2 ≤ d and c ≤ (p4)2 and (p4)2 < (p3)2 and (p3)2 < (p2)2
and (p2)2 ≤ d and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(101) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a and (p2)1 = b

and (p3)1 = b and (p4)1 = b and c ≤ (p1)2 and (p1)2 ≤ d and c ≤ (p4)2 and
(p4)2 < (p3)2 and (p3)2 < (p2)2 and (p2)2 ≤ d and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(102) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and
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(p1)1 = a and (p2)1 = b and (p3)1 = b and (p4)2 = c and c ≤ (p1)2
and (p1)2 ≤ d and c ≤ (p3)2 and (p3)2 < (p2)2 and (p2)2 ≤ d and
a < (p4)1 and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(103) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a

and (p2)1 = b and (p3)1 = b and (p4)2 = c and c ≤ (p1)2 and
(p1)2 ≤ d and c ≤ (p3)2 and (p3)2 < (p2)2 and (p2)2 ≤ d and
a < (p4)1 and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(104) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = b and (p3)2 = c and (p4)2 = c and c ≤ (p1)2
and (p1)2 ≤ d and c ≤ (p2)2 and (p2)2 ≤ d and a < (p4)1 and
(p4)1 < (p3)1 and (p3)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(105) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers,

and P , Q be subsets of E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)1 = b and (p3)2 = c and (p4)2 = c and c ≤ (p1)2
and (p1)2 ≤ d and c ≤ (p2)2 and (p2)2 ≤ d and a < (p4)1 and
(p4)1 < (p3)1 and (p3)1 ≤ b and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(106) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = a and (p2)2 = c and (p3)2 = c and (p4)2 = c and c ≤ (p1)2
and (p1)2 ≤ d and a < (p4)1 and (p4)1 < (p3)1 and (p3)1 < (p2)1
and (p2)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(107) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)1 = a and (p2)2 = c

and (p3)2 = c and (p4)2 = c and c ≤ (p1)2 and (p1)2 ≤ d and a < (p4)1 and
(p4)1 < (p3)1 and (p3)1 < (p2)1 and (p2)1 ≤ b and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
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and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(108) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d

and (p1)2 = d and (p2)2 = d and (p3)2 = d and (p4)2 = d and
a ≤ (p1)1 and (p1)1 < (p2)1 and (p2)1 < (p3)1 and (p3)1 < (p4)1
and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(109) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)2 = d and (p2)2 = d

and (p3)2 = d and (p4)2 = d and a ≤ (p1)1 and (p1)1 < (p2)1 and
(p2)1 < (p3)1 and (p3)1 < (p4)1 and (p4)1 ≤ b and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(110) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)2 = d and (p3)2 = d and (p4)1 = b and a ≤ (p1)1
and (p1)1 < (p2)1 and (p2)1 < (p3)1 and (p3)1 ≤ b and c ≤ (p4)2
and (p4)2 ≤ d and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(111) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers,

and P , Q be subsets of E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)2 = d and (p3)2 = d and (p4)1 = b and a ≤ (p1)1
and (p1)1 < (p2)1 and (p2)1 < (p3)1 and (p3)1 ≤ b and c ≤ (p4)2
and (p4)2 ≤ d and P is an arc from p1 to p3 and Q is an arc
from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and Q ⊆
ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(112) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)2 = d and (p3)2 = d and (p4)2 = c and a ≤ (p1)1
and (p1)1 < (p2)1 and (p2)1 < (p3)1 and (p3)1 ≤ b and a < (p4)1
and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(113) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)2 = d

and (p2)2 = d and (p3)2 = d and (p4)2 = c and a ≤ (p1)1 and
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(p1)1 < (p2)1 and (p2)1 < (p3)1 and (p3)1 ≤ b and a < (p4)1
and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is an arc
from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and Q ⊆
ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(114) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)2 = d and (p3)1 = b and (p4)1 = b and a ≤ (p1)1
and (p1)1 < (p2)1 and (p2)1 ≤ b and c ≤ (p4)2 and (p4)2 < (p3)2
and (p3)2 ≤ d and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(115) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)2 = d and (p2)2 = d

and (p3)1 = b and (p4)1 = b and a ≤ (p1)1 and (p1)1 < (p2)1 and (p2)1 ≤ b

and c ≤ (p4)2 and (p4)2 < (p3)2 and (p3)2 ≤ d and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(116) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)2 = d and (p3)1 = b and (p4)2 = c and a ≤ (p1)1
and (p1)1 < (p2)1 and (p2)1 ≤ b and c ≤ (p3)2 and (p3)2 ≤ d and
a < (p4)1 and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(117) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)2 = d

and (p2)2 = d and (p3)1 = b and (p4)2 = c and a ≤ (p1)1 and
(p1)1 < (p2)1 and (p2)1 ≤ b and c ≤ (p3)2 and (p3)2 ≤ d and
a < (p4)1 and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(118) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)2 = d and (p3)2 = c and (p4)2 = c and a ≤ (p1)1
and (p1)1 < (p2)1 and (p2)1 ≤ b and a < (p4)1 and (p4)1 < (p3)1
and (p3)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.
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(119) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)2 = d and (p2)2 = d

and (p3)2 = c and (p4)2 = c and a ≤ (p1)1 and (p1)1 < (p2)1 and (p2)1 ≤ b

and a < (p4)1 and (p4)1 < (p3)1 and (p3)1 ≤ b and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(120) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)1 = b and (p3)1 = b and (p4)1 = b and a ≤ (p1)1
and (p1)1 ≤ b and d ≥ (p2)2 and (p2)2 > (p3)2 and (p3)2 > (p4)2
and (p4)2 ≥ c and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(121) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)2 = d and (p2)1 = b

and (p3)1 = b and (p4)1 = b and a ≤ (p1)1 and (p1)1 ≤ b and d ≥ (p2)2 and
(p2)2 > (p3)2 and (p3)2 > (p4)2 and (p4)2 ≥ c and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(122) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)1 = b and (p3)1 = b and (p4)2 = c and a ≤ (p1)1
and (p1)1 ≤ b and d ≥ (p2)2 and (p2)2 > (p3)2 and (p3)2 ≥ c and
a < (p4)1 and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(123) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)2 = d

and (p2)1 = b and (p3)1 = b and (p4)2 = c and a ≤ (p1)1 and
(p1)1 ≤ b and d ≥ (p2)2 and (p2)2 > (p3)2 and (p3)2 ≥ c and
a < (p4)1 and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(124) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)1 = b and (p3)2 = c and (p4)2 = c and a ≤ (p1)1
and (p1)1 ≤ b and c ≤ (p2)2 and (p2)2 ≤ d and a < (p4)1 and
(p4)1 < (p3)1 and (p3)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2

and g(1) = p4 and f is continuous and one-to-one and g is continu-
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ous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and
rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(125) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers,

and P , Q be subsets of E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)1 = b and (p3)2 = c and (p4)2 = c and a ≤ (p1)1
and (p1)1 ≤ b and c ≤ (p2)2 and (p2)2 ≤ d and a < (p4)1 and
(p4)1 < (p3)1 and (p3)1 ≤ b and P is an arc from p1 to p3 and Q is
an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and
Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(126) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)2 = d and (p2)2 = c and (p3)2 = c and (p4)2 = c and a ≤ (p1)1
and (p1)1 ≤ b and a < (p4)1 and (p4)1 < (p3)1 and (p3)1 < (p2)1
and (p2)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(127) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)2 = d and (p2)2 = c

and (p3)2 = c and (p4)2 = c and a ≤ (p1)1 and (p1)1 ≤ b and a < (p4)1 and
(p4)1 < (p3)1 and (p3)1 < (p2)1 and (p2)1 ≤ b and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(128) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and f , g

be maps from I into E2
T. Suppose that a < b and c < d and (p1)1 = b and

(p2)1 = b and (p3)1 = b and (p4)1 = b and d ≥ (p1)2 and (p1)2 > (p2)2 and
(p2)2 > (p3)2 and (p3)2 > (p4)2 and (p4)2 ≥ c and f(0) = p1 and f(1) = p3

and g(0) = p2 and g(1) = p4 and f is continuous and one-to-one and g is
continuous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d)
and rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(129) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = b and

(p2)1 = b and (p3)1 = b and (p4)1 = b and d ≥ (p1)2 and (p1)2 > (p2)2 and
(p2)2 > (p3)2 and (p3)2 > (p4)2 and (p4)2 ≥ c and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(130) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = b and (p2)1 = b and (p3)1 = b and (p4)2 = c and d ≥ (p1)2
and (p1)2 > (p2)2 and (p2)2 > (p3)2 and (p3)2 ≥ c and a < (p4)1
and (p4)1 ≤ b and f(0) = p1 and f(1) = p3 and g(0) = p2 and
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g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(131) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)1 = b

and (p2)1 = b and (p3)1 = b and (p4)2 = c and d ≥ (p1)2 and
(p1)2 > (p2)2 and (p2)2 > (p3)2 and (p3)2 ≥ c and a < (p4)1
and (p4)1 ≤ b and P is an arc from p1 to p3 and Q is an arc
from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d) and Q ⊆
ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(132) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = b and (p2)1 = b and (p3)2 = c and (p4)2 = c and d ≥ (p1)2
and (p1)2 > (p2)2 and (p2)2 ≥ c and b ≥ (p3)1 and (p3)1 > (p4)1
and (p4)1 > a and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(133) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)1 = b and (p2)1 = b

and (p3)2 = c and (p4)2 = c and d ≥ (p1)2 and (p1)2 > (p2)2 and (p2)2 ≥ c

and b ≥ (p3)1 and (p3)1 > (p4)1 and (p4)1 > a and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(134) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and

f , g be maps from I into E2
T. Suppose that a < b and c < d and

(p1)1 = b and (p2)2 = c and (p3)2 = c and (p4)2 = c and c ≤ (p1)2
and (p1)2 ≤ d and b ≥ (p2)1 and (p2)1 > (p3)1 and (p3)1 > (p4)1
and (p4)1 > a and f(0) = p1 and f(1) = p3 and g(0) = p2 and
g(1) = p4 and f is continuous and one-to-one and g is continuous and
one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d) and rng g ⊆
ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(135) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P , Q be

subsets of E2
T. Suppose that a < b and c < d and (p1)1 = b and (p2)2 = c

and (p3)2 = c and (p4)2 = c and c ≤ (p1)2 and (p1)2 ≤ d and b ≥ (p2)1 and
(p2)1 > (p3)1 and (p3)1 > (p4)1 and (p4)1 > a and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.

(136) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and f , g

be maps from I into E2
T. Suppose that a < b and c < d and (p1)2 = c and

(p2)2 = c and (p3)2 = c and (p4)2 = c and b ≥ (p1)1 and (p1)1 > (p2)1 and
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(p2)1 > (p3)1 and (p3)1 > (p4)1 and (p4)1 > a and f(0) = p1 and f(1) =
p3 and g(0) = p2 and g(1) = p4 and f is continuous and one-to-one and g is
continuous and one-to-one and rng f ⊆ ClosedInsideOfRectangle(a, b, c, d)
and rng g ⊆ ClosedInsideOfRectangle(a, b, c, d). Then rng f meets rng g.

(137) Let p1, p2, p3, p4 be points of E2
T, a, b, c, d be real numbers, and P ,

Q be subsets of E2
T. Suppose that a < b and c < d and (p1)2 = c and

(p2)2 = c and (p3)2 = c and (p4)2 = c and b ≥ (p1)1 and (p1)1 > (p2)1 and
(p2)1 > (p3)1 and (p3)1 > (p4)1 and (p4)1 > a and P is an arc from p1 to p3

and Q is an arc from p2 to p4 and P ⊆ ClosedInsideOfRectangle(a, b, c, d)
and Q ⊆ ClosedInsideOfRectangle(a, b, c, d). Then P meets Q.
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1. The Definition of Erosion and Dilation and Their Algebraic

Properties

In this paper n denotes a natural number and q, y, b denote points of En
T.

Let us consider n, let p be a point of En
T, and let X be a subset of En

T. The
functor X + p yielding a subset of En

T is defined by:
(Def. 1) X + p = {q + p : q ∈ X}.

Let us consider n and let X be a subset of En
T. The functor X! yielding a

subset of En
T is defined as follows:

(Def. 2) X! = {−q : q ∈ X}.
Let us consider n and let X, B be subsets of En

T. The functor X 	B yields
a subset of En

T and is defined as follows:
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(Def. 3) X 	B = {y : B + y ⊆ X}.
Let us consider n and let X, B be subsets of En

T. The functor X ⊕B yields
a subset of En

T and is defined as follows:
(Def. 4) X ⊕B = {y + b : y ∈ X ∧ b ∈ B}.

We follow the rules: n is a natural number, X, Y , Z, B, C, B1, B2 are
subsets of En

T, and x, y, p are points of En
T.

One can prove the following propositions:
(1) B!! = B.

(2) {0En
T
}+ x = {x}.

(3) If B1 ⊆ B2, then B1 + p ⊆ B2 + p.

(4) For every X such that X = ∅ holds X + x = ∅.
(5) X 	 {0En

T
} = X.

(6) X ⊕ {0En
T
} = X.

(7) X ⊕ {x} = X + x.

(8) For all X, Y such that Y = ∅ holds X 	 Y = Rn.

(9) If X ⊆ Y, then X 	B ⊆ Y 	B and X ⊕B ⊆ Y ⊕B.

(10) If B1 ⊆ B2, then X 	B2 ⊆ X 	B1 and X ⊕B1 ⊆ X ⊕B2.

(11) If 0En
T
∈ B, then X 	B ⊆ X and X ⊆ X ⊕B.

(12) X ⊕ Y = Y ⊕X.

(13) Y + y ⊆ X + x iff Y + (y − x) ⊆ X.

(14) (X + p)	 Y = X 	 Y + p.

(15) (X + p)⊕ Y = X ⊕ Y + p.

(16) (X + x) + y = X + (x + y).
(17) X 	 (Y + p) = X 	 Y +−p.

(18) X ⊕ (Y + p) = X ⊕ Y + p.

(19) If x ∈ X, then B + x ⊆ B ⊕X.

(20) X ⊆ (X ⊕B)	B.

(21) X + 0En
T

= X.

(22) X 	 {x} = X +−x.

(23) X 	 (Y ⊕ Z) = X 	 Y 	 Z.

(24) X 	 (Y ⊕ Z) = X 	 Z 	 Y.

(25) X ⊕ (Y 	 Z) ⊆ (X ⊕ Y )	 Z.

(26) X ⊕ (Y ⊕ Z) = (X ⊕ Y )⊕ Z.

(27) (B ∪ C) + y = (B + y) ∪ (C + y).
(28) B ∩ C + y = (B + y) ∩ (C + y).
(29) X 	 (B ∪ C) = (X 	B) ∩ (X 	 C).
(30) X ⊕ (B ∪ C) = X ⊕B ∪X ⊕ C.
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(31) X 	B ∪ Y 	B ⊆ (X ∪ Y )	B.

(32) (X ∪ Y )⊕B = X ⊕B ∪ Y ⊕B.

(33) X ∩ Y 	B = (X 	B) ∩ (Y 	B).
(34) X ∩ Y ⊕B ⊆ (X ⊕B) ∩ (Y ⊕B).
(35) B ⊕X ∩ Y ⊆ (B ⊕X) ∩ (B ⊕ Y ).
(36) B 	X ∪B 	 Y ⊆ B 	X ∩ Y.

(37) (Xc 	B)c = X ⊕B!.
(38) (X 	B)c = Xc ⊕B!.

2. The Definition of Adjunction Opening and Closing and Their

Algebraic Properties

Let n be a natural number and let X, B be subsets of En
T. The functor

X ©B yielding a subset of En
T is defined by:

(Def. 5) X ©B = (X 	B)⊕B.

Let n be a natural number and let X, B be subsets of En
T. The functor

X } B yielding a subset of En
T is defined as follows:

(Def. 6) X } B = (X ⊕B)	B.

We now state a number of propositions:
(39) (Xc ©B!)c = X } B.

(40) (Xc } B!)c = X ©B.

(41) X ©B ⊆ X and X ⊆ X } B.

(42) X ©X = X.

(43) X ©B 	B ⊆ X 	B and X ©B ⊕B ⊆ X ⊕B.

(44) X 	B ⊆ X } B 	B and X ⊕B ⊆ X } B ⊕B.

(45) If X ⊆ Y, then X ©B ⊆ Y ©B and X } B ⊆ Y } B.

(46) (X + p)© Y = X © Y + p.

(47) (X + p) } Y = X } Y + p.

(48) If C ⊆ B, then X ©B ⊆ (X 	 C)⊕B.

(49) If B ⊆ C, then X } B ⊆ (X ⊕ C)	B.

(50) X ⊕ Y = X } Y ⊕ Y and X 	 Y = X © Y 	 Y.

(51) X ⊕ Y = (X ⊕ Y )© Y and X 	 Y = (X 	 Y ) } Y.

(52) X ©B ©B = X ©B.

(53) X } B } B = X } B.

(54) X ©B ⊆ (X ∪ Y )©B.

(55) If B = B ©B1, then X ©B ⊆ X ©B1.



224 yuzhong ding and xiquan liang

3. The Definition of Scaling Transformation and Its Algebraic

Properties

In the sequel a is a point of En
T.

Let t be a real number, let us consider n, and let A be a subset of En
T. The

functor t�A yields a subset of En
T and is defined as follows:

(Def. 7) t�A = {t · a : a ∈ A}.
In the sequel t, s denote real numbers.
One can prove the following propositions:

(56) For every subset X of En
T such that X = ∅ holds 0�X = ∅.

(57) For every non empty subset X of En
T holds 0�X = {0En

T
}.

(58) 1�X = X.

(59) 2�X ⊆ X ⊕X.

(60) (t · s)�X = t� (s�X).
(61) If X ⊆ Y, then t�X ⊆ t� Y.

(62) t� (X + x) = t�X + t · x.

(63) t� (X ⊕ Y ) = t�X ⊕ t� Y.

(64) If t 6= 0, then t� (X 	 Y ) = t�X 	 t� Y.

(65) If t 6= 0, then t� (X © Y ) = (t�X)© (t� Y ).
(66) If t 6= 0, then t� (X } Y ) = (t�X) } (t� Y ).

4. The Definition of Thinning and Thickening and Their

Algebraic Properties

Let n be a natural number and let X, B1, B2 be subsets of En
T. The functor

X ~ (B1, B2) yielding a subset of En
T is defined as follows:

(Def. 8) X ~ (B1, B2) = (X 	B1) ∩ (Xc 	B2).
Let n be a natural number and let X, B1, B2 be subsets of En

T. The functor
X ⊗ (B1, B2) yields a subset of En

T and is defined as follows:
(Def. 9) X ⊗ (B1, B2) = X ∪ (X ~ (B1, B2)).

Let n be a natural number and let X, B1, B2 be subsets of En
T. The functor

X ~ (B1, B2) yielding a subset of En
T is defined by:

(Def. 10) X ~ (B1, B2) = X \ (X ~ (B1, B2)).
The following propositions are true:

(67) If B1 = ∅, then X ~ (B1, B2) = Xc 	B2.

(68) If B2 = ∅, then X ~ (B1, B2) = X 	B1.

(69) If 0En
T
∈ B1, then X ~ (B1, B2) ⊆ X.

(70) If 0En
T
∈ B2, then (X ~ (B1, B2)) ∩X = ∅.
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(71) If 0En
T
∈ B1, then X ⊗ (B1, B2) = X.

(72) If 0En
T
∈ B2, then X ~ (B1, B2) = X.

(73) X ⊗ (B2, B1) = (Xc ~ (B1, B2))c.
(74) X ~ (B2, B1) = (Xc ⊗ (B1, B2))c.

5. Properties of Erosion, Dilation, Adjunction Opening,

Adjunction Closing on Convex Sets

One can prove the following proposition
(75) Let n be a natural number and B be a subset of En

T. Then B is convex
if and only if for all points x, y of En

T and for every real number r such
that 0 ≤ r and r ≤ 1 and x ∈ B and y ∈ B holds r · x + (1− r) · y ∈ B.

Let n be a natural number and let B be a subset of En
T. Let us observe that

B is convex if and only if:
(Def. 11) For all points x, y of En

T and for every real number r such that 0 ≤ r

and r ≤ 1 and x ∈ B and y ∈ B holds r · x + (1− r) · y ∈ B.

One can prove the following propositions:
(76) If X is convex, then X! is convex.
(77) If X is convex and B is convex, then X ⊕ B is convex and X 	 B is

convex.
(78) If X is convex and B is convex, then X © B is convex and X } B is

convex.
(79) If B is convex and 0 < t and 0 < s, then (s + t)�B = s�B ⊕ t�B.
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The articles [21], [24], [1], [3], [2], [23], [4], [11], [9], [22], [16], [20], [19], [6],
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notation for this paper.

In this paper n is a natural number.
The following three propositions are true:

(1) For every finite sequence f of elements of E2
T and for every point p of E2

T

such that p ∈ L̃(f) holds len � p, f ≥ 1.

(2) For every non empty finite sequence f of elements of E2
T and for every

point p of E2
T holds len � f, p ≥ 1.

(3) For every finite sequence f of elements of E2
T and for all points p, q of

E2
T holds �� p, f, q 6= ∅.

Let x be a set. One can check that 〈x〉 is one-to-one.
Let f be a finite sequence. We say that f is almost one-to-one if and only

if:
(Def. 1) For all natural numbers i, j such that i ∈ dom f and j ∈ dom f and

i 6= 1 or j 6= len f and i 6= len f or j 6= 1 and f(i) = f(j) holds i = j.

Let f be a finite sequence. We say that f is weakly one-to-one if and only
if:

(Def. 2) For every natural number i such that 1 ≤ i and i < len f holds f(i) 6=
f(i + 1).

1This work has been partially supported by the KBN grant 4 T11C 039 24.
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Let f be a finite sequence. We say that f is poorly one-to-one if and only if:
(Def. 3)(i) For every natural number i such that 1 ≤ i and i < len f holds

f(i) 6= f(i + 1) if len f 6= 2,

(ii) TRUE, otherwise.
The following three propositions are true:

(4) Let D be a set and f be a finite sequence of elements of D. Then f

is almost one-to-one if and only if for all natural numbers i, j such that
i ∈ dom f and j ∈ dom f and i 6= 1 or j 6= len f and i 6= len f or j 6= 1
and fi = fj holds i = j.

(5) Let D be a set and f be a finite sequence of elements of D. Then f is
weakly one-to-one if and only if for every natural number i such that 1 ≤ i

and i < len f holds fi 6= fi+1.

(6) Let D be a set and f be a finite sequence of elements of D. Then f is
poorly one-to-one if and only if if len f 6= 2, then for every natural number
i such that 1 ≤ i and i < len f holds fi 6= fi+1.

Let us note that every finite sequence which is one-to-one is also almost
one-to-one.

One can check that every finite sequence which is almost one-to-one is also
poorly one-to-one.

The following proposition is true
(7) For every finite sequence f such that len f 6= 2 holds f is weakly one-to-

one iff f is poorly one-to-one.
Let us note that ∅ is weakly one-to-one.
Let x be a set. One can verify that 〈x〉 is weakly one-to-one.
Let x, y be sets. Observe that 〈x, y〉 is poorly one-to-one.
Let us mention that there exists a finite sequence which is weakly one-to-one

and non empty.
Let D be a non empty set. Observe that there exists a finite sequence of

elements of D which is weakly one-to-one, circular, and non empty.
We now state three propositions:

(8) For every finite sequence f such that f is almost one-to-one holds Rev(f)
is almost one-to-one.

(9) For every finite sequence f such that f is weakly one-to-one holds Rev(f)
is weakly one-to-one.

(10) For every finite sequence f such that f is poorly one-to-one holds Rev(f)
is poorly one-to-one.

Let us observe that there exists a finite sequence which is one-to-one and
non empty.

Let f be an almost one-to-one finite sequence. Observe that Rev(f) is almost
one-to-one.
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Let f be a weakly one-to-one finite sequence. Observe that Rev(f) is weakly
one-to-one.

Let f be a poorly one-to-one finite sequence. Observe that Rev(f) is poorly
one-to-one.

One can prove the following three propositions:
(11) Let D be a non empty set and f be a finite sequence of elements of D.

Suppose f is almost one-to-one. Let p be an element of D. Then f 	 p is
almost one-to-one.

(12) Let D be a non empty set and f be a finite sequence of elements of D.
Suppose f is weakly one-to-one and circular. Let p be an element of D.
Then f 	 p is weakly one-to-one.

(13) Let D be a non empty set and f be a finite sequence of elements of D.
Suppose f is poorly one-to-one and circular. Let p be an element of D.
Then f 	 p is poorly one-to-one.

Let D be a non empty set. One can check that there exists a finite sequence
of elements of D which is one-to-one, circular, and non empty.

Let D be a non empty set, let f be an almost one-to-one finite sequence
of elements of D, and let p be an element of D. Note that f 	 p is almost
one-to-one.

Let D be a non empty set, let f be a circular weakly one-to-one finite
sequence of elements of D, and let p be an element of D. Note that f 	 p is
weakly one-to-one.

Let D be a non empty set, let f be a circular poorly one-to-one finite sequence
of elements of D, and let p be an element of D. One can verify that f 	 p is
poorly one-to-one.

The following proposition is true
(14) Let D be a non empty set and f be a finite sequence of elements of D.

Then f is almost one-to-one if and only if f�1 is one-to-one and f�(len f−′1)
is one-to-one.

Let C be a compact non vertical non horizontal subset of E2
T and let n be a

natural number. Observe that Cage(C, n) is almost one-to-one.
Let C be a compact non vertical non horizontal subset of E2

T and let n be a
natural number. One can check that Cage(C, n) is weakly one-to-one.

The following propositions are true:
(15) Let f be a finite sequence of elements of E2

T and p be a point of E2
T. If

p ∈ L̃(f) and f is weakly one-to-one, then �� p, f, p = 〈p〉.
(16) For every finite sequence f such that f is one-to-one holds f is weakly

one-to-one.

One can check that every finite sequence which is one-to-one is also weakly
one-to-one.
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The following propositions are true:
(17) Let f be a finite sequence of elements of E2

T. Suppose f is weakly one-to-
one. Let p, q be points of E2

T. If p ∈ L̃(f) and q ∈ L̃(f), then �� p, f, q =
Rev(�� q, f, p).

(18) Let f be a finite sequence of elements of E2
T, p be a point of E2

T, and i1
be a natural number. Suppose f is poorly one-to-one, unfolded, and s.n.c.
and 1 < i1 and i1 ≤ len f and p = f(i1). Then Index(p, f) + 1 = i1.

(19) Let f be a finite sequence of elements of E2
T. Suppose f is weakly one-to-

one. Let p, q be points of E2
T. If p ∈ L̃(f) and q ∈ L̃(f), then (�� p, f, q)1 =

p.

(20) Let f be a finite sequence of elements of E2
T. Suppose f is weakly

one-to-one. Let p, q be points of E2
T. If p ∈ L̃(f) and q ∈ L̃(f), then

(�� p, f, q)len �� p,f,q = q.

(21) For every finite sequence f of elements of E2
T and for every point p of E2

T

such that p ∈ L̃(f) holds L̃(� p, f) ⊆ L̃(f).
(22) Let f be a finite sequence of elements of E2

T and p, q be points of E2
T.

If p ∈ L̃(f) and q ∈ L̃(f) and f is weakly one-to-one, then L̃(�� p, f, q) ⊆
L̃(f).

(23) For all finite sequences f , g holds dom f ⊆ dom(f aa g).
(24) For every non empty finite sequence f and for every finite sequence g

holds dom g ⊆ dom(f aa g).
(25) For all finite sequences f , g such that f aa g is constant holds f is

constant.
(26) For all finite sequences f , g such that f aa g is constant and f(len f) =

g(1) and f 6= ∅ holds g is constant.
(27) For every special finite sequence f of elements of E2

T and for all natural
numbers i, j holds mid(f, i, j) is special.

(28) For every unfolded finite sequence f of elements of E2
T and for all natural

numbers i, j holds mid(f, i, j) is unfolded.
(29) Let f be a finite sequence of elements of E2

T. Suppose f is special. Let
p be a point of E2

T. If p ∈ L̃(f), then � p, f is special.
(30) Let f be a finite sequence of elements of E2

T. Suppose f is special. Let
p be a point of E2

T. If p ∈ L̃(f), then � f, p is special.
(31) Let f be a finite sequence of elements of E2

T. Suppose f is special and
weakly one-to-one. Let p, q be points of E2

T. If p ∈ L̃(f) and q ∈ L̃(f),
then �� p, f, q is special.

(32) Let f be a finite sequence of elements of E2
T. Suppose f is unfolded. Let

p be a point of E2
T. If p ∈ L̃(f), then � p, f is unfolded.

(33) Let f be a finite sequence of elements of E2
T. Suppose f is unfolded. Let
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p be a point of E2
T. If p ∈ L̃(f), then � f, p is unfolded.

(34) Let f be a finite sequence of elements of E2
T. Suppose f is unfolded and

weakly one-to-one. Let p, q be points of E2
T. If p ∈ L̃(f) and q ∈ L̃(f),

then �� p, f, q is unfolded.
(35) Let f , g be finite sequences of elements of E2

T and p be a point of E2
T.

Suppose f is almost one-to-one, special, unfolded, and s.n.c. and p ∈ L̃(f)
and p 6= f(1) and g = (mid(f, 1, Index(p, f))) a 〈p〉. Then g is a special
sequence joining f1, p.

(36) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.
Suppose f is poorly one-to-one, unfolded, and s.n.c. and p ∈ L̃(f) and p =
f(Index(p, f)+1) and p 6= f(len f). Then Index(p, Rev(f))+Index(p, f)+
1 = len f.

(37) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. If f is weakly one-to-one and len f ≥ 2, then � f1, f = f.

(38) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. Suppose f is poorly one-to-one, unfolded, and s.n.c. and p ∈ L̃(f)

and p 6= f(len f). Then � p, Rev(f) = Rev(� f, p).
(39) Let f be a finite sequence of elements of E2

T and p be a point of E2
T.

Suppose f is almost one-to-one, special, unfolded, and s.n.c. and p ∈ L̃(f)
and p 6= f(1). Then � f, p is a special sequence joining f1, p.

(40) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. Suppose f is almost one-to-one, special, unfolded, and s.n.c. and

p ∈ L̃(f) and p 6= f(len f) and p 6= f(1). Then � p, f is a special sequence
joining p, flen f .

(41) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.
Suppose f is almost one-to-one, special, unfolded, and s.n.c. and p ∈ L̃(f)
and p 6= f(1). Then � f, p is a special sequence.

(42) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. Suppose f is almost one-to-one, special, unfolded, and s.n.c. and

p ∈ L̃(f) and p 6= f(len f) and p 6= f(1). Then � p, f is a special sequence.
(43) Let f be a non empty finite sequence of elements of E2

T and p, q be points
of E2

T. Suppose that f is almost one-to-one, special, unfolded, and s.n.c.
and len f 6= 2 and p ∈ L̃(f) and q ∈ L̃(f) and p 6= q and p 6= f(1) and
q 6= f(1). Then �� p, f, q is a special sequence joining p, q.

(44) Let f be a non empty finite sequence of elements of E2
T and p, q be points

of E2
T. Suppose that f is almost one-to-one, special, unfolded, and s.n.c.

and len f 6= 2 and p ∈ L̃(f) and q ∈ L̃(f) and p 6= q and p 6= f(1) and
q 6= f(1). Then �� p, f, q is a special sequence.

(45) Let C be a compact non vertical non horizontal subset of E2
T and p, q

be points of E2
T. Suppose p ∈ BDD L̃(Cage(C, n)). Then there exists a
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S-sequence B in R2 such that
(i) B = ��South-Bound(p, L̃(Cage(C, n))),

(Cage(C, n) 	 (Cage(C, n))
Index(South-Bound(p, eL(Cage(C,n))),Cage(C,n))

)�(len
(Cage(C, n) 	 (Cage(C, n))

Index(South-Bound(p, eL(Cage(C,n))),Cage(C,n))
)−′ 1),

North-Bound(p, L̃(Cage(C, n))), and
(ii) there exists a S-sequence P in R2 such that P is a sequence which el-

ements belong to the Go-board of B aa 〈North-Bound(p, L̃(Cage(C, n))),
South-Bound(p, L̃(Cage(C, n)))〉 and L̃(〈North-Bound(p, L̃(Cage(C, n))),
South-Bound(p, L̃(Cage(C, n)))〉) = L̃(P ) and
P1 = North-Bound(p, L̃(Cage(C, n))) and
Plen P = South-Bound(p, L̃(Cage(C, n))) and lenP ≥ 2 and there ex-
ists a S-sequence B1 in R2 such that B1 is a sequence which ele-
ments belong to the Go-board of B aa 〈North-Bound(p, L̃(Cage(C, n))),
South-Bound(p, L̃(Cage(C, n)))〉 and L̃(B) = L̃(B1) and B1 = (B1)1 and
Blen B = (B1)len B1 and lenB ≤ lenB1 and there exists a non constant
standard special circular sequence g such that g = B1 aa P.
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[3] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.
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[14] Yatsuka Nakamura and Czes law Byliński. Extremal properties of vertices on special
polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.

[15] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. For-
malized Mathematics, 6(2):255–263, 1997.

[16] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized
Mathematics, 5(3):297–304, 1996.

[17] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323–328, 1996.



subsequences of almost, weakly and poorly . . . 233

[18] Yatsuka Nakamura, Andrzej Trybulec, and Czes law Byliński. Bounded domains and
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Summary. We define the notion of a graph anew without using the avail-

able Mizar structures. In our approach, we model graph structure as a finite

function whose domain is a subset of natural numbers. The elements of the do-

main of the function play the role of selectors for accessing the components of

the structure. As these selectors are first class objects, many future extensions

of the new graph structure turned out to be easier to formalize in Mizar than

with the traditional Mizar structures.

After introducing graph structure, we define its selectors and then conditions

that the structure needs to satisfy to form a directed graph (in the spirit of [13]).

For these graphs we define a collection of basic graph notions; the presentation

of these notions is continued in articles [16, 15, 17].

We have tried to follow a number of graph theory books in choosing graph

terminology but since the terminology is not commonly agreed upon, we had to

make a number of compromises, see [14].

MML identifier: GLIB 000, version: 7.5.01 4.39.921

The papers [20], [19], [22], [21], [24], [2], [1], [25], [7], [5], [12], [3], [8], [6], [23],
[9], [4], [10], [11], and [18] provide the terminology and notation for this paper.

1. Definitions

A finite function is called a graph structure if:
(Def. 1) dom it ⊆ N.

The natural number VertexSelector is defined as follows:
(Def. 2) VertexSelector = 1.

1This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.

235
c© 2005 University of Bia lystok

ISSN 1426–2630



236 gilbert lee and piotr rudnicki

The natural number EdgeSelector is defined as follows:
(Def. 3) EdgeSelector = 2.

The natural number SourceSelector is defined by:
(Def. 4) SourceSelector = 3.

The natural number TargetSelector is defined by:
(Def. 5) TargetSelector = 4.

The non empty subset the graph selectors of N is defined by:
(Def. 6) The graph selectors =

{VertexSelector,EdgeSelector,SourceSelector,TargetSelector}.
Let G be a graph structure. The vertices of G is defined by:

(Def. 7) The vertices of G = G(VertexSelector).
The edges of G is defined by:

(Def. 8) The edges of G = G(EdgeSelector).
The source of G is defined by:

(Def. 9) The source of G = G(SourceSelector).
The target of G is defined by:

(Def. 10) The target of G = G(TargetSelector).
Let G be a graph structure. We say that G is graph-like if and only if the

conditions (Def. 11) are satisfied.
(Def. 11) VertexSelector ∈ dom G and EdgeSelector ∈ dom G and

SourceSelector ∈ dom G and TargetSelector ∈ dom G and the vertices
of G is a non empty set and the source of G is a function from the edges of
G into the vertices of G and the target of G is a function from the edges
of G into the vertices of G.

Let us note that there exists a graph structure which is graph-like.
A graph is a graph-like graph structure.
Let G be a graph. Observe that the vertices of G is non empty.
Let G be a graph. Then the source of G is a function from the edges of G

into the vertices of G. Then the target of G is a function from the edges of G

into the vertices of G.
Let V be a non empty set, let E be a set, and let S, T be functions from E

into V . The functor createGraph(V,E, S, T ) yielding a graph is defined by:
(Def. 12) createGraph(V,E, S, T ) = 〈V,E, S, T 〉.

Let x, y be sets. One can verify that x7−→. y is finite.
Let G be a graph structure, let n be a natural number, and let x be a set.

The functor G.set(n, x) yielding a graph structure is defined as follows:
(Def. 13) G.set(n, x) = G+·(n 7−→. x).

Let G be a graph structure and let X be a set. The functor G.strict(X)
yielding a graph structure is defined by:
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(Def. 14) G.strict(X) = G�X.

Let G be a graph. Observe that G.strict(the graph selectors) is graph-like.
Let G be a graph and let x, y, e be sets. We say that e joins x and y in G

if and only if the conditions (Def. 15) are satisfied.
(Def. 15)(i) e ∈ the edges of G, and

(ii) (the source of G)(e) = x and (the target of G)(e) = y or (the source of
G)(e) = y and (the target of G)(e) = x.

Let G be a graph and let x, y, e be sets. We say that e joins x to y in G if
and only if:

(Def. 16) e ∈ the edges of G and (the source of G)(e) = x and (the target of
G)(e) = y.

Let G be a graph and let X, Y , e be sets. We say that e joins a vertex from
X and a vertex from Y in G if and only if the conditions (Def. 17) are satisfied.

(Def. 17)(i) e ∈ the edges of G, and
(ii) (the source of G)(e) ∈ X and (the target of G)(e) ∈ Y or (the source

of G)(e) ∈ Y and (the target of G)(e) ∈ X.

We say that e joins a vertex from X to a vertex from Y in G if and only if:
(Def. 18) e ∈ the edges of G and (the source of G)(e) ∈ X and (the target of

G)(e) ∈ Y.

Let G be a graph. We say that G is finite if and only if:
(Def. 19) The vertices of G is finite and the edges of G is finite.

We say that G is loopless if and only if:
(Def. 20) It is not true that there exists a set e such that e ∈ the edges of G and

(the source of G)(e) = (the target of G)(e).
We say that G is trivial if and only if:

(Def. 21) the vertices of G = 1.

We say that G is non-multi if and only if:
(Def. 22) For all sets e1, e2, v1, v2 such that e1 joins v1 and v2 in G and e2 joins

v1 and v2 in G holds e1 = e2.

We say that G is non-directed-multi if and only if:
(Def. 23) For all sets e1, e2, v1, v2 such that e1 joins v1 to v2 in G and e2 joins v1

to v2 in G holds e1 = e2.

Let G be a graph. We say that G is simple if and only if:
(Def. 24) G is loopless and non-multi.

We say that G is directed-simple if and only if:
(Def. 25) G is loopless and non-directed-multi.

One can verify the following observations:
∗ every graph which is non-multi is also non-directed-multi,
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∗ every graph which is simple is also loopless and non-multi,

∗ every graph which is loopless and non-multi is also simple,

∗ every graph which is loopless and non-directed-multi is also directed-
simple,

∗ every graph which is directed-simple is also loopless and non-directed-
multi,

∗ every graph which is trivial and loopless is also finite, and

∗ every graph which is trivial and non-directed-multi is also finite.

Let us note that there exists a graph which is trivial and simple and there
exists a graph which is finite, non trivial, and simple.

Let G be a finite graph. Observe that the vertices of G is finite and the
edges of G is finite.

Let G be a trivial graph. One can verify that the vertices of G is finite.
Let V be a non empty finite set, let E be a finite set, and let S, T be

functions from E into V . One can check that createGraph(V,E, S, T ) is finite.
Let V be a non empty set, let E be an empty set, and let S, T be functions

from E into V . One can check that createGraph(V,E, S, T ) is simple.
Let v be a set, let E be a set, and let S, T be functions from E into {v}.

Observe that createGraph({v}, E, S, T ) is trivial.
Let G be a graph. The functor G.order() yielding a cardinal number is

defined as follows:

(Def. 26) G.order() = the vertices of G.

Let G be a finite graph. Then G.order() is a non empty natural number.
Let G be a graph. The functor G.size() yields a cardinal number and is

defined by:

(Def. 27) G.size() = the edges of G.

Let G be a finite graph. Then G.size() is a natural number.
Let G be a graph and let X be a set. The functor G.edgesInto(X) yields a

subset of the edges of G and is defined as follows:

(Def. 28) For every set e holds e ∈ G.edgesInto(X) iff e ∈ the edges of G and (the
target of G)(e) ∈ X.

The functor G.edgesOutOf(X) yields a subset of the edges of G and is defined
by:

(Def. 29) For every set e holds e ∈ G.edgesOutOf(X) iff e ∈ the edges of G and
(the source of G)(e) ∈ X.

Let G be a graph and let X be a set. The functor G.edgesInOut(X) yields
a subset of the edges of G and is defined by:

(Def. 30) G.edgesInOut(X) = G.edgesInto(X) ∪G.edgesOutOf(X).
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The functor G.edgesBetween(X) yielding a subset of the edges of G is defined
as follows:

(Def. 31) G.edgesBetween(X) = G.edgesInto(X) ∩G.edgesOutOf(X).
Let G be a graph and let X, Y be sets. The functor G.edgesBetween(X, Y )

yielding a subset of the edges of G is defined by:
(Def. 32) For every set e holds e ∈ G.edgesBetween(X, Y ) iff e joins a vertex from

X and a vertex from Y in G.
The functor G.edgesDBetween(X, Y ) yields a subset of the edges of G and is
defined as follows:

(Def. 33) For every set e holds e ∈ G.edgesDBetween(X, Y ) iff e joins a vertex
from X to a vertex from Y in G.

In this article we present several logical schemes. The scheme FinGraphOrder-
Ind concerns a unary predicate P, and states that:

For every finite graph G holds P[G]
provided the following conditions are met:

• For every finite graph G such that G.order() = 1 holds P[G], and
• Let k be a non empty natural number. Suppose that for every

finite graph G1 such that G1.order() = k holds P[G1]. Let G2 be
a finite graph. If G2.order() = k + 1, then P[G2].

The scheme FinGraphSizeInd concerns a unary predicate P, and states that:
For every finite graph G holds P[G]

provided the following requirements are met:
• For every finite graph G such that G.size() = 0 holds P[G], and
• Let k be a natural number. Suppose that for every finite graph

G1 such that G1.size() = k holds P[G1]. Let G2 be a finite graph.
If G2.size() = k + 1, then P[G2].

Let G be a graph. A graph is called a subgraph of G if it satisfies the
conditions (Def. 34).

(Def. 34)(i) The vertices of it ⊆ the vertices of G,
(ii) the edges of it ⊆ the edges of G, and
(iii) for every set e such that e ∈ the edges of it holds (the source of it)(e) =

(the source of G)(e) and (the target of it)(e) = (the target of G)(e).
Let G3 be a graph and let G4 be a subgraph of G3. Then the vertices of G4

is a non empty subset of the vertices of G3. Then the edges of G4 is a subset of
the edges of G3.

Let G be a graph. Note that there exists a subgraph of G which is trivial
and simple.

Let G be a finite graph. Note that every subgraph of G is finite.
Let G be a loopless graph. Observe that every subgraph of G is loopless.
Let G be a trivial graph. One can check that every subgraph of G is trivial.
Let G be a non-multi graph. Observe that every subgraph of G is non-multi.
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Let G3 be a graph and let G4 be a subgraph of G3. We say that G4 is
spanning if and only if:

(Def. 35) The vertices of G4 = the vertices of G3.
Let G be a graph. One can verify that there exists a subgraph of G which

is spanning.
Let G3, G4 be graphs. The predicate G3 =G G4 is defined by the conditions

(Def. 36).

(Def. 36)(i) The vertices of G3 = the vertices of G4,
(ii) the edges of G3 = the edges of G4,
(iii) the source of G3 = the source of G4, and
(iv) the target of G3 = the target of G4.

Let us notice that the predicate G3 =G G4 is reflexive and symmetric.
Let G3, G4 be graphs. We introduce G3 6=G G4 as an antonym of G3 =G G4.

Let G3, G4 be graphs. The predicate G3 ⊆ G4 is defined as follows:

(Def. 37) G3 is a subgraph of G4.
Let us note that the predicate G3 ⊆ G4 is reflexive.

Let G3, G4 be graphs. The predicate G3 ⊂ G4 is defined as follows:

(Def. 38) G3 ⊆ G4 and G3 6=G G4.

Let us note that the predicate G3 ⊂ G4 is irreflexive.
Let G be a graph and let V , E be sets. A subgraph of G is called a subgraph

of G induced by V and E if:

(Def. 39)(i) The vertices of it = V and the edges of it = E if V is a non empty
subset of the vertices of G and E ⊆ G.edgesBetween(V ),

(ii) it =G G, otherwise.
Let G be a graph and let V be a set. A subgraph of G induced by V is a

subgraph of G induced by V and G.edgesBetween(V ).
Let G be a graph, let V be a finite non empty subset of the vertices of G, and

let E be a finite subset of G.edgesBetween(V ). Observe that every subgraph of
G induced by V and E is finite.

Let G be a graph, let v be an element of the vertices of G, and let E be a
subset of G.edgesBetween({v}). Note that every subgraph of G induced by {v}
and E is trivial.

Let G be a graph and let v be an element of the vertices of G. Note that
every subgraph of G induced by {v} and ∅ is finite and trivial.

Let G be a graph and let V be a non empty subset of the vertices of G. Note
that every subgraph of G induced by V and ∅ is simple.

Let G be a graph and let E be a subset of the edges of G. Observe that
every subgraph of G induced by the vertices of G and E is spanning.

Let G be a graph. One can check that every subgraph of G induced by the
vertices of G and ∅ is spanning.
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Let G be a graph and let v be a set. A subgraph of G with vertex v removed
is a subgraph of G induced by (the vertices of G) \ {v}.

Let G be a graph and let V be a set. A subgraph of G with vertices V

removed is a subgraph of G induced by (the vertices of G) \ V.

Let G be a graph and let e be a set. A subgraph of G with edge e removed
is a subgraph of G induced by the vertices of G and (the edges of G) \ {e}.

Let G be a graph and let E be a set. A subgraph of G with edges E removed
is a subgraph of G induced by the vertices of G and (the edges of G) \ E.

Let G be a graph and let e be a set. Observe that every subgraph of G with
edge e removed is spanning.

Let G be a graph and let E be a set. Observe that every subgraph of G with
edges E removed is spanning.

Let G be a graph. A vertex of G is an element of the vertices of G.
Let G be a graph and let v be a vertex of G. The functor v.edgesIn() yielding

a subset of the edges of G is defined as follows:
(Def. 40) v.edgesIn() = G.edgesInto({v}).

The functor v.edgesOut() yields a subset of the edges of G and is defined as
follows:

(Def. 41) v.edgesOut() = G.edgesOutOf({v}).
The functor v.edgesInOut() yields a subset of the edges of G and is defined by:

(Def. 42) v.edgesInOut() = G.edgesInOut({v}).
Let G be a graph, let v be a vertex of G, and let e be a set. The functor

v.adj(e) yields a vertex of G and is defined by:

(Def. 43) v.adj(e) =


(the source of G)(e), if e ∈ the edges of G and

(the target of G)(e) = v,

(the target of G)(e), if e ∈ the edges of G and
(the source of G)(e) = v and (the target of G)(e) 6= v,

v, otherwise.
Let G be a graph and let v be a vertex of G. The functor v.inDegree() yields

a cardinal number and is defined as follows:
(Def. 44) v.inDegree() = v.edgesIn() .

The functor v.outDegree() yielding a cardinal number is defined as follows:

(Def. 45) v.outDegree() = v.edgesOut() .
Let G be a finite graph and let v be a vertex of G. Then v.inDegree() is a

natural number. Then v.outDegree() is a natural number.
Let G be a graph and let v be a vertex of G. The functor v.degree() yielding

a cardinal number is defined as follows:
(Def. 46) v.degree() = v.inDegree() + v.outDegree().

Let G be a finite graph and let v be a vertex of G. Then v.degree() is a
natural number and it can be characterized by the condition:
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(Def. 47) v.degree() = v.inDegree() + v.outDegree().
Let G be a graph and let v be a vertex of G. The functor v.inNeighbors()

yields a subset of the vertices of G and is defined as follows:

(Def. 48) v.inNeighbors() = (the source of G)◦v.edgesIn().
The functor v.outNeighbors() yielding a subset of the vertices of G is defined
by:

(Def. 49) v.outNeighbors() = (the target of G)◦v.edgesOut().
Let G be a graph and let v be a vertex of G. The functor v.allNeighbors()

yields a subset of the vertices of G and is defined by:

(Def. 50) v.allNeighbors() = v.inNeighbors() ∪ v.outNeighbors().
Let G be a graph and let v be a vertex of G. We say that v is isolated if and

only if:

(Def. 51) v.edgesInOut() = ∅.
Let G be a finite graph and let v be a vertex of G. Let us observe that v is

isolated if and only if:

(Def. 52) v.degree() = 0.

Let G be a graph and let v be a vertex of G. We say that v is endvertex if
and only if:

(Def. 53) There exists a set e such that v.edgesInOut() = {e} and e does not join
v and v in G.

Let G be a finite graph and let v be a vertex of G. Let us observe that v is
endvertex if and only if:

(Def. 54) v.degree() = 1.

Let F be a many sorted set indexed by N. We say that F is graph-yielding
if and only if:

(Def. 55) For every natural number n holds F (n) is a graph.
We say that F is halting if and only if:

(Def. 56) There exists a natural number n such that F (n) = F (n + 1).
Let F be a many sorted set indexed by N. The functor F .Lifespan() yielding

a natural number is defined by:

(Def. 57)(i) F (F .Lifespan()) = F (F .Lifespan()+1) and for every natural number
n such that F (n) = F (n + 1) holds F .Lifespan() ≤ n if F is halting,

(ii) F .Lifespan() = 0, otherwise.
Let F be a many sorted set indexed by N. The functor F .Result() yielding

a set is defined by:

(Def. 58) F .Result() = F (F .Lifespan()).
Let us mention that there exists a many sorted set indexed by N which is

graph-yielding.
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A graph sequence is a graph-yielding many sorted set indexed by N.
Let G5 be a graph sequence and let x be a natural number. The functor

G5.→x yields a graph and is defined by:
(Def. 59) G5.→x = G5(x).

Let G5 be a graph sequence. We say that G5 is finite if and only if:
(Def. 60) For every natural number x holds G5.→x is finite.

We say that G5 is loopless if and only if:
(Def. 61) For every natural number x holds G5.→x is loopless.

We say that G5 is trivial if and only if:
(Def. 62) For every natural number x holds G5.→x is trivial.

We say that G5 is non-trivial if and only if:
(Def. 63) For every natural number x holds G5.→x is non trivial.

We say that G5 is non-multi if and only if:
(Def. 64) For every natural number x holds G5.→x is non-multi.

We say that G5 is non-directed-multi if and only if:
(Def. 65) For every natural number x holds G5.→x is non-directed-multi.

We say that G5 is simple if and only if:
(Def. 66) For every natural number x holds G5.→x is simple.

We say that G5 is directed-simple if and only if:
(Def. 67) For every natural number x holds G5.→x is directed-simple.

Let G5 be a graph sequence. Let us observe that G5 is halting if and only
if:

(Def. 68) There exists a natural number n such that G5.→n = G5.→(n + 1).
One can verify that there exists a graph sequence which is halting, finite,

loopless, trivial, non-multi, non-directed-multi, simple, and directed-simple and
there exists a graph sequence which is halting, finite, loopless, non-trivial, non-
multi, non-directed-multi, simple, and directed-simple.

Let G5 be a finite graph sequence and let x be a natural number. One can
check that G5.→x is finite.

Let G5 be a loopless graph sequence and let x be a natural number. Note
that G5.→x is loopless.

Let G5 be a trivial graph sequence and let x be a natural number. Observe
that G5.→x is trivial.

Let G5 be a non-trivial graph sequence and let x be a natural number.
Observe that G5.→x is non trivial.

Let G5 be a non-multi graph sequence and let x be a natural number. Note
that G5.→x is non-multi.

Let G5 be a non-directed-multi graph sequence and let x be a natural num-
ber. Observe that G5.→x is non-directed-multi.
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Let G5 be a simple graph sequence and let x be a natural number. Note
that G5.→x is simple.

Let G5 be a directed-simple graph sequence and let x be a natural number.
Note that G5.→x is directed-simple.

One can check that every graph sequence which is non-multi is also non-
directed-multi.

Let us observe that every graph sequence which is simple is also loopless and
non-multi.

One can verify that every graph sequence which is loopless and non-multi is
also simple.

Let us note that every graph sequence which is loopless and non-directed-
multi is also directed-simple.

One can verify that every graph sequence which is directed-simple is also
loopless and non-directed-multi.

Let us note that every graph sequence which is trivial and loopless is also
finite.

Let us observe that every graph sequence which is trivial and non-directed-
multi is also finite.

2. Theorems

For simplicity, we adopt the following convention: G6 denotes a graph struc-
ture, G, G3, G4, G7 denote graphs, e, x, x1, x2, y, y1, y2, E, V , X, Y denote
sets, n, n1, n2 denote natural numbers, and v, v1, v2 denote vertices of G.

We now state a number of propositions:
(1) VertexSelector = 1 and EdgeSelector = 2 and SourceSelector = 3 and

TargetSelector = 4.

(2) x ∈ the graph selectors iff x = VertexSelector or x = EdgeSelector or
x = SourceSelector or x = TargetSelector .

(3) The graph selectors ⊆ dom G.

(4) The vertices of G6 = G6(VertexSelector) and the edges of G6 =
G6(EdgeSelector) and the source of G6 = G6(SourceSelector) and the
target of G6 = G6(TargetSelector).

(5)(i) dom (the source of G) = the edges of G,
(ii) dom (the target of G) = the edges of G,
(iii) rng (the source of G) ⊆ the vertices of G, and
(iv) rng (the target of G) ⊆ the vertices of G.
(7)3 G6 is graph-like if and only if the following conditions are satisfied:
(i) the graph selectors ⊆ dom G6,

3The proposition (6) has been removed.
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(ii) the vertices of G6 is non empty,
(iii) the source of G6 is a function from the edges of G6 into the vertices of

G6, and
(iv) the target of G6 is a function from the edges of G6 into the vertices of

G6.
(8) Let V be a non empty set, E be a set, and S, T be functions from E

into V . Then
(i) the vertices of createGraph(V,E, S, T ) = V,

(ii) the edges of createGraph(V,E, S, T ) = E,

(iii) the source of createGraph(V,E, S, T ) = S, and
(iv) the target of createGraph(V,E, S, T ) = T.

(9) dom(G6.set(n, x)) = dom G6 ∪ {n}.
(10) dom G6 ⊆ dom(G6.set(n, x)).
(11) (G6.set(n, x))(n) = x.

(12) If n1 6= n2, then G6(n2) = (G6.set(n1, x))(n2).
(13) Suppose n /∈ the graph selectors. Then

(i) the vertices of G = the vertices of G.set(n, x),
(ii) the edges of G = the edges of G.set(n, x),
(iii) the source of G = the source of G.set(n, x),
(iv) the target of G = the target of G.set(n, x), and
(v) G.set(n, x) is a graph.

(14) The vertices of G6.set(VertexSelector, x) = x and the edges of
G6.set(EdgeSelector, x) = x and the source of G6.set(SourceSelector, x) =
x and the target of G6.set(TargetSelector, x) = x.

(15) If n1 6= n2, then n1 ∈ dom(G6.set(n1, x).set(n2, y)) and n2 ∈
dom(G6.set(n1, x).set(n2, y)) and (G6.set(n1, x).set(n2, y))(n1) = x and
(G6.set(n1, x).set(n2, y))(n2) = y.

(16) If e joins x and y in G, then x ∈ the vertices of G and y ∈ the vertices
of G.

(17) If e joins x and y in G, then e joins y and x in G.
(18) If e joins x1 and y1 in G and e joins x2 and y2 in G, then x1 = x2 and

y1 = y2 or x1 = y2 and y1 = x2.

(19) e joins x and y in G iff e joins x to y in G or e joins y to x in G.
(20) Suppose e joins x and y in G but x ∈ X and y ∈ Y or x ∈ Y and y ∈ X.

Then e joins a vertex from X and a vertex from Y in G.
(21) G is loopless iff for every set v it is not true that there exists a set e such

that e joins v and v in G.
(22) For every finite loopless graph G and for every vertex v of G holds

v.degree() = card(v.edgesInOut()).
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(23) For every non trivial graph G and for every vertex v of G holds (the
vertices of G) \ {v} is non empty.

(24) For every non trivial graph G there exist vertices v1, v2 of G such that
v1 6= v2.

(25) For every trivial graph G there exists a vertex v of G such that the
vertices of G = {v}.

(26) For every trivial loopless graph G holds the edges of G = ∅.
(27) If the edges of G = ∅, then G is simple.
(28) For every finite graph G holds G.order() ≥ 1.

(29) For every finite graph G holds G.order() = 1 iff G is trivial.
(30) For every finite graph G holds G.order() = 1 iff there exists a vertex v

of G such that the vertices of G = {v}.
(31) e ∈ the edges of G but (the source of G)(e) ∈ X or (the target of

G)(e) ∈ X iff e ∈ G.edgesInOut(X).
(32) G.edgesInto(X) ⊆ G.edgesInOut(X) and G.edgesOutOf(X) ⊆

G.edgesInOut(X).
(33) The edges of G = G.edgesInOut(the vertices of G).
(34) e ∈ the edges of G and (the source of G)(e) ∈ X and (the target of

G)(e) ∈ X iff e ∈ G.edgesBetween(X).
(35) If x ∈ X and y ∈ X and e joins x and y in G, then e ∈

G.edgesBetween(X).
(36) G.edgesBetween(X) ⊆ G.edgesInOut(X).
(37) The edges of G = G.edgesBetween(the vertices of G).
(38) (The edges of G) \G.edgesInOut(X) = G.edgesBetween((the vertices of

G) \X).
(39) If X ⊆ Y, then G.edgesBetween(X) ⊆ G.edgesBetween(Y ).
(40) For every graph G and for all sets X1, X2, Y1, Y2 such that X1 ⊆ X2

and Y1 ⊆ Y2 holds G.edgesBetween(X1, Y1) ⊆ G.edgesBetween(X2, Y2).
(41) For every graph G and for all sets X1, X2, Y1, Y2 such that X1 ⊆ X2 and

Y1 ⊆ Y2 holds G.edgesDBetween(X1, Y1) ⊆ G.edgesDBetween(X2, Y2).
(42) For every graph G and for every vertex v of G holds v.edgesIn() =

G.edgesDBetween(the vertices of G, {v}) and v.edgesOut() =
G.edgesDBetween({v}, the vertices of G).

(43) G is a subgraph of G.
(44) G3 is a subgraph of G4 and G4 is a subgraph of G3 if and only if the

following conditions are satisfied:
(i) the vertices of G3 = the vertices of G4,
(ii) the edges of G3 = the edges of G4,
(iii) the source of G3 = the source of G4, and
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(iv) the target of G3 = the target of G4.
(45) Let G3 be a graph, G4 be a subgraph of G3, and x be a set. Then

(i) if x ∈ the vertices of G4, then x ∈ the vertices of G3, and
(ii) if x ∈ the edges of G4, then x ∈ the edges of G3.

(46) For every graph G3 and for every subgraph G4 of G3 holds every sub-
graph of G4 is a subgraph of G3.

(47) Let G be a graph and G3, G4 be subgraphs of G. Suppose the vertices
of G3 ⊆ the vertices of G4 and the edges of G3 ⊆ the edges of G4. Then
G3 is a subgraph of G4.

(48) Let G3 be a graph and G4 be a subgraph of G3. Then
(i) the source of G4 = (the source of G3)�(the edges of G4), and
(ii) the target of G4 = (the target of G3)�(the edges of G4).

(49) Let G be a graph, V1, V2, E1, E2 be sets, G3 be a subgraph of G induced
by V1 and E1, and G4 be a subgraph of G induced by V2 and E2. Suppose
V2 ⊆ V1 and E2 ⊆ E1 and V2 is a non empty subset of the vertices of G

and E2 ⊆ G.edgesBetween(V2). Then G4 is a subgraph of G3.
(50) Let G3 be a non trivial graph, v be a vertex of G3, and G4 be a subgraph

of G3 with vertex v removed. Then the vertices of G4 = (the vertices
of G3) \ {v} and the edges of G4 = G3.edgesBetween((the vertices of
G3) \ {v}).

(51) Let G3 be a finite non trivial graph, v be a vertex of G3, and G4 be a
subgraph of G3 with vertex v removed. Then G4.order()+ 1 = G3.order()
and G4.size() + card(v.edgesInOut()) = G3.size().

(52) Let G3 be a graph, V be a set, and G4 be a subgraph of G3 with vertices
V removed. Suppose V ⊂ the vertices of G3. Then the vertices of G4 =
(the vertices of G3) \ V and the edges of G4 = G3.edgesBetween((the
vertices of G3) \ V ).

(53) Let G3 be a finite graph, V be a subset of the vertices of G3, and
G4 be a subgraph of G3 with vertices V removed. If V 6= the ver-
tices of G3, then G4.order() + cardV = G3.order() and G4.size() +
card(G3.edgesInOut(V )) = G3.size().

(54) Let G3 be a graph, e be a set, and G4 be a subgraph of G3 with edge e

removed. Then the vertices of G4 = the vertices of G3 and the edges of
G4 = (the edges of G3) \ {e}.

(55) Let G3 be a finite graph, e be a set, and G4 be a subgraph of G3 with
edge e removed. Then G3.order() = G4.order() and if e ∈ the edges of G3,
then G4.size() + 1 = G3.size().

(56) Let G3 be a graph, E be a set, and G4 be a subgraph of G3 with edges
E removed. Then the vertices of G4 = the vertices of G3 and the edges of
G4 = (the edges of G3) \ E.
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(57) For every finite graph G3 and for every set E and for every subgraph G4

of G3 with edges E removed holds G3.order() = G4.order().

(58) Let G3 be a finite graph, E be a subset of the edges of G3, and G4

be a subgraph of G3 with edges E removed. Then G4.size() + cardE =
G3.size().

(59) e ∈ v.edgesIn() iff e ∈ the edges of G and (the target of G)(e) = v.

(60) e ∈ v.edgesIn() iff there exists a set x such that e joins x to v in G.

(61) e ∈ v.edgesOut() iff e ∈ the edges of G and (the source of G)(e) = v.

(62) e ∈ v.edgesOut() iff there exists a set x such that e joins v to x in G.

(63) v.edgesInOut() = v.edgesIn() ∪ v.edgesOut().

(64) e ∈ v.edgesInOut() iff e ∈ the edges of G but (the source of G)(e) = v

or (the target of G)(e) = v.

(65) If e joins v1 and x in G, then e ∈ v1.edgesInOut().

(66) If e joins v1 and v2 in G, then e ∈ v1.edgesIn() and e ∈ v2.edgesOut() or
e ∈ v2.edgesIn() and e ∈ v1.edgesOut().

(67) e ∈ v1.edgesInOut() iff there exists a vertex v2 of G such that e joins v1

and v2 in G.

(68) If e ∈ v.edgesInOut() and e joins x and y in G, then v = x or v = y.

(69) If e joins v1 and v2 in G, then v1.adj(e) = v2 and v2.adj(e) = v1.

(70) e ∈ v.edgesInOut() iff e joins v and v.adj(e) in G.

(71) Let G be a finite graph, e be a set, and v1, v2 be vertices of G. If e joins
v1 and v2 in G, then 1 ≤ v1.degree() and 1 ≤ v2.degree().

(72) x ∈ v.inNeighbors() iff there exists a set e such that e joins x to v in G.

(73) x ∈ v.outNeighbors() iff there exists a set e such that e joins v to x in
G.

(74) x ∈ v.allNeighbors() iff there exists a set e such that e joins v and x in
G.

(75) Let G3 be a graph, G4 be a subgraph of G3, and x, y, e be sets. Then
(i) if e joins x and y in G4, then e joins x and y in G3,
(ii) if e joins x to y in G4, then e joins x to y in G3,
(iii) if e joins a vertex from x and a vertex from y in G4, then e joins a

vertex from x and a vertex from y in G3, and
(iv) if e joins a vertex from x to a vertex from y in G4, then e joins a vertex

from x to a vertex from y in G3.

(76) Let G3 be a graph, G4 be a subgraph of G3, and x, y, e be sets such
that e ∈ the edges of G4. Then

(i) if e joins x and y in G3, then e joins x and y in G4,
(ii) if e joins x to y in G3, then e joins x to y in G4,
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(iii) if e joins a vertex from x and a vertex from y in G3, then e joins a
vertex from x and a vertex from y in G4, and

(iv) if e joins a vertex from x to a vertex from y in G3, then e joins a vertex
from x to a vertex from y in G4.

(77) For every graph G3 and for every spanning subgraph G4 of G3 holds
every spanning subgraph of G4 is a spanning subgraph of G3.

(78) For every finite graph G3 and for every subgraph G4 of G3 holds
G4.order() ≤ G3.order() and G4.size() ≤ G3.size().

(79) Let G3 be a graph, G4 be a subgraph of G3, and X be a set.
Then G4.edgesInto(X) ⊆ G3.edgesInto(X) and G4.edgesOutOf(X) ⊆
G3.edgesOutOf(X) and G4.edgesInOut(X) ⊆ G3.edgesInOut(X) and
G4.edgesBetween(X) ⊆ G3.edgesBetween(X).

(80) For every graph G3 and for every subgraph G4 of G3 and for all
sets X, Y holds G4.edgesBetween(X, Y ) ⊆ G3.edgesBetween(X, Y ) and
G4.edgesDBetween(X, Y ) ⊆ G3.edgesDBetween(X, Y ).

(81) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, and
v2 be a vertex of G4. If v1 = v2, then v2.edgesIn() ⊆ v1.edgesIn() and
v2.edgesOut() ⊆ v1.edgesOut() and v2.edgesInOut() ⊆ v1.edgesInOut().

(82) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, and v2

be a vertex of G4. Suppose v1 = v2. Then v2.edgesIn() = v1.edgesIn()∩the
edges of G4 and v2.edgesOut() = v1.edgesOut() ∩ the edges of G4 and
v2.edgesInOut() = v1.edgesInOut() ∩ the edges of G4.

(83) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, v2 be
a vertex of G4, and e be a set. If v1 = v2 and e ∈ the edges of G4, then
v1.adj(e) = v2.adj(e).

(84) Let G3 be a finite graph, G4 be a subgraph of G3, v1 be a vertex of G3,
and v2 be a vertex of G4. If v1 = v2, then v2.inDegree() ≤ v1.inDegree()
and v2.outDegree() ≤ v1.outDegree() and v2.degree() ≤ v1.degree().

(85) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, and
v2 be a vertex of G4. If v1 = v2, then v2.inNeighbors() ⊆ v1.inNeighbors()
and v2.outNeighbors() ⊆ v1.outNeighbors() and v2.allNeighbors() ⊆
v1.allNeighbors().

(86) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, and
v2 be a vertex of G4. If v1 = v2 and v1 is isolated, then v2 is isolated.

(87) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, and
v2 be a vertex of G4. If v1 = v2 and v1 is endvertex, then v2 is endvertex
or isolated.

(88) If G3 =G G4 and G4 =G G7, then G3 =G G7.

(89) Let G be a graph and G3, G4 be subgraphs of G. Suppose the vertices
of G3 = the vertices of G4 and the edges of G3 = the edges of G4. Then
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G3 =G G4.

(90) G3 =G G4 iff G3 is a subgraph of G4 and G4 is a subgraph of G3.
(91) Suppose G3 =G G4. Then

(i) if e joins x and y in G3, then e joins x and y in G4,
(ii) if e joins x to y in G3, then e joins x to y in G4,
(iii) if e joins a vertex from X and a vertex from Y in G3, then e joins a

vertex from X and a vertex from Y in G4, and
(iv) if e joins a vertex from X to a vertex from Y in G3, then e joins a

vertex from X to a vertex from Y in G4.
(92) Suppose G3 =G G4. Then

(i) if G3 is finite, then G4 is finite,
(ii) if G3 is loopless, then G4 is loopless,
(iii) if G3 is trivial, then G4 is trivial,
(iv) if G3 is non-multi, then G4 is non-multi,
(v) if G3 is non-directed-multi, then G4 is non-directed-multi,
(vi) if G3 is simple, then G4 is simple, and
(vii) if G3 is directed-simple, then G4 is directed-simple.
(93) If G3 =G G4, then G3.order() = G4.order() and G3.size() = G4.size()

and G3.edgesInto(X) = G4.edgesInto(X) and G3.edgesOutOf(X) =
G4.edgesOutOf(X) and G3.edgesInOut(X) = G4.edgesInOut(X) and
G3.edgesBetween(X) = G4.edgesBetween(X) and G3.edgesDBetween(X, Y )
= G4.edgesDBetween(X, Y ).

(94) If G3 =G G4 and G7 is a subgraph of G3, then G7 is a subgraph of G4.
(95) If G3 =G G4 and G3 is a subgraph of G7, then G4 is a subgraph of G7.
(96) For all subgraphs G3, G4 of G induced by V and E holds G3 =G G4.

(97) For every graph G3 and for every subgraph G4 of G3 induced by the
vertices of G3 holds G3 =G G4.

(98) Let G3, G4 be graphs, V , E be sets, and G7 be a subgraph of G3 induced
by V and E. If G3 =G G4, then G7 is a subgraph of G4 induced by V and
E.

(99) Let v1 be a vertex of G3 and v2 be a vertex of G4. Suppose
v1 = v2 and G3 =G G4. Then v1.edgesIn() = v2.edgesIn() and
v1.edgesOut() = v2.edgesOut() and v1.edgesInOut() = v2.edgesInOut()
and v1.adj(e) = v2.adj(e) and v1.inDegree() = v2.inDegree() and
v1.outDegree() = v2.outDegree() and v1.degree() = v2.degree()
and v1.inNeighbors() = v2.inNeighbors() and v1.outNeighbors() =
v2.outNeighbors() and v1.allNeighbors() = v2.allNeighbors().

(100) Let v1 be a vertex of G3 and v2 be a vertex of G4 such that v1 = v2 and
G3 =G G4. Then

(i) if v1 is isolated, then v2 is isolated, and
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(ii) if v1 is endvertex, then v2 is endvertex.
(101) Let G be a graph and G3, G4 be subgraphs of G. Suppose G3 ⊂ G4.

Then the vertices of G3 ⊂ the vertices of G4 or the edges of G3 ⊂ the
edges of G4.

(102) Let G be a graph and G3, G4 be subgraphs of G. Suppose G3 ⊂ G4.

Then
(i) there exists a set v such that v ∈ the vertices of G4 and v /∈ the vertices

of G3, or
(ii) there exists a set e such that e ∈ the edges of G4 and e /∈ the edges of

G3.
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1. Preliminaries

The following propositions are true:
(1) For all odd natural numbers x, y holds x < y iff x + 2 ≤ y.

(2) Let X be a set and k be a natural number. Suppose X ⊆ Seg k. Let
m, n be natural numbers. If m ∈ dom Sgm X and n = (Sgm X)(m), then
m ≤ n.

(3) For every set X and for every finite sequence f2 of elements of X and
for every FinSubsequence f1 of f2 holds len Seq f1 ≤ len f2.

(4) Let X be a set, f2 be a finite sequence of elements of X, f1 be a Fin-
Subsequence of f2, and m be a natural number. Suppose m ∈ dom Seq f1.

Then there exists a natural number n such that n ∈ dom f2 and m ≤ n

and (Seq f1)(m) = f2(n).
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(5) For every set X and for every finite sequence f2 of elements of X and
for every FinSubsequence f1 of f2 holds len Seq f1 = card f1.

(6) Let X be a set, f2 be a finite sequence of elements of X, and f1 be a
FinSubsequence of f2. Then dom Seq f1 = dom Sgm dom f1.

2. Walk Definitions

Let G be a graph. A finite sequence of elements of the vertices of G is said
to be a vertex sequence of G if:

(Def. 1) For every natural number n such that 1 ≤ n and n < len it there exists
a set e such that e joins it(n) and it(n + 1) in G.

Let G be a graph. A finite sequence of elements of the edges of G is said to
be a edge sequence of G if it satisfies the condition (Def. 2).

(Def. 2) There exists a finite sequence v1 of elements of the vertices of G such
that len v1 = len it + 1 and for every natural number n such that 1 ≤ n

and n ≤ len it holds it(n) joins v1(n) and v1(n + 1) in G.
Let G be a graph. A finite sequence of elements of (the vertices of G)∪ (the

edges of G) is said to be a walk of G if it satisfies the conditions (Def. 3).

(Def. 3)(i) len it is odd,
(ii) it(1) ∈ the vertices of G, and
(iii) for every odd natural number n such that n < len it holds it(n + 1)

joins it(n) and it(n + 2) in G.
Let G be a graph and let W be a walk of G. One can verify that len W is

odd and non empty.
Let G be a graph and let v be a vertex of G. The functor G.walkOf(v)

yielding a walk of G is defined as follows:

(Def. 4) G.walkOf(v) = 〈v〉.
Let G be a graph and let x, y, e be sets. The functor G.walkOf(x, e, y)

yielding a walk of G is defined as follows:

(Def. 5) G.walkOf(x, e, y) =
{
〈x, e, y〉, if e joins x and y in G,
G.walkOf(choose(the vertices of G)), otherwise.

Let G be a graph and let W be a walk of G. The functor W.first() yields a
vertex of G and is defined as follows:

(Def. 6) W.first() = W (1).
The functor W.last() yields a vertex of G and is defined by:

(Def. 7) W.last() = W (lenW ).
Let G be a graph, let W be a walk of G, and let n be a natural number.

The functor W.vertexAt(n) yielding a vertex of G is defined as follows:
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(Def. 8) W.vertexAt(n) =
{

W (n), if n is odd and n ≤ lenW,

W.first(), otherwise.
Let G be a graph and let W be a walk of G. The functor W.reverse() yielding

a walk of G is defined as follows:
(Def. 9) W.reverse() = Rev(W ).

Let G be a graph and let W1, W2 be walks of G. The functor W1.append(W2)
yields a walk of G and is defined by:

(Def. 10) W1.append(W2) =
{

W1 aa W2, if W1.last() = W2.first(),
W1, otherwise.

Let G be a graph, let W be a walk of G, and let m, n be natural numbers.
The functor W.cut(m,n) yields a walk of G and is defined by:

(Def. 11) W.cut(m,n) =


〈W (m), . . . ,W (n)〉, if m is odd and n is odd and

m ≤ n and n ≤ lenW,

W, otherwise.
Let G be a graph, let W be a walk of G, and let m, n be natural numbers.

The functor W.remove(m,n) yielding a walk of G is defined by:

(Def. 12) W.remove(m,n) =


(W.cut(1,m)).append((W.cut(n, lenW ))),

if m is odd and n is odd and m ≤ n and
n ≤ lenW and W (m) = W (n),

W, otherwise.
Let G be a graph, let W be a walk of G, and let e be a set. The functor

W.addEdge(e) yields a walk of G and is defined as follows:
(Def. 13) W.addEdge(e) = W.append((G.walkOf(W.last(), e, W .last().adj(e)))).

Let G be a graph and let W be a walk of G. The functor W.vertexSeq()
yielding a vertex sequence of G is defined by:

(Def. 14) lenW + 1 = 2 · len(W.vertexSeq()) and for every natural number n

such that 1 ≤ n and n ≤ len(W.vertexSeq()) holds W.vertexSeq()(n) =
W (2 · n− 1).

Let G be a graph and let W be a walk of G. The functor W.edgeSeq() yields
a edge sequence of G and is defined by:

(Def. 15) lenW = 2 · len(W.edgeSeq()) + 1 and for every natural number n such
that 1 ≤ n and n ≤ len(W.edgeSeq()) holds W.edgeSeq()(n) = W (2 · n).

Let G be a graph and let W be a walk of G. The functor W.vertices() yields
a finite subset of the vertices of G and is defined as follows:

(Def. 16) W.vertices() = rng(W.vertexSeq()).
Let G be a graph and let W be a walk of G. The functor W.edges() yields

a finite subset of the edges of G and is defined by:
(Def. 17) W.edges() = rng(W.edgeSeq()).

Let G be a graph and let W be a walk of G. The functor W.length() yielding
a natural number is defined by:
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(Def. 18) W.length() = len(W.edgeSeq()).

Let G be a graph, let W be a walk of G, and let v be a set. The functor
W.find(v) yields an odd natural number and is defined by:

(Def. 19)(i) W.find(v) ≤ lenW and W (W.find(v)) = v and for every odd natural
number n such that n ≤ lenW and W (n) = v holds W.find(v) ≤ n if
v ∈ W.vertices(),

(ii) W.find(v) = lenW, otherwise.

Let G be a graph, let W be a walk of G, and let n be a natural number.
The functor W.find(n) yielding an odd natural number is defined by:

(Def. 20)(i) W.find(n) ≤ lenW and W (W.find(n)) = W (n) and for every
odd natural number k such that k ≤ lenW and W (k) = W (n) holds
W.find(n) ≤ k if n is odd and n ≤ lenW,

(ii) W.find(n) = len W, otherwise.

Let G be a graph, let W be a walk of G, and let v be a set. The functor
W.rfind(v) yields an odd natural number and is defined as follows:

(Def. 21)(i) W.rfind(v) ≤ lenW and W (W.rfind(v)) = v and for every odd natu-
ral number n such that n ≤ lenW and W (n) = v holds n ≤ W.rfind(v) if
v ∈ W.vertices(),

(ii) W.rfind(v) = len W, otherwise.

Let G be a graph, let W be a walk of G, and let n be a natural number.
The functor W.rfind(n) yields an odd natural number and is defined by:

(Def. 22)(i) W.rfind(n) ≤ lenW and W (W.rfind(n)) = W (n) and for every odd
natural number k such that k ≤ lenW and W (k) = W (n) holds k ≤
W.rfind(n) if n is odd and n ≤ lenW,

(ii) W.rfind(n) = len W, otherwise.

Let G be a graph, let u, v be sets, and let W be a walk of G. We say that
W is walk from u to v if and only if:

(Def. 23) W.first() = u and W.last() = v.

Let G be a graph and let W be a walk of G. We say that W is closed if and
only if:

(Def. 24) W.first() = W.last().

We say that W is directed if and only if:

(Def. 25) For every odd natural number n such that n < lenW holds (the source
of G)(W (n + 1)) = W (n).

We say that W is trivial if and only if:

(Def. 26) W.length() = 0.

We say that W is trail-like if and only if:

(Def. 27) W.edgeSeq() is one-to-one.
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Let G be a graph and let W be a walk of G. We introduce W is open as an
antonym of W is closed.

Let G be a graph and let W be a walk of G. We say that W is path-like if
and only if the conditions (Def. 28) are satisfied.

(Def. 28)(i) W is trail-like, and
(ii) for all odd natural numbers m, n such that m < n and n ≤ lenW holds

if W (m) = W (n), then m = 1 and n = lenW.

Let G be a graph and let W be a walk of G. We say that W is vertex-distinct
if and only if:

(Def. 29) For all odd natural numbers m, n such that m ≤ lenW and n ≤ lenW

and W (m) = W (n) holds m = n.

Let G be a graph and let W be a walk of G. We say that W is circuit-like
if and only if:

(Def. 30) W is closed, trail-like, and non trivial.
We say that W is cycle-like if and only if:

(Def. 31) W is closed, path-like, and non trivial.
Let G be a graph. One can verify the following observations:
∗ every walk of G which is path-like is also trail-like,
∗ every walk of G which is trivial is also path-like,
∗ every walk of G which is trivial is also vertex-distinct,
∗ every walk of G which is vertex-distinct is also path-like,
∗ every walk of G which is circuit-like is also closed, trail-like, and non

trivial, and
∗ every walk of G which is cycle-like is also closed, path-like, and non

trivial.
Let G be a graph. Observe that there exists a walk of G which is closed,

directed, and trivial.
Let G be a graph. Observe that there exists a walk of G which is vertex-

distinct.
Let G be a graph. A trail of G is a trail-like walk of G. A path of G is a

path-like walk of G.
Let G be a graph. A dwalk of G is a directed walk of G. A dtrail of G is a

directed trail of G. A dpath of G is a directed path of G.
Let G be a graph and let v be a vertex of G. Note that G.walkOf(v) is

closed, directed, and trivial.
Let G be a graph and let x, e, y be sets. One can check that G.walkOf(x, e, y)

is path-like.
Let G be a graph and let x, e be sets. Note that G.walkOf(x, e, x) is closed.
Let G be a graph and let W be a closed walk of G. One can check that

W.reverse() is closed.
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Let G be a graph and let W be a trivial walk of G. One can verify that
W.reverse() is trivial.

Let G be a graph and let W be a trail of G. Note that W.reverse() is
trail-like.

Let G be a graph and let W be a path of G. Observe that W.reverse() is
path-like.

Let G be a graph and let W1, W2 be closed walks of G. Note that W1.append(W2)
is closed.

Let G be a graph and let W1, W2 be dwalks of G. One can verify that
W1.append(W2) is directed.

Let G be a graph and let W1, W2 be trivial walks of G. Observe that
W1.append(W2) is trivial.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers.
Note that W.cut(m,n) is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural
numbers. Observe that W.cut(m,n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers.
Note that W.cut(m,n) is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers.
Note that W.cut(m,n) is path-like.

Let G be a graph, let W be a vertex-distinct walk of G, and let m, n be
natural numbers. One can verify that W.cut(m,n) is vertex-distinct.

Let G be a graph, let W be a closed walk of G, and let m, n be natural
numbers. One can verify that W.remove(m,n) is closed.

Let G be a graph, let W be a dwalk of G, and let m, n be natural numbers.
Note that W.remove(m,n) is directed.

Let G be a graph, let W be a trivial walk of G, and let m, n be natural
numbers. One can check that W.remove(m, n) is trivial.

Let G be a graph, let W be a trail of G, and let m, n be natural numbers.
Observe that W.remove(m,n) is trail-like.

Let G be a graph, let W be a path of G, and let m, n be natural numbers.
Observe that W.remove(m,n) is path-like.

Let G be a graph and let W be a walk of G. A walk of G is called a subwalk
of W if:

(Def. 32) It is walk from W.first() to W.last() and there exists a FinSubsequence
e1 of W.edgeSeq() such that it.edgeSeq() = Seq e1.

Let G be a graph, let W be a walk of G, and let m, n be natural numbers.
Then W.remove(m,n) is a subwalk of W .

Let G be a graph and let W be a walk of G. Note that there exists a subwalk
of W which is trail-like and path-like.
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Let G be a graph and let W be a walk of G. A trail of W is a trail-like
subwalk of W . A path of W is a path-like subwalk of W .

Let G be a graph and let W be a dwalk of G. One can verify that there
exists a path of W which is directed.

Let G be a graph and let W be a dwalk of G. A dwalk of W is a directed
subwalk of W . A dtrail of W is a directed trail of W . A dpath of W is a directed
path of W .

Let G be a graph. The functor G.allWalks() yields a non empty subset of
((the vertices of G) ∪ (the edges of G))∗ and is defined by:

(Def. 33) G.allWalks() = {W : W ranges over walks of G}.
Let G be a graph. The functor G.allTrails() yielding a non empty subset of

G.allWalks() is defined by:

(Def. 34) G.allTrails() = {W : W ranges over trails of G}.
Let G be a graph. The functor G.allPaths() yields a non empty subset of

G.allTrails() and is defined as follows:

(Def. 35) G.allPaths() = {W : W ranges over paths of G}.
Let G be a graph. The functor G.allDWalks() yields a non empty subset of

G.allWalks() and is defined by:

(Def. 36) G.allDWalks() = {W : W ranges over dwalks of G}.
Let G be a graph. The functor G.allDTrails() yields a non empty subset of

G.allTrails() and is defined as follows:

(Def. 37) G.allDTrails() = {W : W ranges over dtrails of G}.
Let G be a graph. The functor G.allDPaths() yields a non empty subset of

G.allDTrails() and is defined by:

(Def. 38) G.allDPaths() = {W : W ranges over directed paths of G}.
Let G be a finite graph. One can check that G.allTrails() is finite.
Let G be a graph and let X be a non empty subset of G.allWalks(). We see

that the element of X is a walk of G.
Let G be a graph and let X be a non empty subset of G.allTrails(). We see

that the element of X is a trail of G.
Let G be a graph and let X be a non empty subset of G.allPaths(). We see

that the element of X is a path of G.
Let G be a graph and let X be a non empty subset of G.allDWalks(). We

see that the element of X is a dwalk of G.
Let G be a graph and let X be a non empty subset of G.allDTrails(). We

see that the element of X is a dtrail of G.
Let G be a graph and let X be a non empty subset of G.allDPaths(). We

see that the element of X is a dpath of G.
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3. Walk Theorems

For simplicity, we adopt the following rules: G, G1, G2 are graphs, W , W1,
W2 are walks of G, e, x, y, z are sets, v is a vertex of G, and n, m are natural
numbers.

We now state a number of propositions:
(8)3 For every odd natural number n such that n ≤ lenW holds W (n) ∈ the

vertices of G.
(9) For every even natural number n such that n ∈ dom W holds W (n) ∈ the

edges of G.
(10) Let n be an even natural number. Suppose n ∈ dom W. Then there

exists an odd natural number n1 such that n1 = n−1 and n−1 ∈ dom W

and n + 1 ∈ dom W and W (n) joins W (n1) and W (n + 1) in G.
(11) For every odd natural number n such that n < lenW holds W (n + 1) ∈

(W.vertexAt(n)).edgesInOut().
(12) For every odd natural number n such that 1 < n and n ≤ lenW holds

W (n− 1) ∈ (W.vertexAt(n)).edgesInOut().
(13) For every odd natural number n such that n < lenW holds n ∈ dom W

and n + 1 ∈ dom W and n + 2 ∈ dom W.

(14) len(G.walkOf(v)) = 1 and (G.walkOf(v))(1) = v and
(G.walkOf(v)).first() = v and (G.walkOf(v)).last() = v and G.walkOf(v)
is walk from v to v.

(15) If e joins x and y in G, then len(G.walkOf(x, e, y)) = 3.

(16) If e joins x and y in G, then (G.walkOf(x, e, y)).first() = x and
(G.walkOf(x, e, y)).last() = y and G.walkOf(x, e, y) is walk from x to y.

(17) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.first() = W2.first() and W1.last() = W2.last().
(18) W is walk from x to y iff W (1) = x and W (lenW ) = y.

(19) If W is walk from x to y, then x is a vertex of G and y is a vertex of G.
(20) Let W1 be a walk of G1 and W2 be a walk of G2. If W1 = W2, then W1

is walk from x to y iff W2 is walk from x to y.
(21) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

and for every natural number n holds W1.vertexAt(n) = W2.vertexAt(n).
(22) lenW = len(W.reverse()) and dom W = dom(W.reverse()) and rng W =

rng(W.reverse()).
(23) W.first() = W.reverse().last() and W.last() = W.reverse().first().
(24) W is walk from x to y iff W.reverse() is walk from y to x.

3The proposition (7) has been removed.
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(25) If n ∈ dom W, then W (n) = W.reverse()((lenW − n) + 1) and (lenW −
n) + 1 ∈ dom(W.reverse()).

(26) If n ∈ dom(W.reverse()), then W.reverse()(n) = W ((lenW −n)+1) and
(lenW − n) + 1 ∈ dom W.

(27) W.reverse().reverse() = W.

(28) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.reverse() = W2.reverse().
(29) If W1.last() = W2.first(), then len(W1.append(W2)) + 1 = lenW1 +

lenW2.

(30) If W1.last() = W2.first(), then lenW1 ≤ len(W1.append(W2)) and
lenW2 ≤ len(W1.append(W2)).

(31) If W1.last() = W2.first(), then (W1.append(W2)).first() = W1.first() and
(W1.append(W2)).last() = W2.last() and W1.append(W2) is walk from
W1.first() to W2.last().

(32) If W1 is walk from x to y and W2 is walk from y to z, then
W1.append(W2) is walk from x to z.

(33) If n ∈ dom W1, then (W1.append(W2))(n) = W1(n) and n ∈
dom(W1.append(W2)).

(34) If W1.last() = W2.first(), then for every natural number n such that n <

lenW2 holds (W1.append(W2))(lenW1 +n) = W2(n+1) and len W1 +n ∈
dom(W1.append(W2)).

(35) If n ∈ dom(W1.append(W2)), then n ∈ dom W1 or there exists a natural
number k such that k < lenW2 and n = lenW1 + k.

(36) For all walks W3, W4 of G1 and for all walks W5, W6 of G2 such that
W3 = W5 and W4 = W6 holds W3.append(W4) = W5.append(W6).

(37) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ lenW.

Then len(W.cut(m,n)) + m = n + 1 and for every natural number i such
that i < len(W.cut(m, n)) holds (W.cut(m,n))(i + 1) = W (m + i) and
m + i ∈ dom W.

(38) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ lenW.

Then (W.cut(m,n)).first() = W (m) and (W.cut(m,n)).last() = W (n)
and W.cut(m,n) is walk from W (m) to W (n).

(39) For all odd natural numbers m, n, o such that m ≤ n and n ≤ o and
o ≤ lenW holds (W.cut(m,n)).append((W.cut(n, o))) = W.cut(m, o).

(40) W.cut(1, lenW ) = W.

(41) For every odd natural number n such that n < lenW holds
G.walkOf(W (n),W (n + 1),W (n + 2)) = W.cut(n, n + 2).

(42) For all odd natural numbers m, n such that m ≤ n and n < lenW holds
(W.cut(m,n)).addEdge(W (n + 1)) = W.cut(m,n + 2).
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(43) For every odd natural number n such that n ≤ lenW holds
W.cut(n, n) = 〈W.vertexAt(n)〉.

(44) If m is odd and m ≤ n, then W.cut(1, n).cut(1,m) = W.cut(1,m).
(45) For all odd natural numbers m, n such that m ≤ n and n ≤ lenW1 and

W1.last() = W2.first() holds (W1.append(W2)).cut(m,n) = W1.cut(m,n).
(46) For every odd natural number m such that m ≤ lenW holds

len(W.cut(1,m)) = m.

(47) For every odd natural number m and for every natural number x such
that x ∈ dom(W.cut(1,m)) and m ≤ lenW holds (W.cut(1,m))(x) =
W (x).

(48) Let m, n be odd natural numbers and i be a natural number. If m ≤
n and n ≤ lenW and i ∈ dom(W.cut(m,n)), then (W.cut(m,n))(i) =
W ((m + i)− 1) and (m + i)− 1 ∈ dom W.

(49) For every walk W1 of G1 and for every walk W2 of G2 and for all natural
numbers m, n such that W1 = W2 holds W1.cut(m,n) = W2.cut(m,n).

(50) For all odd natural numbers m, n such that m ≤ n and n ≤ lenW and
W (m) = W (n) holds len(W.remove(m,n)) + n = lenW + m.

(51) If W is walk from x to y, then W.remove(m,n) is walk from x to y.
(52) len(W.remove(m,n)) ≤ lenW.

(53) W.remove(m,m) = W.

(54) For all odd natural numbers m, n such that m ≤ n and n ≤ lenW and
W (m) = W (n) holds (W.cut(1,m)).last() = (W.cut(n, lenW )).first().

(55) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ lenW

and W (m) = W (n). Let x be a natural number. If x ∈ Seg m, then
(W.remove(m,n))(x) = W (x).

(56) Let m, n be odd natural numbers. Suppose m ≤ n and n ≤ lenW

and W (m) = W (n). Let x be a natural number. Suppose m ≤ x and
x ≤ len(W.remove(m,n)). Then (W.remove(m,n))(x) = W ((x−m) + n)
and (x−m) + n is a natural number and (x−m) + n ≤ lenW.

(57) For all odd natural numbers m, n such that m ≤ n and n ≤ lenW and
W (m) = W (n) holds len(W.remove(m,n)) = (lenW + m)− n.

(58) For every natural number m such that W (m) = W.last() holds
W.remove(m, lenW ) = W.cut(1,m).

(59) For every natural number m such that W.first() = W (m) holds
W.remove(1,m) = W.cut(m, lenW ).

(60) (W.remove(m,n)).first() = W.first() and (W.remove(m,n)).last() =
W.last().

(61) Let m, n be odd natural numbers and x be a natural number. Suppose
m ≤ n and n ≤ lenW and W (m) = W (n) and x ∈ dom(W.remove(m,n)).
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Then x ∈ Seg m or m ≤ x and x ≤ len(W.remove(m,n)).
(62) For every walk W1 of G1 and for every walk W2 of G2 and for all

natural numbers m, n such that W1 = W2 holds W1.remove(m,n) =
W2.remove(m,n).

(63) If e joins W.last() and x in G, then W.addEdge(e) = W a 〈e, x〉.
(64) If e joins W.last() and x in G, then (W.addEdge(e)).first() = W.first()

and (W.addEdge(e)).last() = x and W.addEdge(e) is walk from W.first()
to x.

(65) If e joins W.last() and x in G, then len(W.addEdge(e)) = len W + 2.

(66) Suppose e joins W.last() and x in G. Then (W.addEdge(e))(lenW+1) =
e and (W.addEdge(e))(lenW + 2) = x and for every natural number n

such that n ∈ dom W holds (W.addEdge(e))(n) = W (n).
(67) If W is walk from x to y and e joins y and z in G, then W.addEdge(e)

is walk from x to z.
(68) 1 ≤ len(W.vertexSeq()).
(69) For every odd natural number n such that n ≤ lenW holds 2 · ((n+1)÷

2)− 1 = n and 1 ≤ (n + 1)÷ 2 and (n + 1)÷ 2 ≤ len(W.vertexSeq()).
(70) (G.walkOf(v)).vertexSeq() = 〈v〉.
(71) If e joins x and y in G, then (G.walkOf(x, e, y)).vertexSeq() = 〈x, y〉.
(72) W.first() = W.vertexSeq()(1) and W.last() =

W.vertexSeq()(len(W.vertexSeq())).
(73) For every odd natural number n such that n ≤ lenW holds

W.vertexAt(n) = W.vertexSeq()((n + 1)÷ 2).
(74) n ∈ dom(W.vertexSeq()) iff 2 · n− 1 ∈ dom W.

(75) (W.cut(1, n)).vertexSeq() ⊆ W.vertexSeq().
(76) If e joins W.last() and x in G, then (W.addEdge(e)).vertexSeq() =

W.vertexSeq() a 〈x〉.
(77) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.vertexSeq() = W2.vertexSeq().
(78) For every even natural number n such that 1 ≤ n and n ≤ lenW holds

n÷ 2 ∈ dom(W.edgeSeq()) and W (n) = W.edgeSeq()(n÷ 2).
(79) n ∈ dom(W.edgeSeq()) iff 2 · n ∈ dom W.

(80) For every natural number n such that n ∈ dom(W.edgeSeq()) holds
W.edgeSeq()(n) ∈ the edges of G.

(81) There exists an even natural number l1 such that l1 = len W − 1 and
len(W.edgeSeq()) = l1 ÷ 2.

(82) (W.cut(1, n)).edgeSeq() ⊆ W.edgeSeq().
(83) If e joins W.last() and x in G, then (W.addEdge(e)).edgeSeq() =

W.edgeSeq() a 〈e〉.
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(84) e joins x and y in G iff (G.walkOf(x, e, y)).edgeSeq() = 〈e〉.
(85) W.reverse().edgeSeq() = Rev(W.edgeSeq()).
(86) If W1.last() = W2.first(), then (W1.append(W2)).edgeSeq() =

W1.edgeSeq() a W2.edgeSeq().
(87) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.edgeSeq() = W2.edgeSeq().
(88) x ∈ W.vertices() iff there exists an odd natural number n such that

n ≤ lenW and W (n) = x.

(89) W.first() ∈ W.vertices() and W.last() ∈ W.vertices().
(90) For every odd natural number n such that n ≤ lenW holds

W.vertexAt(n) ∈ W.vertices().
(91) (G.walkOf(v)).vertices() = {v}.
(92) If e joins x and y in G, then (G.walkOf(x, e, y)).vertices() = {x, y}.
(93) W.vertices() = W.reverse().vertices().
(94) If W1.last() = W2.first(), then (W1.append(W2)).vertices() =

W1.vertices() ∪W2.vertices().
(95) For all odd natural numbers m, n such that m ≤ n and n ≤ lenW holds

(W.cut(m,n)).vertices() ⊆ W.vertices().
(96) If e joins W.last() and x in G, then (W.addEdge(e)).vertices() =

W.vertices() ∪ {x}.
(97) Let G be a finite graph, W be a walk of G, and e, x be

sets. If e joins W.last() and x in G and x /∈ W.vertices(), then
card((W.addEdge(e)).vertices()) = card(W.vertices()) + 1.

(98) If x ∈ W.vertices() and y ∈ W.vertices(), then there exists a walk of G

which is walk from x to y.
(99) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.vertices() = W2.vertices().
(100) e ∈ W.edges() iff there exists an even natural number n such that 1 ≤ n

and n ≤ lenW and W (n) = e.

(101) e ∈ W.edges() iff there exists an odd natural number n such that n <

lenW and W (n + 1) = e.

(102) rng W = W.vertices() ∪W.edges().
(103) If W1.last() = W2.first(), then (W1.append(W2)).edges() = W1.edges()∪

W2.edges().
(104) Suppose e ∈ W.edges(). Then there exist vertices v2, v3 of G and there

exists an odd natural number n such that n + 2 ≤ lenW and v2 = W (n)
and e = W (n + 1) and v3 = W (n + 2) and e joins v2 and v3 in G.

(105) e ∈ W.edges() iff there exists a natural number n such that n ∈
dom(W.edgeSeq()) and W.edgeSeq()(n) = e.
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(106) If e ∈ W.edges() and e joins x and y in G, then x ∈ W.vertices() and
y ∈ W.vertices().

(107) (W.cut(m,n)).edges() ⊆ W.edges().
(108) W.edges() = W.reverse().edges().
(109) e joins x and y in G iff (G.walkOf(x, e, y)).edges() = {e}.
(110) W.edges() ⊆ G.edgesBetween(W.vertices()).
(111) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.edges() = W2.edges().
(112) If e joins W.last() and x in G, then (W.addEdge(e)).edges() =

W.edges() ∪ {e}.
(113) lenW = 2 ·W.length() + 1.

(114) lenW1 = lenW2 iff W1.length() = W2.length().
(115) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

holds W1.length() = W2.length().
(116) For every odd natural number n such that n ≤ lenW holds

W.find(W (n)) ≤ n and W.rfind(W (n)) ≥ n.

(117) For every walk W1 of G1 and for every walk W2 of G2 and for every set
v such that W1 = W2 holds W1.find(v) = W2.find(v) and W1.rfind(v) =
W2.rfind(v).

(118) For every odd natural number n such that n ≤ lenW holds W.find(n) ≤
n and W.rfind(n) ≥ n.

(119) W is closed iff W (1) = W (lenW ).
(120) W is closed iff there exists a set x such that W is walk from x to x.
(121) W is closed iff W.reverse() is closed.
(122) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

and W1 is closed holds W2 is closed.
(123) W is directed if and only if for every odd natural number n such that

n < lenW holds W (n + 1) joins W (n) to W (n + 2) in G.
(124) Suppose W is directed and walk from x to y and e joins y to z in G.

Then W.addEdge(e) is directed and W.addEdge(e) is walk from x to z.
(125) For every dwalk W of G and for all natural numbers m, n holds

W.cut(m,n) is directed.
(126) W is non trivial iff 3 ≤ lenW.

(127) W is non trivial iff lenW 6= 1.

(128) If W.first() 6= W.last(), then W is non trivial.
(129) W is trivial iff there exists a vertex v of G such that W = G.walkOf(v).
(130) W is trivial iff W.reverse() is trivial.
(131) If W2 is trivial, then W1.append(W2) = W1.
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(132) For all odd natural numbers m, n such that m ≤ n and n ≤ lenW holds
W.cut(m, n) is trivial iff m = n.

(133) If e joins W.last() and x in G, then W.addEdge(e) is non trivial.
(134) If W is non trivial, then there exists an odd natural number l2 such that

l2 = lenW − 2 and (W.cut(1, l2)).addEdge(W (l2 + 1)) = W.

(135) If W2 is non trivial and W2.edges() ⊆ W1.edges(), then W2.vertices() ⊆
W1.vertices().

(136) If W is non trivial, then for every vertex v of G such that v ∈ W.vertices()
holds v is not isolated.

(137) W is trivial iff W.edges() = ∅.
(138) For every walk W1 of G1 and for every walk W2 of G2 such that W1 = W2

and W1 is trivial holds W2 is trivial.
(139) W is trail-like iff for all even natural numbers m, n such that 1 ≤ m and

m < n and n ≤ lenW holds W (m) 6= W (n).
(140) If lenW ≤ 3, then W is trail-like.
(141) W is trail-like iff W.reverse() is trail-like.
(142) For every trail W of G and for all natural numbers m, n holds

W.cut(m,n) is trail-like.
(143) For every trail W of G and for every set e such that e ∈

W.last().edgesInOut() and e /∈ W.edges() holds W.addEdge(e) is trail-
like.

(144) For every trail W of G and for every vertex v of G such that v ∈
W.vertices() and v is endvertex holds v = W.first() or v = W.last().

(145) For every finite graph G and for every trail W of G holds
len(W.edgeSeq()) ≤ G.size().

(146) If lenW ≤ 3, then W is path-like.
(147) If for all odd natural numbers m, n such that m ≤ lenW and n ≤ lenW

and W (m) = W (n) holds m = n, then W is path-like.
(148) Let W be a path of G. Suppose W is open. Let m, n be odd natural

numbers. If m < n and n ≤ lenW, then W (m) 6= W (n).
(149) W is path-like iff W.reverse() is path-like.
(150) For every path W of G and for all natural numbers m, n holds

W.cut(m,n) is path-like.
(151) Let W be a path of G and e, v be sets. Suppose that

(i) e joins W.last() and v in G,
(ii) e /∈ W.edges(),
(iii) W is trivial or open, and
(iv) for every odd natural number n such that 1 < n and n ≤ lenW holds

W (n) 6= v.
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Then W.addEdge(e) is path-like.
(152) Let W be a path of G and e, v be sets. Suppose e joins W.last() and v

in G and v /∈ W.vertices() and W is trivial or open. Then W.addEdge(e)
is path-like.

(153) If for every odd natural number n such that n ≤ lenW holds
W.find(W (n)) = W.rfind(W (n)), then W is path-like.

(154) If for every odd natural number n such that n ≤ lenW holds
W.rfind(n) = n, then W is path-like.

(155) For every finite graph G and for every path W of G holds
len(W.vertexSeq()) ≤ G.order() + 1.

(156) Let G be a graph, W be a vertex-distinct walk of G, and e, v be sets. If
e joins W.last() and v in G and v /∈ W.vertices(), then W.addEdge(e) is
vertex-distinct.

(157) If e joins x and x in G, then G.walkOf(x, e, x) is cycle-like.
(158) Suppose e joins x and y in G and e ∈ W1.edges() and W1 is cycle-like.

Then there exists a walk W2 of G such that W2 is walk from x to y and
e /∈ W2.edges().

(159) W is a subwalk of W .
(160) For every walk W1 of G and for every subwalk W2 of W1 holds every

subwalk of W2 is a subwalk of W1.
(161) If W1 is a subwalk of W2, then W1 is walk from x to y iff W2 is walk

from x to y.
(162) If W1 is a subwalk of W2, then W1.first() = W2.first() and W1.last() =

W2.last().
(163) If W1 is a subwalk of W2, then lenW1 ≤ lenW2.

(164) If W1 is a subwalk of W2, then W1.edges() ⊆ W2.edges() and
W1.vertices() ⊆ W2.vertices().

(165) Suppose W1 is a subwalk of W2. Let m be an odd natural number.
Suppose m ≤ lenW1. Then there exists an odd natural number n such
that m ≤ n and n ≤ lenW2 and W1(m) = W2(n).

(166) Suppose W1 is a subwalk of W2. Let m be an even natural number.
Suppose 1 ≤ m and m ≤ lenW1. Then there exists an even natural number
n such that m ≤ n and n ≤ lenW2 and W1(m) = W2(n).

(167) For every trail W1 of G such that W1 is non trivial holds there exists a
path of W1 which is non trivial.

(168) For every graph G1 and for every subgraph G2 of G1 holds every walk
of G2 is a walk of G1.

(169) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G1. If
W is trivial and W.first() ∈ the vertices of G2, then W is a walk of G2.
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(170) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G1. If
W is non trivial and W.edges() ⊆ the edges of G2, then W is a walk of
G2.

(171) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G1.
Suppose W.vertices() ⊆ the vertices of G2 and W.edges() ⊆ the edges of
G2. Then W is a walk of G2.

(172) Let G1 be a non trivial graph, W be a walk of G1, v be a vertex of G1,
and G2 be a subgraph of G1 with vertex v removed. If v /∈ W.vertices(),
then W is a walk of G2.

(173) Let G1 be a graph, W be a walk of G1, e be a set, and G2 be a subgraph
of G1 with edge e removed. If e /∈ W.edges(), then W is a walk of G2.

(174) Let G1 be a graph, G2 be a subgraph of G1, and x, y, e be sets. If e

joins x and y in G2, then G1.walkOf(x, e, y) = G2.walkOf(x, e, y).
(175) Let G1 be a graph, G2 be a subgraph of G1, W1 be a walk of G1, W2 be

a walk of G2, and e be a set. If W1 = W2 and e ∈ W2.last().edgesInOut(),
then W1.addEdge(e) = W2.addEdge(e).

(176) Let G1 be a graph, G2 be a subgraph of G1, and W be a walk of G2.
Then

(i) if W is closed, then W is a closed walk of G1,
(ii) if W is directed, then W is a directed walk of G1,
(iii) if W is trivial, then W is a trivial walk of G1,
(iv) if W is trail-like, then W is a trail-like walk of G1,
(v) if W is path-like, then W is a path-like walk of G1, and
(vi) if W is vertex-distinct, then W is a vertex-distinct walk of G1.

(177) Let G1 be a graph, G2 be a subgraph of G1, W1 be a walk of G1, and
W2 be a walk of G2 such that W1 = W2. Then

(i) W1 is closed iff W2 is closed,
(ii) W1 is directed iff W2 is directed,
(iii) W1 is trivial iff W2 is trivial,
(iv) W1 is trail-like iff W2 is trail-like,
(v) W1 is path-like iff W2 is path-like, and
(vi) W1 is vertex-distinct iff W2 is vertex-distinct.

(178) If G1 =G G2 and x is a vertex sequence of G1, then x is a vertex sequence
of G2.

(179) If G1 =G G2 and x is a edge sequence of G1, then x is a edge sequence
of G2.

(180) If G1 =G G2 and x is a walk of G1, then x is a walk of G2.
(181) If G1 =G G2, then G1.walkOf(x, e, y) = G2.walkOf(x, e, y).
(182) Let W1 be a walk of G1 and W2 be a walk of G2 such that G1 =G G2

and W1 = W2. Then



walks in graphs 269

(i) W1 is closed iff W2 is closed,
(ii) W1 is directed iff W2 is directed,
(iii) W1 is trivial iff W2 is trivial,
(iv) W1 is trail-like iff W2 is trail-like,
(v) W1 is path-like iff W2 is path-like, and
(vi) W1 is vertex-distinct iff W2 is vertex-distinct.
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1. Preliminaries

Let X be a finite set. Observe that 2X is finite.
The following proposition is true

(1) For every finite set X such that 1 < cardX there exist sets x1, x2 such
that x1 ∈ X and x2 ∈ X and x1 6= x2.

2. Definitions

Let G be a graph. We say that G is connected if and only if:
(Def. 1) For all vertices u, v of G holds there exists a walk of G which is walk

from u to v.
Let G be a graph. We say that G is acyclic if and only if:

(Def. 2) There exists no walk of G which is cycle-like.
Let G be a graph. We say that G is tree-like if and only if:

1This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.
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(Def. 3) G is acyclic and connected.
One can verify that every graph which is trivial is also connected.
Let us note that every graph which is trivial and loopless is also tree-like.
Let us note that every graph which is acyclic is also simple.
Let us observe that every graph which is tree-like is also acyclic and con-

nected.
Let us observe that every graph which is acyclic and connected is also tree-

like.
Let G be a graph and let v be a vertex of G. Observe that every subgraph

of G induced by {v} and ∅ is tree-like.
Let G be a graph and let v be a set. We say that G is dtree rooted at v if

and only if:

(Def. 4) G is tree-like and for every vertex x of G holds there exists a dwalk of
G which is walk from v to x.

Let us observe that there exists a graph which is trivial, finite, and tree-like
and there exists a graph which is non trivial, finite, and tree-like.

Let G be a graph. Note that there exists a subgraph of G which is trivial,
finite, and tree-like.

Let G be an acyclic graph. Observe that every subgraph of G is acyclic.
Let G be a graph and let v be a vertex of G. The functor G.reachableFrom(v)

yields a non empty subset of the vertices of G and is defined as follows:

(Def. 5) For every set x holds x ∈ G.reachableFrom(v) iff there exists a walk of
G which is walk from v to x.

Let G be a graph and let v be a vertex of G. The functor G.reachableDFrom(v)
yielding a non empty subset of the vertices of G is defined by:

(Def. 6) For every set x holds x ∈ G.reachableDFrom(v) iff there exists a dwalk
of G which is walk from v to x.

Let G1 be a graph and let G2 be a subgraph of G1. We say that G2 is
component-like if and only if:

(Def. 7) G2 is connected and it is not true that there exists a connected subgraph
G3 of G1 such that G2 ⊂ G3.

Let G be a graph. Note that every subgraph of G which is component-like
is also connected.

Let G be a graph and let v be a vertex of G. Note that every subgraph of
G induced by G.reachableFrom(v) is component-like.

Let G be a graph. Observe that there exists a subgraph of G which is
component-like.

Let G be a graph. A component of G is a component-like subgraph of G.
Let G be a graph. The functor G.componentSet() yielding a non empty

family of subsets of the vertices of G is defined as follows:
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(Def. 8) For every set x holds x ∈ G.componentSet() iff there exists a vertex v of
G such that x = G.reachableFrom(v).

Let G be a graph and let X be an element of G.componentSet(). Observe
that every subgraph of G induced by X is component-like.

Let G be a graph. The functor G.numComponents() yielding a cardinal
number is defined by:

(Def. 9) G.numComponents() = G.componentSet() .
Let G be a finite graph. Then G.numComponents() is a non empty natural

number.
Let G be a graph and let v be a vertex of G. We say that v is cut-vertex if

and only if:
(Def. 10) For every subgraph G2 of G with vertex v removed holds

G.numComponents() < G2.numComponents().
Let G be a finite graph and let v be a vertex of G. Let us observe that v is

cut-vertex if and only if:
(Def. 11) For every subgraph G2 of G with vertex v removed holds

G.numComponents() < G2.numComponents().
Let G be a non trivial finite connected graph. Observe that there exists a

vertex of G which is non cut-vertex.
Let G be a non trivial finite tree-like graph. One can check that there exists

a vertex of G which is endvertex.
Let G be a non trivial finite tree-like graph and let v be an endvertex vertex

of G. Observe that every subgraph of G with vertex v removed is tree-like.
Let G4 be a graph sequence. We say that G4 is connected if and only if:

(Def. 12) For every natural number n holds G4.→n is connected.
We say that G4 is acyclic if and only if:

(Def. 13) For every natural number n holds G4.→n is acyclic.
We say that G4 is tree-like if and only if:

(Def. 14) For every natural number n holds G4.→n is tree-like.
One can check the following observations:
∗ every graph sequence which is trivial is also connected,
∗ every graph sequence which is trivial and loopless is also tree-like,
∗ every graph sequence which is acyclic is also simple,
∗ every graph sequence which is tree-like is also acyclic and connected, and
∗ every graph sequence which is acyclic and connected is also tree-like.
Let us note that there exists a graph sequence which is halting, finite, and

tree-like.
Let G4 be a connected graph sequence and let n be a natural number. Note

that G4.→n is connected.
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Let G4 be an acyclic graph sequence and let n be a natural number. Observe
that G4.→n is acyclic.

Let G4 be a tree-like graph sequence and let n be a natural number. Note
that G4.→n is tree-like.

3. Theorems

For simplicity, we use the following convention: G, G1, G2 are graphs, e, x,
y are sets, v, v1, v2 are vertices of G, and W is a walk of G.

We now state a number of propositions:
(2) For every non trivial connected graph G and for every vertex v of G

holds v is not isolated.
(3) Let G1 be a non trivial graph, v be a vertex of G1, and G2 be a subgraph

of G1 with vertex v removed. Suppose G2 is connected and there exists
a set e such that e ∈ v.edgesInOut() and e does not join v and v in G1.
Then G1 is connected.

(4) Let G1 be a non trivial connected graph, v be a vertex of G1, and G2

be a subgraph of G1 with vertex v removed. If v is endvertex, then G2 is
connected.

(5) Let G1 be a connected graph, W be a walk of G1, e be a set, and G2 be a
subgraph of G1 with edge e removed. If W is cycle-like and e ∈ W.edges(),
then G2 is connected.

(6) If there exists a vertex v1 of G such that for every vertex v2 of G holds
there exists a walk of G which is walk from v1 to v2, then G is connected.

(7) Every trivial graph is connected.
(8) If G1 =G G2 and G1 is connected, then G2 is connected.
(9) v ∈ G.reachableFrom(v).

(10) If x ∈ G.reachableFrom(v1) and e joins x and y in G, then y ∈
G.reachableFrom(v1).

(11) G.edgesBetween(G.reachableFrom(v)) =
G.edgesInOut(G.reachableFrom(v)).

(12) If v1 ∈ G.reachableFrom(v2), then G.reachableFrom(v1) =
G.reachableFrom(v2).

(13) If v ∈ W.vertices(), then W.vertices() ⊆ G.reachableFrom(v).
(14) Let G1 be a graph, G2 be a subgraph of G1, v1 be a vertex of G1,

and v2 be a vertex of G2. If v1 = v2, then G2.reachableFrom(v2) ⊆
G1.reachableFrom(v1).

(15) If there exists a vertex v of G such that G.reachableFrom(v) = the
vertices of G, then G is connected.
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(16) If G is connected, then for every vertex v of G holds G.reachableFrom(v) =
the vertices of G.

(17) For every vertex v1 of G1 and for every vertex v2 of G2 such that G1 =G

G2 and v1 = v2 holds G1.reachableFrom(v1) = G2.reachableFrom(v2).
(18) v ∈ G.reachableDFrom(v).
(19) If x ∈ G.reachableDFrom(v1) and e joins x to y in G, then y ∈

G.reachableDFrom(v1).
(20) G.reachableDFrom(v) ⊆ G.reachableFrom(v).
(21) Let G1 be a graph, G2 be a subgraph of G1, v1 be a vertex of G1,

and v2 be a vertex of G2. If v1 = v2, then G2.reachableDFrom(v2) ⊆
G1.reachableDFrom(v1).

(22) For every vertex v1 of G1 and for every vertex v2 of G2 such that G1 =G

G2 and v1 = v2 holds G1.reachableDFrom(v1) = G2.reachableDFrom(v2).
(23) For every graph G1 and for every connected subgraph G2 of G1 such

that G2 is spanning holds G1 is connected.
(24)

⋃
(G.componentSet()) = the vertices of G.

(25) G is connected iff G.componentSet() = {the vertices of G}.
(26) If G1 =G G2, then G1.componentSet() = G2.componentSet().
(27) If x ∈ G.componentSet(), then x is a non empty subset of the vertices

of G.
(28) G is connected iff G.numComponents() = 1.

(29) If G1 =G G2, then G1.numComponents() = G2.numComponents().
(30) G is a component of G iff G is connected.
(31) For every component C of G holds the edges of C = G.edgesBetween(the

vertices of C).
(32) For all components C1, C2 of G holds the vertices of C1 = the vertices

of C2 iff C1 =G C2.

(33) Let C be a component of G and v be a vertex of G. Then v ∈ the
vertices of C if and only if the vertices of C = G.reachableFrom(v).

(34) Let C1, C2 be components of G and v be a set. If v ∈ the vertices of C1

and v ∈ the vertices of C2, then C1 =G C2.

(35) Let G be a connected graph and v be a vertex of G. Then v is non cut-
vertex if and only if for every subgraph G2 of G with vertex v removed
holds G2.numComponents() ≤ G.numComponents().

(36) Let G be a connected graph, v be a vertex of G, and G2 be a subgraph
of G with vertex v removed. If v is not cut-vertex, then G2 is connected.

(37) Let G be a non trivial finite connected graph. Then there exist vertices
v1, v2 of G such that v1 6= v2 and v1 is not cut-vertex and v2 is not
cut-vertex.
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(38) If v is cut-vertex, then G is non trivial.
(39) Let v1 be a vertex of G1 and v2 be a vertex of G2. If G1 =G G2 and

v1 = v2, then if v1 is cut-vertex, then v2 is cut-vertex.
(40) For every finite connected graph G holds G.order() ≤ G.size() + 1.

(41) Every acyclic graph is simple.
(42) Let G be an acyclic graph, W be a path of G, and e be a set. If

e /∈ W.edges() and e ∈ W.last().edgesInOut(), then W.addEdge(e) is
path-like.

(43) Let G be a non trivial finite acyclic graph. Suppose the edges of G 6= ∅.
Then there exist vertices v1, v2 of G such that v1 6= v2 and v1 is endvertex
and v2 is endvertex and v2 ∈ G.reachableFrom(v1).

(44) If G1 =G G2 and G1 is acyclic, then G2 is acyclic.
(45) Let G be a non trivial finite tree-like graph. Then there exist vertices

v1, v2 of G such that v1 6= v2 and v1 is endvertex and v2 is endvertex.
(46) For every finite graph G holds G is tree-like iff G is acyclic and

G.order() = G.size() + 1.

(47) For every finite graph G holds G is tree-like iff G is connected and
G.order() = G.size() + 1.

(48) If G1 =G G2 and G1 is tree-like, then G2 is tree-like.
(49) If G is dtree rooted at x, then x is a vertex of G.
(50) If G1 =G G2 and G1 is dtree rooted at x, then G2 is dtree rooted at x.
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1. Preliminaries

Let D be a set, let f1 be a finite sequence of elements of D, and let f2 be a
FinSubsequence of f1. Then Seq f2 is a finite sequence of elements of D.

Let F be a real-yielding binary relation and let X be a set. One can check
that F �X is real-yielding.

Next we state two propositions:
(1) Let x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 be sets and p be a finite sequence.

Suppose p = 〈x1〉a 〈x2〉a 〈x3〉a 〈x4〉a 〈x5〉a 〈x6〉a 〈x7〉a 〈x8〉a 〈x9〉a 〈x10〉.
Then len p = 10 and p(1) = x1 and p(2) = x2 and p(3) = x3 and p(4) = x4

and p(5) = x5 and p(6) = x6 and p(7) = x7 and p(8) = x8 and p(9) = x9

and p(10) = x10.

(2) Let f1 be a finite sequence of elements of R and f2 be a FinSubsequence
of f1. If for every natural number i such that i ∈ dom f1 holds 0 ≤ f1(i),
then

∑
Seq f2 ≤

∑
f1.

1This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.
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2. Definitions

The natural number WeightSelector is defined by:
(Def. 1) WeightSelector = 5.

The natural number ELabelSelector is defined as follows:
(Def. 2) ELabelSelector = 6.

The natural number VLabelSelector is defined as follows:
(Def. 3) VLabelSelector = 7.

Let G be a graph structure. We say that G is weighted if and only if:
(Def. 4) WeightSelector ∈ dom G and G(WeightSelector) is a many sorted set

indexed by the edges of G.
We say that G is elabeled if and only if:

(Def. 5) ELabelSelector ∈ dom G and there exists a function f such that
G(ELabelSelector) = f and dom f ⊆ the edges of G.

We say that G is vlabeled if and only if:
(Def. 6) VLabelSelector ∈ dom G and there exists a function f such that

G(VLabelSelector) = f and dom f ⊆ the vertices of G.
Let us mention that there exists a graph structure which is graph-like,

weighted, elabeled, and vlabeled.
A w-graph is a weighted graph. A e-graph is a elabeled graph. A v-graph

is a vlabeled graph. A we-graph is a weighted elabeled graph. A wv-graph is a
weighted vlabeled graph. A ev-graph is a elabeled vlabeled graph. A wev-graph
is a weighted elabeled vlabeled graph.

Let G be a w-graph. The weight of G yielding a many sorted set indexed by
the edges of G is defined by:

(Def. 7) The weight of G = G(WeightSelector).
Let G be a e-graph. The elabel of G yields a function and is defined by:

(Def. 8) The elabel of G = G(ELabelSelector).
Let G be a v-graph. The vlabel of G yielding a function is defined by:

(Def. 9) The vlabel of G = G(VLabelSelector).
Let G be a graph and let X be a set. One can check the following observa-

tions:
∗ G.set(WeightSelector, X) is graph-like,
∗ G.set(ELabelSelector, X) is graph-like, and
∗ G.set(VLabelSelector, X) is graph-like.
Let G be a finite graph and let X be a set. One can check the following

observations:
∗ G.set(WeightSelector, X) is finite,
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∗ G.set(ELabelSelector, X) is finite, and
∗ G.set(VLabelSelector, X) is finite.
Let G be a loopless graph and let X be a set. One can check the following

observations:

∗ G.set(WeightSelector, X) is loopless,
∗ G.set(ELabelSelector, X) is loopless, and
∗ G.set(VLabelSelector, X) is loopless.
Let G be a trivial graph and let X be a set. One can check the following

observations:

∗ G.set(WeightSelector, X) is trivial,
∗ G.set(ELabelSelector, X) is trivial, and
∗ G.set(VLabelSelector, X) is trivial.
Let G be a non trivial graph and let X be a set. One can verify the following

observations:

∗ G.set(WeightSelector, X) is non trivial,
∗ G.set(ELabelSelector, X) is non trivial, and
∗ G.set(VLabelSelector, X) is non trivial.
Let G be a non-multi graph and let X be a set. One can check the following

observations:

∗ G.set(WeightSelector, X) is non-multi,
∗ G.set(ELabelSelector, X) is non-multi, and
∗ G.set(VLabelSelector, X) is non-multi.
Let G be a non-directed-multi graph and let X be a set. One can verify the

following observations:

∗ G.set(WeightSelector, X) is non-directed-multi,
∗ G.set(ELabelSelector, X) is non-directed-multi, and
∗ G.set(VLabelSelector, X) is non-directed-multi.
Let G be a connected graph and let X be a set. One can check the following

observations:

∗ G.set(WeightSelector, X) is connected,
∗ G.set(ELabelSelector, X) is connected, and
∗ G.set(VLabelSelector, X) is connected.
Let G be an acyclic graph and let X be a set. One can verify the following

observations:

∗ G.set(WeightSelector, X) is acyclic,
∗ G.set(ELabelSelector, X) is acyclic, and
∗ G.set(VLabelSelector, X) is acyclic.
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Let G be a w-graph and let X be a set. Observe that G.set(ELabelSelector, X)
is weighted and G.set(VLabelSelector, X) is weighted.

Let G be a graph and let X be a many sorted set indexed by the edges of
G. Note that G.set(WeightSelector, X) is weighted.

Let G be a graph, let W1 be a non empty set, and let W be a function from
the edges of G into W1. Note that G.set(WeightSelector,W ) is weighted.

Let G be a e-graph and let X be a set. Note that G.set(WeightSelector, X)
is elabeled and G.set(VLabelSelector, X) is elabeled.

Let G be a graph, let Y be a set, and let X be a partial function from the
edges of G to Y . One can check that G.set(ELabelSelector, X) is elabeled.

Let G be a graph and let X be a many sorted set indexed by the edges of
G. One can verify that G.set(ELabelSelector, X) is elabeled.

Let G be a v-graph and let X be a set. Note that G.set(WeightSelector, X)
is vlabeled and G.set(ELabelSelector, X) is vlabeled.

Let G be a graph, let Y be a set, and let X be a partial function from the
vertices of G to Y . Note that G.set(VLabelSelector, X) is vlabeled.

Let G be a graph and let X be a many sorted set indexed by the vertices of
G. One can verify that G.set(VLabelSelector, X) is vlabeled.

Let G be a graph. Note that G.set(ELabelSelector, ∅) is elabeled and
G.set(VLabelSelector, ∅) is vlabeled.
Let G be a graph. Note that there exists a subgraph of G which is weighted,

elabeled, and vlabeled.
Let G be a w-graph and let G2 be a weighted subgraph of G. We say that

G2 inherits weight if and only if:
(Def. 10) The weight of G2 = (the weight of G)�(the edges of G2).

Let G be a e-graph and let G2 be a elabeled subgraph of G. We say that G2

inherits elabel if and only if:
(Def. 11) The elabel of G2 = (the elabel of G)�(the edges of G2).

Let G be a v-graph and let G2 be a vlabeled subgraph of G. We say that
G2 inherits vlabel if and only if:

(Def. 12) The vlabel of G2 = (the vlabel of G)�(the vertices of G2).
Let G be a w-graph. Observe that there exists a weighted subgraph of G

which inherits weight.
Let G be a e-graph. One can check that there exists a elabeled subgraph of

G which inherits elabel.
Let G be a v-graph. One can verify that there exists a vlabeled subgraph of

G which inherits vlabel.
Let G be a we-graph. Note that there exists a weighted elabeled subgraph

of G which inherits weight and elabel.
Let G be a wv-graph. Observe that there exists a weighted vlabeled subgraph

of G which inherits weight and vlabel.
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Let G be a ev-graph. Observe that there exists a elabeled vlabeled subgraph
of G which inherits elabel and vlabel.

Let G be a wev-graph. One can verify that there exists a weighted elabeled
vlabeled subgraph of G which inherits weight, elabel, and vlabel.

Let G be a w-graph. A w-subgraph of G is a weighted subgraph of G

inheriting weight.
Let G be a e-graph. A e-subgraph of G is a elabeled subgraph of G inheriting

elabel.
Let G be a v-graph. A v-subgraph of G is a vlabeled subgraph of G inheriting

vlabel.
Let G be a we-graph. A we-subgraph of G is a weighted elabeled subgraph

of G inheriting weight and elabel.
Let G be a wv-graph. A wv-subgraph of G is a weighted vlabeled subgraph

of G inheriting weight and vlabel.
Let G be a ev-graph. A ev-subgraph of G is a elabeled vlabeled subgraph

of G inheriting elabel and vlabel.
Let G be a wev-graph. A wev-subgraph of G is a weighted elabeled vlabeled

subgraph of G inheriting weight, elabel, and vlabel.
Let G be a graph and let V , E be sets. One can verify that there exists a

subgraph of G induced by V and E which is weighted, elabeled, and vlabeled.
Let G be a w-graph and let V , E be sets. One can verify that there exists

a weighted subgraph of G induced by V and E which inherits weight.
Let G be a e-graph and let V , E be sets. One can verify that there exists a

elabeled subgraph of G induced by V and E which inherits elabel.
Let G be a v-graph and let V , E be sets. One can verify that there exists a

vlabeled subgraph of G induced by V and E which inherits vlabel.
Let G be a we-graph and let V , E be sets. Note that there exists a weighted

elabeled subgraph of G induced by V and E which inherits weight and elabel.
Let G be a wv-graph and let V , E be sets. Observe that there exists a

weighted vlabeled subgraph of G induced by V and E which inherits weight
and vlabel.

Let G be a ev-graph and let V , E be sets. Note that there exists a elabeled
vlabeled subgraph of G induced by V and E which inherits elabel and vlabel.

Let G be a wev-graph and let V , E be sets. Observe that there exists a
weighted elabeled vlabeled subgraph of G induced by V and E which inherits
weight, elabel, and vlabel.

Let G be a w-graph and let V , E be sets. A induced w-subgraph of G, V ,
E is a weighted subgraph of G induced by V and E inheriting weight.

Let G be a e-graph and let V , E be sets. A induced e-subgraph of G, V , E

is a elabeled subgraph of G induced by V and E inheriting elabel.
Let G be a v-graph and let V , E be sets. A induced v-subgraph of G, V , E

is a vlabeled subgraph of G induced by V and E inheriting vlabel.
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Let G be a we-graph and let V , E be sets. A induced we-subgraph of G, V ,
E is a weighted elabeled subgraph of G induced by V and E inheriting weight
and elabel.

Let G be a wv-graph and let V , E be sets. A induced wv-subgraph of G, V ,
E is a weighted vlabeled subgraph of G induced by V and E inheriting weight
and vlabel.

Let G be a ev-graph and let V , E be sets. A induced ev-subgraph of G, V ,
E is a elabeled vlabeled subgraph of G induced by V and E inheriting elabel
and vlabel.

Let G be a wev-graph and let V , E be sets. A induced wev-subgraph of
G, V , E is a weighted elabeled vlabeled subgraph of G induced by V and E

inheriting weight, elabel, and vlabel.
Let G be a w-graph and let V be a set. A induced w-subgraph of G, V is a

induced w-subgraph of G, V , G.edgesBetween(V ).
Let G be a e-graph and let V be a set. A induced e-subgraph of G, V is a

induced e-subgraph of G, V , G.edgesBetween(V ).
Let G be a v-graph and let V be a set. A induced v-subgraph of G, V is a

induced v-subgraph of G, V , G.edgesBetween(V ).
Let G be a we-graph and let V be a set. A induced we-subgraph of G, V is

a induced we-subgraph of G, V , G.edgesBetween(V ).
Let G be a wv-graph and let V be a set. A induced wv-subgraph of G, V is

a induced wv-subgraph of G, V , G.edgesBetween(V ).
Let G be a ev-graph and let V be a set. A induced ev-subgraph of G, V is

a induced ev-subgraph of G, V , G.edgesBetween(V ).
Let G be a wev-graph and let V be a set. A induced wev-subgraph of G, V

is a induced wev-subgraph of G, V , G.edgesBetween(V ).
Let G be a w-graph. We say that G is real-weighted if and only if:

(Def. 13) The weight of G is real-yielding.
Let G be a w-graph. We say that G is nonnegative-weighted if and only if:

(Def. 14) rng (the weight of G) ⊆ R≥0.

Let us note that every w-graph which is nonnegative-weighted is also real-
weighted.

Let G be a e-graph. We say that G is real-elabeled if and only if:

(Def. 15) The elabel of G is real-yielding.
Let G be a v-graph. We say that G is real-vlabeled if and only if:

(Def. 16) The vlabel of G is real-yielding.
Let G be a wev-graph. We say that G is real-wev if and only if:

(Def. 17) G is real-weighted, real-elabeled, and real-vlabeled.
Let us note that every wev-graph which is real-wev is also real-weighted,

real-elabeled, and real-vlabeled and every wev-graph which is real-weighted,
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real-elabeled, and real-vlabeled is also real-wev.
Let G be a graph and let X be a function from the edges of G into R. Note

that G.set(WeightSelector, X) is real-weighted.
Let G be a graph and let X be a partial function from the edges of G to R.

One can verify that G.set(ELabelSelector, X) is real-elabeled.
Let G be a graph and let X be a real-yielding many sorted set indexed by

the edges of G. One can verify that G.set(ELabelSelector, X) is real-elabeled.
Let G be a graph and let X be a partial function from the vertices of G to

R. Observe that G.set(VLabelSelector, X) is real-vlabeled.
Let G be a graph and let X be a real-yielding many sorted set indexed by

the vertices of G. One can verify that G.set(VLabelSelector, X) is real-vlabeled.
Let G be a graph. Observe that G.set(ELabelSelector, ∅) is real-elabeled and

G.set(VLabelSelector, ∅) is real-vlabeled.
Let G be a graph, let v be a vertex of G, and let v1 be a real number. Note

that G.set(VLabelSelector, v 7−→. v1) is vlabeled.
Let G be a graph, let v be a vertex of G, and let v1 be a real number. One

can verify that G.set(VLabelSelector, v 7−→. v1) is real-vlabeled.
One can check that there exists a wev-graph which is finite, trivial, tree-like,

nonnegative-weighted, and real-wev and there exists a wev-graph which is finite,
non trivial, tree-like, nonnegative-weighted, and real-wev.

Let G be a finite w-graph. Note that the weight of G is finite.
Let G be a finite e-graph. Note that the elabel of G is finite.
Let G be a finite v-graph. Note that the vlabel of G is finite.
Let G be a real-weighted w-graph. Observe that the weight of G is real-

yielding.
Let G be a real-elabeled e-graph. One can verify that the elabel of G is

real-yielding.
Let G be a real-vlabeled v-graph. Observe that the vlabel of G is real-

yielding.
Let G be a real-weighted w-graph and let X be a set. Observe that

G.set(ELabelSelector, X) is real-weighted and G.set(VLabelSelector, X) is real-
weighted.

Let G be a nonnegative-weighted w-graph and let X be a set.
One can check that G.set(ELabelSelector, X) is nonnegative-weighted and
G.set(VLabelSelector, X) is nonnegative-weighted.

Let G be a real-elabeled e-graph and let X be a set. One can verify that
G.set(WeightSelector, X) is real-elabeled and G.set(VLabelSelector, X) is real-
elabeled.

Let G be a real-vlabeled v-graph and let X be a set. Observe that
G.set(WeightSelector, X) is real-vlabeled and G.set(ELabelSelector, X) is real-
vlabeled.
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Let G be a w-graph and let W be a walk of G. The functor W.weightSeq()
yielding a finite sequence is defined as follows:

(Def. 18) len(W.weightSeq()) = len(W.edgeSeq()) and for every natural number
n such that 1 ≤ n and n ≤ len(W.weightSeq()) holds W.weightSeq()(n) =
(the weight of G)(W.edgeSeq()(n)).

Let G be a real-weighted w-graph and let W be a walk of G. Then
W.weightSeq() is a finite sequence of elements of R.

Let G be a real-weighted w-graph and let W be a walk of G. The functor
W.cost() yielding a real number is defined as follows:

(Def. 19) W.cost() =
∑

(W.weightSeq()).

Let G be a e-graph. The functor G.labeledE() yields a subset of the edges
of G and is defined as follows:

(Def. 20) G.labeledE() = dom (the elabel of G).

Let G be a e-graph and let e, x be sets. The functor G.labelEdge(e, x)
yielding a e-graph is defined as follows:

(Def. 21) G.labelEdge(e, x) =


G.set(ELabelSelector, (the elabel of G)+·(e7−→. x)),

if e ∈ the edges of G,
G, otherwise.

Let G be a finite e-graph and let e, x be sets. Note that G.labelEdge(e, x)
is finite.

Let G be a loopless e-graph and let e, x be sets. Observe that
G.labelEdge(e, x) is loopless.

Let G be a trivial e-graph and let e, x be sets. One can check that
G.labelEdge(e, x) is trivial.

Let G be a non trivial e-graph and let e, x be sets. One can verify that
G.labelEdge(e, x) is non trivial.

Let G be a non-multi e-graph and let e, x be sets. Observe that
G.labelEdge(e, x) is non-multi.

Let G be a non-directed-multi e-graph and let e, x be sets. One can check
that G.labelEdge(e, x) is non-directed-multi.

Let G be a connected e-graph and let e, x be sets. Observe that
G.labelEdge(e, x) is connected.

Let G be an acyclic e-graph and let e, x be sets. Observe that
G.labelEdge(e, x) is acyclic.

Let G be a we-graph and let e, x be sets. Observe that G.labelEdge(e, x) is
weighted.

Let G be a ev-graph and let e, x be sets. Note that G.labelEdge(e, x) is
vlabeled.

Let G be a real-weighted we-graph and let e, x be sets. Observe that
G.labelEdge(e, x) is real-weighted.
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Let G be a nonnegative-weighted we-graph and let e, x be sets. Observe
that G.labelEdge(e, x) is nonnegative-weighted.

Let G be a real-elabeled e-graph, let e be a set, and let x be a real number.
Observe that G.labelEdge(e, x) is real-elabeled.

Let G be a real-vlabeled ev-graph and let e, x be sets. Note that
G.labelEdge(e, x) is real-vlabeled.

Let G be a v-graph and let v, x be sets. The functor G.labelVertex(v, x)
yielding a v-graph is defined as follows:

(Def. 22) G.labelVertex(v, x) =


G.set(VLabelSelector,

(the vlabel of G)+·(v 7−→. x)),
if v ∈ the vertices of G,

G, otherwise.
Let G be a v-graph. The functor G.labeledV() yielding a subset of the

vertices of G is defined as follows:

(Def. 23) G.labeledV() = dom (the vlabel of G).
Let G be a finite v-graph and let v, x be sets. One can check that

G.labelVertex(v, x) is finite.
Let G be a loopless v-graph and let v, x be sets. One can check that

G.labelVertex(v, x) is loopless.
Let G be a trivial v-graph and let v, x be sets. One can check that

G.labelVertex(v, x) is trivial.
Let G be a non trivial v-graph and let v, x be sets. Observe that

G.labelVertex(v, x) is non trivial.
Let G be a non-multi v-graph and let v, x be sets. Note that

G.labelVertex(v, x) is non-multi.
Let G be a non-directed-multi v-graph and let v, x be sets. One can verify

that G.labelVertex(v, x) is non-directed-multi.
Let G be a connected v-graph and let v, x be sets. Observe that

G.labelVertex(v, x) is connected.
Let G be an acyclic v-graph and let v, x be sets. Note that

G.labelVertex(v, x) is acyclic.
Let G be a wv-graph and let v, x be sets. One can check that

G.labelVertex(v, x) is weighted.
Let G be a ev-graph and let v, x be sets. Observe that G.labelVertex(v, x)

is elabeled.
Let G be a real-weighted wv-graph and let v, x be sets. Observe that

G.labelVertex(v, x) is real-weighted.
Let G be a nonnegative-weighted wv-graph and let v, x be sets. Note that

G.labelVertex(v, x) is nonnegative-weighted.
Let G be a real-elabeled ev-graph and let v, x be sets. Observe that

G.labelVertex(v, x) is real-elabeled.
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Let G be a real-vlabeled v-graph, let v be a set, and let x be a real number.
Note that G.labelVertex(v, x) is real-vlabeled.

Let G be a real-weighted w-graph. Observe that every w-subgraph of G is
real-weighted.

Let G be a nonnegative-weighted w-graph. Observe that every w-subgraph
of G is nonnegative-weighted.

Let G be a real-elabeled e-graph. Observe that every e-subgraph of G is
real-elabeled.

Let G be a real-vlabeled v-graph. Observe that every v-subgraph of G is
real-vlabeled.

Let G1 be a graph sequence. We say that G1 is weighted if and only if:
(Def. 24) For every natural number x holds G1.→x is weighted.

We say that G1 is elabeled if and only if:
(Def. 25) For every natural number x holds G1.→x is elabeled.

We say that G1 is vlabeled if and only if:
(Def. 26) For every natural number x holds G1.→x is vlabeled.

Let us mention that there exists a graph sequence which is weighted, ela-
beled, and vlabeled.

A w-graph sequence is a weighted graph sequence. A e-graph sequence is a
elabeled graph sequence. A v-graph sequence is a vlabeled graph sequence. A
we-graph sequence is a weighted elabeled graph sequence. A wv-graph sequence
is a weighted vlabeled graph sequence. A ev-graph sequence is a elabeled vla-
beled graph sequence. A wev-graph sequence is a weighted elabeled vlabeled
graph sequence.

Let G1 be a w-graph sequence and let x be a natural number. One can check
that G1.→x is weighted.

Let G1 be a e-graph sequence and let x be a natural number. One can check
that G1.→x is elabeled.

Let G1 be a v-graph sequence and let x be a natural number. Observe that
G1.→x is vlabeled.

Let G1 be a w-graph sequence. We say that G1 is real-weighted if and only
if:

(Def. 27) For every natural number x holds G1.→x is real-weighted.
We say that G1 is nonnegative-weighted if and only if:

(Def. 28) For every natural number x holds G1.→x is nonnegative-weighted.
Let G1 be a e-graph sequence. We say that G1 is real-elabeled if and only

if:
(Def. 29) For every natural number x holds G1.→x is real-elabeled.

Let G1 be a v-graph sequence. We say that G1 is real-vlabeled if and only
if:
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(Def. 30) For every natural number x holds G1.→x is real-vlabeled.
Let G1 be a wev-graph sequence. We say that G1 is real-wev if and only if:

(Def. 31) For every natural number x holds G1.→x is real-wev.
Let us note that every wev-graph sequence which is real-wev is also real-

weighted, real-elabeled, and real-vlabeled and every wev-graph sequence which
is real-weighted, real-elabeled, and real-vlabeled is also real-wev.

Let us observe that there exists a wev-graph sequence which is halting,
finite, loopless, trivial, non-multi, simple, real-wev, nonnegative-weighted, and
tree-like.

Let G1 be a real-weighted w-graph sequence and let x be a natural number.
One can check that G1.→x is real-weighted.

Let G1 be a nonnegative-weighted w-graph sequence and let x be a natural
number. Observe that G1.→x is nonnegative-weighted.

Let G1 be a real-elabeled e-graph sequence and let x be a natural number.
Note that G1.→x is real-elabeled.

Let G1 be a real-vlabeled v-graph sequence and let x be a natural number.
One can verify that G1.→x is real-vlabeled.

3. Theorems

The following propositions are true:
(3) WeightSelector = 5 and ELabelSelector = 6 and VLabelSelector = 7.

(4)(i) For every w-graph G holds the weight of G = G(WeightSelector),
(ii) for every e-graph G holds the elabel of G = G(ELabelSelector), and
(iii) for every v-graph G holds the vlabel of G = G(VLabelSelector).
(6)3 For every e-graph G holds dom (the elabel of G) ⊆ the edges of G.
(7) For every v-graph G holds dom (the vlabel of G) ⊆ the vertices of G.
(8) For every graph G and for every set X holds

G =G G.set(WeightSelector, X) and G =G G.set(ELabelSelector, X) and
G =G G.set(VLabelSelector, X).

(9) For every e-graph G and for every set X holds the elabel of G = the
elabel of G.set(WeightSelector, X).

(10) For every v-graph G and for every set X holds the vlabel of G = the
vlabel of G.set(WeightSelector, X).

(11) For every w-graph G and for every set X holds the weight of G = the
weight of G.set(ELabelSelector, X).

(12) For every v-graph G and for every set X holds the vlabel of G = the
vlabel of G.set(ELabelSelector, X).

3The proposition (5) has been removed.
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(13) For every w-graph G and for every set X holds the weight of G = the
weight of G.set(VLabelSelector, X).

(14) For every e-graph G and for every set X holds the elabel of G = the
elabel of G.set(VLabelSelector, X).

(15) Let G3, G2 be w-graphs and G4 be a w-graph. Suppose G3 =G G2 and
the weight of G3 = the weight of G2 and G3 is a w-subgraph of G4. Then
G2 is a w-subgraph of G4.

(16) For every w-graph G3 and for every w-subgraph G2 of G3 holds every
w-subgraph of G2 is a w-subgraph of G3.

(17) Let G3, G2 be w-graphs and G4 be a w-subgraph of G3. Suppose G3 =G

G2 and the weight of G3 = the weight of G2. Then G4 is a w-subgraph of
G2.

(18) Let G3 be a w-graph, G2 be a w-subgraph of G3, and x be a set. If
x ∈ the edges of G2, then (the weight of G2)(x) = (the weight of G3)(x).

(19) For every w-graph G and for every walk W of G such that W is trivial
holds W.weightSeq() = ∅.

(20) For every w-graph G and for every walk W of G holds
len(W.weightSeq()) = W.length().

(21) For every w-graph G and for all sets x, y, e such that e joins x and y in
G holds (G.walkOf(x, e, y)).weightSeq() = 〈(the weight of G)(e)〉.

(22) For every w-graph G and for every walk W of G holds
W.reverse().weightSeq() = Rev(W.weightSeq()).

(23) For every w-graph G and for all walks W2, W3 of G such that W2.last() =
W3.first() holds (W2.append(W3)).weightSeq() = W2.weightSeq() a

W3.weightSeq().

(24) Let G be a w-graph, W be a walk of G, and e be a set.
If e ∈ W.last().edgesInOut(), then (W.addEdge(e)).weightSeq() =
W.weightSeq() a 〈(the weight of G)(e)〉.

(25) Let G be a real-weighted w-graph, W2 be a walk of G, and W3 be a
subwalk of W2. Then there exists a FinSubsequence w1 of W2.weightSeq()
such that W3.weightSeq() = Seq w1.

(26) Let G3, G2 be w-graphs, W2 be a walk of G3, and W3 be a walk of G2. If
W2 = W3 and the weight of G3 = the weight of G2, then W2.weightSeq() =
W3.weightSeq().

(27) Let G3 be a w-graph, G2 be a w-subgraph of G3, W2 be a walk of G3, and
W3 be a walk of G2. If W2 = W3, then W2.weightSeq() = W3.weightSeq().

(28) For every real-weighted w-graph G and for every walk W of G such that
W is trivial holds W.cost() = 0.

(29) Let G be a real-weighted w-graph, v2, v3 be vertices of G, and e be a set.
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If e joins v2 and v3 in G, then (G.walkOf(v2, e, v3)).cost() = (the weight
of G)(e).

(30) For every real-weighted w-graph G and for every walk W of G holds
W.cost() = W.reverse().cost().

(31) For every real-weighted w-graph G and for all walks W2, W3 of G such
that W2.last() = W3.first() holds (W2.append(W3)).cost() = W2.cost() +
W3.cost().

(32) Let G be a real-weighted w-graph, W be a walk of G, and e be a set. If
e ∈ W.last().edgesInOut(), then (W.addEdge(e)).cost() = W.cost()+(the
weight of G)(e).

(33) Let G3, G2 be real-weighted w-graphs, W2 be a walk of G3, and W3 be
a walk of G2. If W2 = W3 and the weight of G3 = the weight of G2, then
W2.cost() = W3.cost().

(34) Let G3 be a real-weighted w-graph, G2 be a w-subgraph of G3, W2 be
a walk of G3, and W3 be a walk of G2. If W2 = W3, then W2.cost() =
W3.cost().

(35) Let G be a nonnegative-weighted w-graph, W be a walk of G, and n be a
natural number. If n ∈ dom(W.weightSeq()), then 0 ≤ W.weightSeq()(n).

(36) For every nonnegative-weighted w-graph G and for every walk W of G

holds 0 ≤ W.cost().
(37) For every nonnegative-weighted w-graph G and for every walk W2 of G

and for every subwalk W3 of W2 holds W3.cost() ≤ W2.cost().
(38) Let G be a nonnegative-weighted w-graph and e be a set. If e ∈ the

edges of G, then 0 ≤ (the weight of G)(e).
(39) Let G be a e-graph and e, x be sets. Suppose e ∈ the edges of G. Then

the elabel of G.labelEdge(e, x) = (the elabel of G)+·(e7−→. x).
(40) For every e-graph G and for all sets e, x such that e ∈ the edges of G

holds (the elabel of G.labelEdge(e, x))(e) = x.

(41) For every e-graph G and for all sets e, x holds G =G G.labelEdge(e, x).
(42) For every we-graph G and for all sets e, x holds the weight of G = the

weight of G.labelEdge(e, x).
(43) For every ev-graph G and for all sets e, x holds the vlabel of G = the

vlabel of G.labelEdge(e, x).
(44) For every e-graph G and for all sets e1, e2, x such that e1 6= e2 holds

(the elabel of G.labelEdge(e1, x))(e2) = (the elabel of G)(e2).
(45) Let G be a v-graph and v, x be sets. Suppose v ∈ the vertices of G.

Then the vlabel of G.labelVertex(v, x) = (the vlabel of G)+·(v 7−→. x).
(46) For every v-graph G and for all sets v, x such that v ∈ the vertices of G

holds (the vlabel of G.labelVertex(v, x))(v) = x.
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(47) For every v-graph G and for all sets v, x holds G =G G.labelVertex(v, x).
(48) For every wv-graph G and for all sets v, x holds the weight of G = the

weight of G.labelVertex(v, x).
(49) For every ev-graph G and for all sets v, x holds the elabel of G = the

elabel of G.labelVertex(v, x).
(50) For every v-graph G and for all sets v2, v3, x such that v2 6= v3 holds

(the vlabel of G.labelVertex(v2, x))(v3) = (the vlabel of G)(v3).
(51) For all e-graphs G3, G2 such that the elabel of G3 = the elabel of G2

holds G3.labeledE() = G2.labeledE().
(52) For every e-graph G and for all sets e, x such that e ∈ the edges of G

holds (G.labelEdge(e, x)).labeledE() = G.labeledE() ∪ {e}.
(53) For every e-graph G and for all sets e, x such that e ∈ the edges of G

holds G.labeledE() ⊆ (G.labelEdge(e, x)).labeledE().
(54) For every finite e-graph G and for all sets e, x such that e ∈ the edges

of G and e /∈ G.labeledE() holds card((G.labelEdge(e, x)).labeledE()) =
card(G.labeledE()) + 1.

(55) For every e-graph G and for all sets e1, e2, x such that e2 /∈ G.labeledE()
and e2 ∈ (G.labelEdge(e1, x)).labeledE() holds e1 = e2 and e1 ∈ the edges
of G.

(56) For every ev-graph G and for all sets v, x holds G.labeledE() =
(G.labelVertex(v, x)).labeledE().

(57) For every e-graph G and for all sets e, x such that e ∈ the edges of G

holds e ∈ (G.labelEdge(e, x)).labeledE().
(58) For all v-graphs G3, G2 such that the vlabel of G3 = the vlabel of G2

holds G3.labeledV() = G2.labeledV().
(59) For every v-graph G and for all sets v, x such that v ∈ the vertices of G

holds (G.labelVertex(v, x)).labeledV() = G.labeledV() ∪ {v}.
(60) For every v-graph G and for all sets v, x such that v ∈ the vertices of G

holds G.labeledV() ⊆ (G.labelVertex(v, x)).labeledV().
(61) For every finite v-graph G and for all sets v, x such that v ∈ the vertices

of G and v /∈ G.labeledV() holds card((G.labelVertex(v, x)).labeledV()) =
card(G.labeledV()) + 1.

(62) For every v-graph G and for all sets v2, v3, x such that v3 /∈ G.labeledV()
and v3 ∈ (G.labelVertex(v2, x)).labeledV() holds v2 = v3 and v2 ∈ the
vertices of G.

(63) For every ev-graph G and for all sets e, x holds G.labeledV() =
(G.labelEdge(e, x)).labeledV().

(64) For every v-graph G and for every vertex v of G and for every set x

holds v ∈ (G.labelVertex(v, x)).labeledV().
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1. Preliminaries

One can prove the following propositions:
(1) For all functions f , g holds support(f+·g) ⊆ support f ∪ support g.

(2) For every function f and for all sets x, y holds support(f+·(x7−→. y)) ⊆
support f ∪ {x}.

(3) Let A, B be sets, b be a real bag over A, b1 be a real bag over B, and b2

be a real bag over A \B. If b = b1+·b2, then
∑

b =
∑

b1 +
∑

b2.

(4) For all sets X, x and for every real bag b over X such that dom b = {x}
holds

∑
b = b(x).
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(5) For every set A and for all real bags b1, b2 over A such that for every set
x such that x ∈ A holds b1(x) ≤ b2(x) holds

∑
b1 ≤

∑
b2.

(6) For every set A and for all real bags b1, b2 over A such that for every set
x such that x ∈ A holds b1(x) = b2(x) holds

∑
b1 =

∑
b2.

(7) For all sets A1, A2 and for every real bag b1 over A1 and for every real
bag b2 over A2 such that b1 = b2 holds

∑
b1 =

∑
b2.

(8) For all sets X, x and for every real bag b over X and for every real
number y such that b = EmptyBag X+·(x7−→. y) holds

∑
b = y.

(9) Let X, x be sets, b1, b2 be real bags over X, and y be a real number. If
b2 = b1+·(x7−→. y), then

∑
b2 = (

∑
b1 + y)− b1(x).

2. Dijkstra’s Shortest Path Algorithm: definitions

Let G1 be a real-weighted w-graph, let G2 be a w-subgraph of G1, and let
v be a set. We say that G2 is mincost d-tree rooted at v if and only if the
conditions (Def. 1) are satisfied.

(Def. 1)(i) G2 is tree-like, and
(ii) for every vertex x of G2 there exists a dpath W2 of G2 such that W2

is walk from v to x and for every dpath W1 of G1 such that W1 is walk
from v to x holds W2.cost() ≤ W1.cost().

Let G be a real-weighted w-graph, let W be a dpath of G, and let x, y be
sets. We say that W is mincost d-path from x to y if and only if:

(Def. 2) W is walk from x to y and for every dpath W2 of G such that W2 is walk
from x to y holds W.cost() ≤ W2.cost().

Let G be a finite real-weighted w-graph and let x, y be sets. The G .mincost-
d-path( x, y ) yielding a real number is defined as follows:

(Def. 3)(i) There exists a dpath W of G such that W is mincost d-path from x

to y and the G.mincost-d-path( x, y) = W.cost() if there exists a dwalk
of G which is walk from x to y,

(ii) the G.mincost-d-path( x, y) = 0, otherwise.
Let G be a real-wev wev-graph. The functor DIJK : NextBestEdges(G)

yielding a subset of the edges of G is defined by the condition (Def. 4).
(Def. 4) Let e1 be a set. Then e1 ∈ DIJK : NextBestEdges(G) if and only if the

following conditions are satisfied:
(i) e1 joins a vertex from G.labeledV() to a vertex from (the vertices of

G) \G.labeledV() in G, and
(ii) for every set e2 such that e2 joins a vertex from G.labeledV() to a

vertex from (the vertices of G) \ G.labeledV() in G holds (the vlabel of
G)((the source of G)(e1))+ (the weight of G)(e1) ≤ (the vlabel of G)((the
source of G)(e2)) + (the weight of G)(e2).
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Let G be a real-wev wev-graph. The functor DIJK : Step(G) yields a real-
wev wev-graph and is defined by:

(Def. 5) DIJK : Step(G) =


G, if DIJK : NextBestEdges(G) = ∅,
(G.labelEdge(e, 1)).labelVertex((the target of G)(e),

(the vlabel of G)((the source of G)(e))+
(the weight of G)(e)), otherwise.

Let G be a finite real-wev wev-graph. One can verify that DIJK : Step(G)
is finite.

Let G be a nonnegative-weighted real-wev wev-graph. Observe that
DIJK : Step(G) is nonnegative-weighted.

Let G be a real-weighted w-graph and let s1 be a vertex of G. The functor
DIJK : Init(G, s1) yielding a real-wev wev-graph is defined by:

(Def. 6) DIJK : Init(G, s1) = G.set(ELabelSelector, ∅).set(VLabelSelector, s1 7−→. 0).
Let G be a real-weighted w-graph and let s1 be a vertex of G. The functor

DIJK : CompSeq(G, s1) yielding a real-wev wev-graph sequence is defined as
follows:

(Def. 7) DIJK : CompSeq(G, s1).→0 = DIJK : Init(G, s1) and for every natural
number n holds DIJK : CompSeq(G, s1).→(n + 1) =
DIJK : Step((DIJK : CompSeq(G, s1).→n)).

Let G be a finite real-weighted w-graph and let s1 be a vertex of G. Observe
that DIJK : CompSeq(G, s1) is finite.

Let G be a nonnegative-weighted w-graph and let s1 be a vertex of G. One
can verify that DIJK : CompSeq(G, s1) is nonnegative-weighted.

Let G be a real-weighted w-graph and let s1 be a vertex of G. The functor
DIJK : SSSP(G, s1) yields a real-wev wev-graph and is defined by:

(Def. 8) DIJK : SSSP(G, s1) = (DIJK : CompSeq(G, s1)).Result().
Let G be a finite real-weighted w-graph and let s1 be a vertex of G. One

can check that DIJK : SSSP(G, s1) is finite.

3. Dijkstra’s Shortest Path Algorithm: theorems

The following propositions are true:
(10) Let G be a finite nonnegative-weighted w-graph, W be a dpath of G, x, y

be sets, and m, n be natural numbers. Suppose W is mincost d-path from
x to y. Then W.cut(m,n) is mincost d-path from (W.cut(m,n)).first() to
(W.cut(m,n)).last().

(11) Let G be a finite real-weighted w-graph, W1, W2 be dpaths of G, and x,
y be sets. Suppose W1 is mincost d-path from x to y and W2 is mincost
d-path from x to y. Then W1.cost() = W2.cost().
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(12) Let G be a finite real-weighted w-graph, W be a dpath of G, and x, y

be sets. Suppose W is mincost d-path from x to y. Then the G.mincost-
d-path( x, y) = W.cost().

(13) Let G be a finite real-wev wev-graph. Then
(i) card((DIJK : Step(G)).labeledV()) = card(G.labeledV()) iff

DIJK : NextBestEdges(G) = ∅, and
(ii) card((DIJK : Step(G)).labeledV()) = card(G.labeledV()) + 1 iff

DIJK : NextBestEdges(G) 6= ∅.
(14) For every real-wev wev-graph G holds G =G DIJK : Step(G)

and the weight of G = the weight of DIJK : Step(G) and
G.labeledE() ⊆ (DIJK : Step(G)).labeledE() and G.labeledV() ⊆
(DIJK : Step(G)).labeledV().

(15) For every real-weighted w-graph G and for every vertex s1 of G holds
(DIJK : Init(G, s1)).labeledV() = {s1}.

(16) Let G be a real-weighted w-graph, s1 be a vertex of G, and i, j be
natural numbers. If i ≤ j, then (DIJK : CompSeq(G, s1).→i).labeledV() ⊆
(DIJK : CompSeq(G, s1).→j).labeledV() and (DIJK : CompSeq(G, s1).→i)
.labeledE() ⊆ (DIJK : CompSeq(G, s1).→j).labeledE().

(17) Let G be a real-weighted w-graph, s1 be a vertex of G, and n be a
natural number. Then G =G DIJK : CompSeq(G, s1).→n and the weight
of G = the weight of DIJK : CompSeq(G, s1).→n.

(18) Let G be a finite real-weighted w-graph, s1 be a vertex of G, and n

be a natural number. Then (DIJK : CompSeq(G, s1).→n).labeledV() ⊆
G.reachableDFrom(s1).

(19) Let G be a finite real-weighted w-graph, s1 be a vertex of G, and n be
a natural number.
Then DIJK : NextBestEdges((DIJK : CompSeq(G, s1).→n)) = ∅ if and
only if (DIJK : CompSeq(G, s1).→n).labeledV() = G.reachableDFrom(s1).

(20) Let G be a finite real-weighted w-graph, s1 be a vertex of G, and n

be a natural number. Then (DIJK : CompSeq(G, s1).→n).labeledV() =
min(n + 1, card(G.reachableDFrom(s1))).

(21) Let G be a finite real-weighted w-graph, s1 be a vertex of G, and n

be a natural number. Then (DIJK : CompSeq(G, s1).→n).labeledE() ⊆
(DIJK : CompSeq(G, s1).→n).edgesBetween((DIJK : CompSeq(G, s1).→n)
.labeledV()).

(22) Let G be a finite nonnegative-weighted w-graph, s1 be a vertex of
G, n be a natural number, and G2 be a induced w-subgraph of G,
(DIJK : CompSeq(G, s1).→n).labeledV(), (DIJK : CompSeq(G, s1).→n)
.labeledE(). Then

(i) G2 is mincost d-tree rooted at s1, and
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(ii) for every vertex v of G such that v ∈ (DIJK : CompSeq(G, s1).→n)
.labeledV() holds the G.mincost-d-path( s1, v) =
(the vlabel of DIJK : CompSeq(G, s1).→n)(v).

(23) For every finite real-weighted w-graph G and for every vertex s1 of G

holds DIJK : CompSeq(G, s1) is halting.
Let G be a finite real-weighted w-graph and let s1 be a vertex of G. Observe

that DIJK : CompSeq(G, s1) is halting.
One can prove the following three propositions:

(24) For every finite real-weighted w-graph G and for every ver-
tex s1 of G holds (DIJK : CompSeq(G, s1)).Lifespan() + 1 =
card(G.reachableDFrom(s1)).

(25) For every finite real-weighted w-graph G and for every vertex s1 of G

holds (DIJK : SSSP(G, s1)).labeledV() = G.reachableDFrom(s1).
(26) Let G be a finite nonnegative-weighted w-graph, s1 be a vertex of G,

and G2 be a induced w-subgraph of G, (DIJK : SSSP(G, s1)).labeledV(),
(DIJK : SSSP(G, s1)).labeledE(). Then

(i) G2 is mincost d-tree rooted at s1, and
(ii) for every vertex v of G such that v ∈ G.reachableDFrom(s1) holds

v ∈ the vertices of G2 and the G.mincost-d-path( s1, v) = (the vlabel of
DIJK : SSSP(G, s1))(v).

4. Prim’s Algorithm: preliminaries

The non empty finite subset WGraphSelectors of N is defined as follows:
(Def. 9) WGraphSelectors =

{VertexSelector,EdgeSelector,SourceSelector,TargetSelector,
WeightSelector}.

Let G be a w-graph. One can check that G.strict(WGraphSelectors) is
graph-like and weighted.

Let G be a w-graph. The functor G.allWSubgraphs() yields a non empty
set and is defined as follows:

(Def. 10) For every set x holds x ∈ G.allWSubgraphs() iff there exists a w-
subgraph G2 of G such that x = G2 and dom G2 = WGraphSelectors.

Let G be a finite w-graph. One can check that G.allWSubgraphs() is finite.
Let G be a w-graph and let X be a non empty subset of G.allWSubgraphs().

We see that the element of X is a w-subgraph of G.
Let G be a finite real-weighted w-graph. The functor G.cost() yields a real

number and is defined by:
(Def. 11) G.cost() =

∑
(the weight of G).

The following propositions are true:
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(27) For every set x holds x ∈ WGraphSelectors iff x = VertexSelector or
x = EdgeSelector or x = SourceSelector or x = TargetSelector or x =
WeightSelector.

(28) For every w-graph G holds WGraphSelectors ⊆ dom G.

(29) For every w-graph G holds G =G G.strict(WGraphSelectors) and the
weight of G = the weight of G.strict(WGraphSelectors).

(30) For every w-graph G holds dom(G.strict(WGraphSelectors)) =
WGraphSelectors.

(31) For every finite real-weighted w-graph G such that the edges of G = ∅
holds G.cost() = 0.

(32) Let G1, G2 be finite real-weighted w-graphs. Suppose the edges of G1 =
the edges of G2 and the weight of G1 = the weight of G2. Then G1.cost() =
G2.cost().

(33) Let G1 be a finite real-weighted w-graph, e be a set, and G2 be a weighted
subgraph of G1 with edge e removed inheriting weight. If e ∈ the edges of
G1, then G1.cost() = G2.cost() + (the weight of G1)(e).

(34) Let G be a finite real-weighted w-graph, V1 be a non empty subset of
the vertices of G, E1 be a subset of G.edgesBetween(V1), G1 be a induced
w-subgraph of G, V1, E1, e be a set, and G2 be a induced w-subgraph of G,
V1, E1∪{e}. If e /∈ E1 and e ∈ G.edgesBetween(V1), then G1.cost()+ (the
weight of G)(e) = G2.cost().

5. Prim’s Minimum Weight Spanning Tree Algorithm: definitions

Let G be a real-weighted wv-graph. The functor PRIM : NextBestEdges(G)
yields a subset of the edges of G and is defined by the condition (Def. 12).

(Def. 12) Let e1 be a set. Then e1 ∈ PRIM : NextBestEdges(G) if and only if the
following conditions are satisfied:

(i) e1 joins a vertex from G.labeledV() and a vertex from (the vertices of
G) \G.labeledV() in G, and

(ii) for every set e2 such that e2 joins a vertex from G.labeledV() and a
vertex from (the vertices of G) \ G.labeledV() in G holds (the weight of
G)(e1) ≤ (the weight of G)(e2).

Let G be a real-weighted w-graph. The functor PRIM : Init(G) yields a
real-wev wev-graph and is defined by:

(Def. 13) PRIM : Init(G) = G.set(VLabelSelector, choose(the vertices of G)
7−→. 1).set(ELabelSelector, ∅).

Let G be a real-wev wev-graph. The functor PRIM : Step(G) yielding a
real-wev wev-graph is defined by:
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(Def. 14) PRIM : Step(G) =



G, if PRIM : NextBestEdges(G) = ∅,
(G.labelEdge(e, 1)).labelVertex((the target of G)

(e), 1), if PRIM : NextBestEdges(G) 6= ∅ and
(the source of G)(e) ∈ G.labeledV(),

(G.labelEdge(e, 1)).labelVertex((the source of G)
(e), 1), otherwise.

Let G be a real-weighted w-graph. The functor PRIM : CompSeq(G) yields
a real-wev wev-graph sequence and is defined by:

(Def. 15) PRIM : CompSeq(G).→0 = PRIM : Init(G) and for every natural num-
ber n holds PRIM : CompSeq(G).→(n + 1) =
PRIM : Step((PRIM : CompSeq(G).→n)).

Let G be a finite real-weighted w-graph. One can check that
PRIM : CompSeq(G) is finite.

Let G be a real-weighted w-graph. The functor PRIM : MST(G) yielding a
real-wev wev-graph is defined as follows:

(Def. 16) PRIM : MST(G) = (PRIM : CompSeq(G)).Result().
Let G be a finite real-weighted w-graph. Observe that PRIM : MST(G) is

finite.
Let G1 be a finite real-weighted w-graph and let n be a natural number. Ob-

serve that every subgraph of G1 induced by (PRIM : CompSeq(G1).→n).labeledV()
is connected.

Let G1 be a finite real-weighted w-graph and let n be a natural number. Note
that every subgraph of G1 induced by (PRIM : CompSeq(G1).→n).labeledV()
and (PRIM : CompSeq(G1).→n).labeledE() is connected.

Let G be a finite connected real-weighted w-graph. Observe that there exists
a w-subgraph of G which is spanning and tree-like.

Let G1 be a finite connected real-weighted w-graph and let G2 be a spanning
tree-like w-subgraph of G1. We say that G2 is min-cost if and only if:

(Def. 17) For every spanning tree-like w-subgraph G3 of G1 holds G2.cost() ≤
G3.cost().

Let G1 be a finite connected real-weighted w-graph. One can check that
there exists a spanning tree-like w-subgraph of G1 which is min-cost.

Let G be a finite connected real-weighted w-graph. A minimum spanning
tree of G is a min-cost spanning tree-like w-subgraph of G.

6. Prim’s Minimum Weight Spanning Tree Algorithm: theorems

One can prove the following propositions:
(35) Let G1, G2 be finite connected real-weighted w-graphs and G3 be a

w-subgraph of G1. Suppose G3 is a minimum spanning tree of G1 and
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G1 =G G2 and the weight of G1 = the weight of G2. Then G3 is a
minimum spanning tree of G2.

(36) Let G be a finite connected real-weighted w-graph, G1 be a minimum
spanning tree of G, and G2 be a w-graph. Suppose G1 =G G2 and the
weight of G1 = the weight of G2. Then G2 is a minimum spanning tree of
G.

(37) Let G be a real-weighted w-graph. Then
(i) G =G PRIM : Init(G),
(ii) the weight of G = the weight of PRIM : Init(G),
(iii) the elabel of PRIM : Init(G) = ∅, and
(iv) the vlabel of PRIM : Init(G) = choose(the vertices of G)7−→. 1.

(38) For every real-weighted w-graph G holds (PRIM : Init(G)).labeledV() =
{choose(the vertices of G)} and (PRIM : Init(G)).labeledE() = ∅.

(39) For every real-wev wev-graph G such that PRIM : NextBestEdges(G) 6=
∅ there exists a vertex v of G such that v /∈ G.labeledV() and
PRIM : Step(G) =
(G.labelEdge(choose(PRIM : NextBestEdges(G)), 1)).labelVertex(v, 1).

(40) For every real-wev wev-graph G holds G =G PRIM : Step(G)
and the weight of G = the weight of PRIM : Step(G) and
G.labeledE() ⊆ (PRIM : Step(G)).labeledE() and G.labeledV() ⊆
(PRIM : Step(G)).labeledV().

(41) Let G be a finite real-weighted w-graph and n be a natural
number. Then G =G PRIM : CompSeq(G).→n and the weight of
PRIM : CompSeq(G).→n = the weight of G.

(42) Let G be a finite real-weighted w-graph and n be a natural num-
ber. Then (PRIM : CompSeq(G).→n).labeledV() is a non empty sub-
set of the vertices of G and (PRIM : CompSeq(G).→n).labeledE() ⊆
G.edgesBetween((PRIM : CompSeq(G).→n).labeledV()).

(43) For every finite real-weighted w-graph G1 and for every natural number n

holds every subgraph of G1 induced by PRIM : CompSeq(G1).→n.labeledV()
and PRIM : CompSeq(G1).→n.labeledE() is connected.

(44) For every finite real-weighted w-graph G1 and for every natural number n

holds every subgraph of G1 induced by PRIM : CompSeq(G1).→n.labeledV()
is connected.

(45) For every finite real-weighted w-graph G and for every natural number n

holds (PRIM : CompSeq(G).→n).labeledV() ⊆ G.reachableFrom(choose(the
vertices of G)).

(46) Let G be a finite real-weighted w-graph and i, j be natural
numbers. If i ≤ j, then (PRIM : CompSeq(G).→i).labeledV() ⊆
(PRIM : CompSeq(G).→j).labeledV() and (PRIM : CompSeq(G).→i)
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.labeledE() ⊆ (PRIM : CompSeq(G).→j).labeledE().
(47) Let G be a finite real-weighted w-graph and n be a natural number.

Then PRIM : NextBestEdges((PRIM : CompSeq(G).→n)) = ∅ if and only
if (PRIM : CompSeq(G).→n).labeledV() = G.reachableFrom(choose(the
vertices of G)).

(48) Let G be a finite real-weighted w-graph and n be a natural num-
ber. Then card((PRIM : CompSeq(G).→n).labeledV()) = min(n +
1, card(G.reachableFrom(choose(the vertices of G)))).

(49) For every finite real-weighted w-graph G holds PRIM : CompSeq(G) is
halting and (PRIM : CompSeq(G)).Lifespan() + 1 =
card(G.reachableFrom(choose(the vertices of G))).

(50) For every finite real-weighted w-graph G1 and for every natural number n

holds every subgraph of G1 induced by PRIM : CompSeq(G1).→n.labeledV()
and PRIM : CompSeq(G1).→n.labeledE() is tree-like.

(51) For every finite connected real-weighted w-graph G holds
(PRIM : MST(G)).labeledV() = the vertices of G.

(52) For every finite connected real-weighted w-graph G and for ev-
ery natural number n holds (PRIM : CompSeq(G).→n).labeledE() ⊆
(PRIM : MST(G)).labeledE().

(53) For every finite connected real-weighted w-graph G1 holds every induced
w-subgraph of G1, PRIM : MST(G1).labeledV(),
PRIM : MST(G1).labeledE() is a minimum spanning tree of G1.
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[4], [20], [18], [28], [10], [2], [6], [17], [12], [16], [14], [19], and [15] provide the
notation and terminology for this paper.

1. Preliminary Theorems

Let x be a set and let y be a real number. One can verify that x7−→. y is
real-yielding.

Let x be a set and let y be a natural number. One can verify that x 7−→ y

is natural-yielding.
Let f , g be real-yielding functions. Observe that f+·g is real-yielding.

2. Preliminary Defintions for Ford-Fulkerson Flow Algorithm

Let G be a e-graph. We say that G is complete-elabeled if and only if:

(Def. 1) dom (the elabel of G) = the edges of G.
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Let G be a graph and let X be a many sorted set indexed by the edges of
G. Observe that G.set(ELabelSelector, X) is complete-elabeled.

Let G be a graph, let Y be a non empty set, and let X be a function
from the edges of G into Y . One can check that G.set(ELabelSelector, X) is
complete-elabeled.

Let G1 be a e-graph sequence. We say that G1 is complete-elabeled if and
only if:

(Def. 2) For every natural number x holds G1.→x is complete-elabeled.
Let G be a w-graph. We say that G is natural-weighted if and only if:

(Def. 3) The weight of G is natural-yielding.
Let G be a e-graph. We say that G is natural-elabeled if and only if:

(Def. 4) The elabel of G is natural-yielding.
Let G1 be a w-graph sequence. We say that G1 is natural-weighted if and

only if:

(Def. 5) For every natural number x holds G1.→x is natural-weighted.
Let G1 be a e-graph sequence. We say that G1 is natural-elabeled if and

only if:

(Def. 6) For every natural number x holds G1.→x is natural-elabeled.
One can verify that every w-graph which is natural-weighted is also

nonnegative-weighted.
Let us observe that every e-graph which is natural-elabeled is also real-

elabeled.
One can verify that there exists a wev-graph which is finite, trivial, tree-like,

natural-weighted, natural-elabeled, complete-elabeled, and real-vlabeled.
One can verify that there exists a wev-graph sequence which is finite, natural-

weighted, real-wev, natural-elabeled, and complete-elabeled.
Let G1 be a complete-elabeled e-graph sequence and let x be a natural

number. Note that G1.→x is complete-elabeled.
Let G1 be a natural-elabeled e-graph sequence and let x be a natural number.

One can verify that G1.→x is natural-elabeled.
Let G1 be a natural-weighted w-graph sequence and let x be a natural num-

ber. One can verify that G1.→x is natural-weighted.
Let G be a natural-weighted w-graph. One can check that the weight of G

is natural-yielding.
Let G be a natural-elabeled e-graph. Note that the elabel of G is natural-

yielding.
Let G be a complete-elabeled e-graph. Then the elabel of G is a many sorted

set indexed by the edges of G.
Let G be a natural-weighted w-graph and let X be a set. Note that

G.set(ELabelSelector, X) is natural-weighted and G.set(VLabelSelector, X) is
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natural-weighted.
Let G be a graph and let X be a natural-yielding many sorted set indexed

by the edges of G. Observe that G.set(ELabelSelector, X) is natural-elabeled.
Let G be a finite real-weighted real-elabeled complete-elabeled we-graph and

let s1, s2 be sets. We say that G has valid flow from s1 to s2 if and only if the
conditions (Def. 7) are satisfied.

(Def. 7)(i) s1 is a vertex of G,
(ii) s2 is a vertex of G,
(iii) for every set e such that e ∈ the edges of G holds 0 ≤ (the elabel of

G)(e) and (the elabel of G)(e) ≤ (the weight of G)(e), and
(iv) for every vertex v of G such that v 6= s1 and v 6= s2 holds

∑
((the elabel

of G)�v.edgesIn()) =
∑

((the elabel of G)�v.edgesOut()).
Let G be a finite real-weighted real-elabeled complete-elabeled we-graph and

let s1, s2 be sets. Let us assume that G has valid flow from s1 to s2. The functor
G.flow(s1, s2) yields a real number and is defined as follows:

(Def. 8) G.flow(s1, s2) =
∑

((the elabel of G)�G.edgesInto({s2}))−
∑

((the elabel
of G)�G.edgesOutOf({s2})).

Let G be a finite real-weighted real-elabeled complete-elabeled we-graph and
let s1, s2 be sets. We say that G has maximum flow from s1 to s2 if and only if
the conditions (Def. 9) are satisfied.

(Def. 9)(i) G has valid flow from s1 to s2, and
(ii) for every finite real-weighted real-elabeled complete-elabeled we-graph

G2 such that G2 =G G and the weight of G = the weight of G2 and G2

has valid flow from s1 to s2 holds G2.flow(s1, s2) ≤ G.flow(s1, s2).
Let G be a real-weighted real-elabeled wev-graph and let e be a set. We

say that e is forward labeling in G if and only if the conditions (Def. 10) are
satisfied.

(Def. 10)(i) e ∈ the edges of G,
(ii) (the source of G)(e) ∈ G.labeledV(),
(iii) (the target of G)(e) /∈ G.labeledV(), and
(iv) (the elabel of G)(e) < (the weight of G)(e).
Let G be a real-elabeled ev-graph and let e be a set. We say that e is

backward labeling in G if and only if:

(Def. 11) e ∈ the edges of G and (the target of G)(e) ∈ G.labeledV() and (the
source of G)(e) /∈ G.labeledV() and 0 < (the elabel of G)(e).

Let G be a real-weighted real-elabeled we-graph and let W be a walk of G.
We say that W is augmenting if and only if the condition (Def. 12) is satisfied.

(Def. 12) Let n be an odd natural number such that n < lenW. Then
(i) if W (n+1) joins W (n) to W (n+2) in G, then (the elabel of G)(W (n+

1)) < (the weight of G)(W (n + 1)), and
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(ii) if W (n+1) does not join W (n) to W (n+2) in G, then 0 < (the elabel
of G)(W (n + 1)).

Let G be a real-weighted real-elabeled we-graph. One can check that every
walk of G which is trivial is also augmenting.

Let G be a real-weighted real-elabeled we-graph. Note that there exists a
path of G which is vertex-distinct and augmenting.

Let G be a real-weighted real-elabeled we-graph, let W be an augmenting
walk of G, and let m, n be natural numbers. Note that W.cut(m,n) is aug-
menting.

Next we state two propositions:
(1) Let G3, G2 be real-weighted real-elabeled we-graphs, W1 be a walk of

G3, and W2 be a walk of G2. Suppose that
(i) W1 is augmenting,
(ii) G3 =G G2,

(iii) the weight of G3 = the weight of G2,
(iv) the elabel of G3 = the elabel of G2, and
(v) W1 = W2.

Then W2 is augmenting.
(2) Let G be a real-weighted real-elabeled we-graph, W be an augmenting

walk of G, and e, v be sets. Suppose that
(i) v /∈ W.vertices(), and
(ii) e joins W.last() to v in G and (the elabel of G)(e) < (the weight of

G)(e) or e joins v to W.last() in G and 0 < (the elabel of G)(e).
Then W.addEdge(e) is augmenting.

3. Algorithm for Finding Augmenting Path in a Graph

Let G be a real-weighted real-elabeled wev-graph. The functor
AP : NextBestEdges(G) yielding a subset of the edges of G is defined as fol-
lows:

(Def. 13) For every set e holds e ∈ AP : NextBestEdges(G) iff e is forward labeling
in G or backward labeling in G.

Let G be a real-weighted real-elabeled wev-graph. The functor AP : Step(G)
yields a real-weighted real-elabeled wev-graph and is defined by:

(Def. 14) AP : Step(G) =


G, if AP : NextBestEdges(G) = ∅,
G.labelVertex((the source of G)(e), e),

if AP : NextBestEdges(G) 6= ∅ and (the source of G)
(e) /∈ G.labeledV(),

G.labelVertex((the target of G)(e), e), otherwise.
Let G be a finite real-weighted real-elabeled wev-graph. One can check that

AP : Step(G) is finite.
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Let G be a real-weighted real-elabeled we-graph and let s1 be a vertex of G.
The functor AP : CompSeq(G, s1) yielding a real-weighted real-elabeled wev-
graph sequence is defined as follows:

(Def. 15) AP : CompSeq(G, s1).→0 = G.set(VLabelSelector, s1 7−→. 1) and for
every natural number n holds AP : CompSeq(G, s1).→(n + 1) =
AP : Step((AP : CompSeq(G, s1).→n)).

Let G be a finite real-weighted real-elabeled we-graph and let s1 be a vertex
of G. One can check that AP : CompSeq(G, s1) is finite.

The following three propositions are true:
(3) Let G be a real-weighted real-elabeled we-graph and s1 be a vertex of

G. Then
(i) G =G AP : CompSeq(G, s1).→0,

(ii) the weight of G = the weight of AP : CompSeq(G, s1).→0,

(iii) the elabel of G = the elabel of AP : CompSeq(G, s1).→0, and
(iv) (AP : CompSeq(G, s1).→0).labeledV() = {s1}.
(4) Let G be a real-weighted real-elabeled we-graph, s1 be a ver-

tex of G, and i, j be natural numbers. If i ≤ j, then
(AP : CompSeq(G, s1).→i).labeledV() ⊆
(AP : CompSeq(G, s1).→j).labeledV().

(5) Let G be a real-weighted real-elabeled we-graph, s1 be a vertex of G,
and n be a natural number. Then G =G AP : CompSeq(G, s1).→n and
the weight of G = the weight of AP : CompSeq(G, s1).→n and the elabel
of G = the elabel of AP : CompSeq(G, s1).→n.

Let G be a real-weighted real-elabeled we-graph and let s1 be a vertex of
G. The functor AP : FindAugPath(G, s1) yielding a real-weighted real-elabeled
wev-graph is defined as follows:

(Def. 16) AP : FindAugPath(G, s1) = (AP : CompSeq(G, s1)).Result().
We now state two propositions:

(6) For every finite real-weighted real-elabeled we-graph G and for every
vertex s1 of G holds AP : CompSeq(G, s1) is halting.

(7) Let G be a finite real-weighted real-elabeled we-graph, s1 be
a vertex of G, n be a natural number, and v be a set.
If v ∈ (AP : CompSeq(G, s1).→n).labeledV(), then (the vlabel of
AP : CompSeq(G, s1).→n)(v) = (the vlabel of AP : FindAugPath(G, s1))(v).

Let G be a finite real-weighted real-elabeled we-graph and let s1, s2 be
vertices of G. The functor AP : GetAugPath(G, s1, s2) yielding a vertex-distinct
augmenting path of G is defined by:

(Def. 17)(i) AP : GetAugPath(G, s1, s2) is walk from s1 to s2 and for every even
natural number n such that n ∈ dom AP : GetAugPath(G, s1, s2) holds
(AP : GetAugPath(G, s1, s2))(n) = (the vlabel of AP : FindAugPath(G, s1))
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((AP : GetAugPath(G, s1, s2))(n + 1)) if s2 ∈ (AP : FindAugPath(G, s1))
.labeledV(),

(ii) AP : GetAugPath(G, s1, s2) = G.walkOf(s1), otherwise.
Next we state three propositions:

(8) Let G be a real-weighted real-elabeled we-graph, s1 be a vertex
of G, n be a natural number, and v be a set. Suppose v ∈
(AP : CompSeq(G, s1).→n).labeledV(). Then there exists a path P of G

such that P is augmenting and walk from s1 to v and P .vertices() ⊆
(AP : CompSeq(G, s1).→n).labeledV().

(9) Let G be a finite real-weighted real-elabeled we-graph, s1 be a vertex of
G, and v be a set. Then v ∈ (AP : FindAugPath(G, s1)).labeledV() if and
only if there exists a path of G which is augmenting and walk from s1 to
v.

(10) Let G be a finite real-weighted real-elabeled we-graph and s1 be a
vertex of G. Then s1 ∈ (AP : FindAugPath(G, s1)).labeledV() and
G =G AP : FindAugPath(G, s1) and the weight of G = the weight
of AP : FindAugPath(G, s1) and the elabel of G = the elabel of
AP : FindAugPath(G, s1).

4. Definition of Ford-Fulkerson Maximum Flow Algorithm

Let G be a real-weighted real-elabeled we-graph and let W be an augmenting
walk of G. The functor W.flowSeq() yields a finite sequence of elements of R
and is defined by the conditions (Def. 18).

(Def. 18)(i) dom(W.flowSeq()) = dom(W.edgeSeq()), and
(ii) for every natural number n such that n ∈ dom(W.flowSeq()) holds if

W (2 ·n) joins W (2 ·n−1) to W (2 ·n+1) in G, then W.flowSeq()(n) = (the
weight of G)(W (2 · n))− (the elabel of G)(W (2 · n)) and if W (2 · n) does
not join W (2 · n − 1) to W (2 · n + 1) in G, then W.flowSeq()(n) = (the
elabel of G)(W (2 · n)).

Let G be a real-weighted real-elabeled we-graph and let W be an augmenting
walk of G. The functor W.tolerance() yielding a real number is defined as
follows:

(Def. 19)(i) W.tolerance() ∈ rng(W.flowSeq()) and for every real number k such
that k ∈ rng(W.flowSeq()) holds W.tolerance() ≤ k if W is non trivial,

(ii) W.tolerance() = 0, otherwise.
Let G be a natural-weighted natural-elabeled we-graph and let W be an

augmenting walk of G. Then W.tolerance() is a natural number.
Let G be a real-weighted real-elabeled we-graph and let P be an augmenting

path of G. The functor FF : PushFlow(G, P ) yielding a many sorted set indexed
by the edges of G is defined by the conditions (Def. 20).
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(Def. 20)(i) For every set e such that e ∈ the edges of G and e /∈ P .edges() holds
(FF : PushFlow(G, P ))(e) = (the elabel of G)(e), and

(ii) for every odd natural number n such that n < lenP holds if P (n + 1)
joins P (n) to P (n+2) in G, then (FF : PushFlow(G, P ))(P (n+1)) = (the
elabel of G)(P (n + 1)) + P .tolerance() and if P (n + 1) does not join P (n)
to P (n + 2) in G, then (FF : PushFlow(G, P ))(P (n + 1)) = (the elabel of
G)(P (n + 1))− P .tolerance().

Let G be a real-weighted real-elabeled we-graph and let P be an augmenting
path of G. Observe that FF : PushFlow(G, P ) is real-yielding.

Let G be a natural-weighted natural-elabeled we-graph and let P be an
augmenting path of G. Note that FF : PushFlow(G, P ) is natural-yielding.

Let G be a real-weighted real-elabeled we-graph and let P be an augmenting
path of G. The functor FF : AugmentPath(G, P ) yielding a real-weighted real-
elabeled complete-elabeled we-graph is defined as follows:

(Def. 21) FF : AugmentPath(G, P ) = G.set(ELabelSelector,FF : PushFlow(G, P )).
Let G be a finite real-weighted real-elabeled we-graph and let P be an aug-

menting path of G. Observe that FF : AugmentPath(G, P ) is finite.
Let G be a finite nonnegative-weighted real-elabeled we-graph and let P be

an augmenting path of G. Note that FF : AugmentPath(G, P ) is nonnegative-
weighted.

Let G be a finite natural-weighted natural-elabeled we-graph and let P be an
augmenting path of G. Note that FF : AugmentPath(G, P ) is natural-weighted
and natural-elabeled.

Let G be a finite real-weighted real-elabeled complete-elabeled we-graph and
let s2, s1 be vertices of G. The functor FF : Step(G, s1, s2) yields a finite real-
weighted real-elabeled complete-elabeled we-graph and is defined by:

(Def. 22) FF : Step(G, s1, s2) =


FF : AugmentPath(G, AP : GetAugPath(G, s1,

s2)), if s2 ∈ (AP : FindAugPath(G, s1))
.labeledV(),

G, otherwise.
Let G be a finite nonnegative-weighted real-elabeled complete-elabeled we-

graph and let s1, s2 be vertices of G. One can check that FF : Step(G, s1, s2) is
nonnegative-weighted.

Let G be a finite natural-weighted natural-elabeled complete-elabeled we-
graph and let s1, s2 be vertices of G. One can verify that FF : Step(G, s1, s2) is
natural-weighted and natural-elabeled.

Let G be a finite real-weighted w-graph and let s1, s2 be vertices of G.
The functor FF : CompSeq(G, s1, s2) yields a finite real-weighted real-elabeled
complete-elabeled we-graph sequence and is defined by the conditions (Def. 23).

(Def. 23)(i) FF : CompSeq(G, s1, s2).→0 = G.set(ELabelSelector, (the edges of
G) 7−→ 0), and
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(ii) for every natural number n there exist vertices s′1, s′2 of
FF : CompSeq(G, s1, s2).→n such that s′1 = s1 and s′2 = s2 and
FF : CompSeq(G, s1, s2).→(n + 1) =
FF : Step(FF : CompSeq(G, s1, s2).→n, s′1, s

′
2).

Let G be a finite nonnegative-weighted w-graph and let s2, s1 be vertices of
G. One can verify that FF : CompSeq(G, s1, s2) is nonnegative-weighted.

Let G be a finite natural-weighted w-graph and let s2, s1 be vertices of G.
One can check that FF : CompSeq(G, s1, s2) is natural-weighted and natural-
elabeled.

Let G be a finite real-weighted w-graph and let s2, s1 be vertices of G.
The functor FF : MaxFlow(G, s1, s2) yields a finite real-weighted real-elabeled
complete-elabeled we-graph and is defined by:

(Def. 24) FF : MaxFlow(G, s1, s2) = (FF : CompSeq(G, s1, s2)).Result().

5. Theorems for Ford-Fulkerson Maximum Flow Algorithm

One can prove the following propositions:

(11) Let G be a finite real-weighted real-elabeled complete-elabeled we-graph,
s1, s2 be sets, and V be a subset of the vertices of G. Suppose G has valid
flow from s1 to s2 and s1 ∈ V and s2 /∈ V. Then G.flow(s1, s2) =

∑
((the

elabel of G)�G.edgesDBetween(V, (the vertices of G)\V ))−
∑

((the elabel
of G)�G.edgesDBetween((the vertices of G) \ V, V )).

(12) Let G be a finite real-weighted real-elabeled complete-elabeled we-graph,
s1, s2 be sets, and V be a subset of the vertices of G. Suppose G has valid
flow from s1 to s2 and s1 ∈ V and s2 /∈ V. Then G.flow(s1, s2) ≤

∑
((the

weight of G)�G.edgesDBetween(V, (the vertices of G) \ V )).

(13) Let G be a real-weighted real-elabeled we-graph and P be an augmenting
path of G. Then G =G FF : AugmentPath(G, P ) and the weight of G =
the weight of FF : AugmentPath(G, P ).

(14) Let G be a finite real-weighted real-elabeled we-graph and W be an
augmenting walk of G. If W is non trivial, then 0 < W.tolerance().

(15) Let G be a finite real-weighted real-elabeled complete-elabeled we-graph,
s1, s2 be sets, and P be an augmenting path of G. Suppose s1 6= s2

and G has valid flow from s1 to s2 and P is walk from s1 to s2. Then
FF : AugmentPath(G, P ) has valid flow from s1 to s2.

(16) Let G be a finite real-weighted real-elabeled complete-elabeled we-graph,
s1, s2 be sets, and P be an augmenting path of G. Suppose s1 6= s2

and G has valid flow from s1 to s2 and P is walk from s1 to s2. Then
(G.flow(s1, s2)) + P .tolerance() = FF : AugmentPath(G, P ).flow(s1, s2).
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(17) Let G be a finite real-weighted w-graph, s1, s2 be vertices of G, and n

be a natural number. Then FF : CompSeq(G, s1, s2).→n =G G and the
weight of G = the weight of FF : CompSeq(G, s1, s2).→n.

(18) Let G be a finite nonnegative-weighted w-graph, s1, s2 be vertices of G,
and n be a natural number. If s1 6= s2, then FF : CompSeq(G, s1, s2).→n

has valid flow from s1 to s2.
(19) For every finite natural-weighted w-graph G and for all vertices s1, s2 of

G such that s1 6= s2 holds FF : CompSeq(G, s1, s2) is halting.
(20) Let G be a finite real-weighted real-elabeled complete-elabeled we-graph

and s1, s2 be sets such that s1 6= s2 and G has valid flow from s1 to s2 and
there exists no augmenting path of G which is walk from s1 to s2. Then
G has maximum flow from s1 to s2.

(21) Let G be a finite real-weighted w-graph and s1, s2 be vertices of G.
Then G =G FF : MaxFlow(G, s1, s2) and the weight of G = the weight of
FF : MaxFlow(G, s1, s2).

(22) Let G be a finite natural-weighted w-graph and s1, s2 be vertices of G.
If s2 6= s1, then FF : MaxFlow(G, s1, s2) has maximum flow from s1 to s2.
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[6] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
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1. Preliminaries

Let X be a non empty set. Observe that ΩX is non empty.
Let us observe that every subspace of the metric space of real numbers is

real-membered.
Let S be a real-membered 1-sorted structure. One can check that the carrier

of S is real-membered.
One can check that there exists a real-membered set which is non empty,

finite, lower bounded, and upper bounded.
We now state three propositions:

(1) For every non empty lower bounded real-membered set X and for every
closed subset Y of R such that X ⊆ Y holds inf X ∈ Y.

(2) For every non empty upper bounded real-membered set X and for every
closed subset Y of R such that X ⊆ Y holds supX ∈ Y.

(3) For all subsets X, Y of R holds X ∪ Y = X ∪ Y .

1The paper was written during the author’s post-doctoral fellowship granted by Shinshu

University, Japan.
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2. Intervals

In the sequel a, b, r, s are real numbers.
Let us consider r, s. One can check the following observations:
∗ [r, s[ is bounded,
∗ ]r, s] is bounded, and
∗ ]r, s[ is bounded.
Let us consider r, s. One can verify the following observations:
∗ [r, s] is connected,
∗ [r, s[ is connected,
∗ ]r, s] is connected, and
∗ ]r, s[ is connected.
Let us observe that there exists a subset of R which is open, bounded,

connected, and non empty.
One can prove the following propositions:

(4) If r < s, then inf[r, s[= r.

(5) If r < s, then sup[r, s[= s.

(6) If r < s, then inf]r, s] = r.

(7) If r < s, then sup]r, s] = s.

(8) If a ≤ b or r ≤ s and if [a, b] = [r, s], then a = r and b = s.

(9) If a < b or r < s and if ]a, b[ = ]r, s[, then a = r and b = s.

(10) If a < b or r < s and if ]a, b] = ]r, s], then a = r and b = s.

(11) If a < b or r < s and if [a, b[= [r, s[, then a = r and b = s.

(12) If a < b and [a, b[⊆ [r, s], then r ≤ a and b ≤ s.

(13) If a < b and [a, b[⊆ [r, s[, then r ≤ a and b ≤ s.

(14) If a < b and ]a, b] ⊆ [r, s], then r ≤ a and b ≤ s.

(15) If a < b and ]a, b] ⊆ ]r, s], then r ≤ a and b ≤ s.

3. Halflines

One can prove the following propositions:
(16) [a, b]c = ]−∞, a[ ∪ ]b, +∞[.
(17) ]a, b[c = ]−∞, a] ∪ [b, +∞[.
(18) [a, b[c = ]−∞, a[ ∪ [b, +∞[.
(19) ]a, b]c = ]−∞, a] ∪ ]b, +∞[.
(20) If a ≤ b, then [a, b] ∩ (]−∞, a] ∪ [b, +∞[) = {a, b}.

Let us consider a. One can verify the following observations:
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∗ ]−∞, a] is non lower bounded, upper bounded, and connected,
∗ ]−∞, a[ is non lower bounded, upper bounded, and connected,
∗ [a,+∞[ is lower bounded, non upper bounded, and connected, and
∗ ]a,+∞[ is lower bounded, non upper bounded, and connected.
The following propositions are true:

(21) sup]−∞, a] = a.

(22) sup]−∞, a[ = a.

(23) inf[a,+∞[ = a.

(24) inf]a,+∞[ = a.

4. Connectedness

Let us observe that ΩR is connected, non lower bounded, and non upper
bounded.

One can prove the following propositions:
(25) For every bounded connected subset X of R such that inf X ∈ X and

supX ∈ X holds X = [inf X, supX].
(26) For every bounded subset X of R such that inf X /∈ X holds X ⊆

]inf X, supX].
(27) For every bounded connected subset X of R such that inf X /∈ X and

supX ∈ X holds X = ]inf X, supX].
(28) For every bounded subset X of R such that sup X /∈ X holds X ⊆

[inf X, supX[.
(29) For every bounded connected subset X of R such that inf X ∈ X and

supX /∈ X holds X = [inf X, supX[.
(30) For every bounded subset X of R such that inf X /∈ X and supX /∈ X

holds X ⊆ ]inf X, supX[.
(31) For every non empty bounded connected subset X of R such that inf X /∈

X and sup X /∈ X holds X = ]inf X, supX[.
(32) For every subset X of R such that X is upper bounded holds X ⊆

]−∞, supX].
(33) For every connected subset X of R such that X is not lower bounded

and X is upper bounded and sup X ∈ X holds X = ]−∞, supX].
(34) For every subset X of R such that X is upper bounded and supX /∈ X

holds X ⊆ ]−∞, supX[.
(35) For every non empty connected subset X of R such that X is not lower

bounded and X is upper bounded and supX /∈ X holds X = ]−∞, supX[.
(36) For every subset X of R such that X is lower bounded holds X ⊆

[inf X, +∞[.
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(37) For every connected subset X of R such that X is lower bounded and
X is not upper bounded and inf X ∈ X holds X = [inf X, +∞[.

(38) For every subset X of R such that X is lower bounded and inf X /∈ X

holds X ⊆ ]inf X, +∞[.
(39) For every non empty connected subset X of R such that X is lower

bounded and X is not upper bounded and inf X /∈ X holds X =
]inf X, +∞[.

(40) For every connected subset X of R such that X is not upper bounded
and X is not lower bounded holds X = R.

(41) Let X be a connected subset of R. Then X is empty or X = R or there
exists a such that X = ]−∞, a] or there exists a such that X = ]−∞, a[
or there exists a such that X = [a,+∞[ or there exists a such that X =
]a,+∞[ or there exist a, b such that a ≤ b and X = [a, b] or there exist a,
b such that a < b and X = [a, b[ or there exist a, b such that a < b and
X = ]a, b] or there exist a, b such that a < b and X = ]a, b[.

(42) For every non empty connected subset X of R such that r /∈ X holds
r ≤ inf X or supX ≤ r.

(43) Let X, Y be non empty bounded connected subsets of R. Suppose
inf X ≤ inf Y and sup Y ≤ supX and if inf X = inf Y and inf Y ∈ Y, then
inf X ∈ X and if supX = supY and sup Y ∈ Y, then supX ∈ X. Then
Y ⊆ X.

Let us observe that there exists a subset of R which is open, closed, con-
nected, non empty, and non bounded.

5. R1

Next we state several propositions:
(44) For every subset X of R1 such that a ≤ b and X = [a, b] holds Fr X =

{a, b}.
(45) For every subset X of R1 such that a < b and X = ]a, b[ holds Fr X =

{a, b}.
(46) For every subset X of R1 such that a < b and X = [a, b[ holds Fr X =

{a, b}.
(47) For every subset X of R1 such that a < b and X = ]a, b] holds Fr X =

{a, b}.
(48) For every subset X of R1 such that X = [a, b] holds IntX = ]a, b[.
(49) For every subset X of R1 such that X = ]a, b[ holds IntX = ]a, b[.
(50) For every subset X of R1 such that X = [a, b[ holds IntX = ]a, b[.
(51) For every subset X of R1 such that X = ]a, b] holds IntX = ]a, b[.
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Let X be a convex subset of R1. Observe that R1�X is convex.
Let A be a connected subset of R. One can check that R1A is convex.
We now state the proposition

(52) Let X be a subset of R1 and Y be a subset of R. If X = Y, then X is
connected iff Y is connected.

6. Topology of Closed Intervals

Let us consider r. Note that [r, r]T is trivial.
The following four propositions are true:

(53) If r ≤ s, then every subset of [r, s]T is a bounded subset of R.
(54) If r ≤ s, then for every subset X of [r, s]T such that X = [a, b[ and r < a

and b ≤ s holds IntX = ]a, b[.
(55) If r ≤ s, then for every subset X of [r, s]T such that X = ]a, b] and r ≤ a

and b < s holds IntX = ]a, b[.
(56) Let X be a subset of [r, s]T and Y be a subset of R. If X = Y, then X

is connected iff Y is connected.
Let T be a topological space. Observe that there exists a subset of T which

is open, closed, and connected.
Let T be a non empty connected topological space. Observe that there exists

a subset of T which is non empty, open, closed, and connected.
We now state the proposition

(57) Suppose r ≤ s. Let X be an open connected subset of [r, s]T. Then
(i) X is empty, or
(ii) X = [r, s], or
(iii) there exists a real number a such that r < a and a ≤ s and X = [r, a[,

or
(iv) there exists a real number a such that r ≤ a and a < s and X = ]a, s],

or
(v) there exist real numbers a, b such that r ≤ a and a < b and b ≤ s and

X = ]a, b[.

7. Minimal Cover of Intervals

Next we state three propositions:
(58) Let T be a 1-sorted structure and F be a family of subsets of T . Then

F is a cover of T if and only if F is a cover of ΩT .
(59) Let T be a 1-sorted structure, F be a finite family of subsets of T , and F1

be a family of subsets of T . Suppose F is a cover of T and F1 = F \{X;X
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ranges over subsets of T : X ∈ F ∧
∨

Y : subset of T (Y ∈ F ∧ X ⊆ Y ∧ X 6=
Y )}. Then F1 is a cover of T .

(60) Let S be a trivial non empty 1-sorted structure, s be a point of S, and
F be a family of subsets of S. If F is a cover of S, then {s} ∈ F.

Let T be a topological structure and let F be a family of subsets of T . We
say that F is connected if and only if:

(Def. 1) For every subset X of T such that X ∈ F holds X is connected.
Let T be a topological space. Note that there exists a family of subsets of

T which is non empty, open, closed, and connected.
In the sequel n, m are natural numbers and F is a family of subsets of [r, s]T.
The following two propositions are true:

(61) Let L be a topological space and G, G1 be families of subsets of L.
Suppose G is a cover of L and finite. Let A1 be a set such that G1 =
G \ {X;X ranges over subsets of L: X ∈ G ∧

∨
Y : subset of L (Y ∈

G ∧ X ⊆ Y ∧ X 6= Y )} and A1 = {C;C ranges over families of subsets
of L: C is a cover of L ∧ C ⊆ G1}. Then A1 has the lower Zorn property
w.r.t. ⊆

(A1).
(62) Let L be a topological space and G, A1 be sets. Suppose A1 = {C;C

ranges over families of subsets of L: C is a cover of L ∧ C ⊆ G}. Let
M be a set. Suppose M is minimal in ⊆

(A1) and M ∈ field(⊆(A1)). Let A4

be a subset of L. Suppose A4 ∈ M. Then it is not true that there exist
subsets A2, A3 of L such that A2 ∈ M and A3 ∈ M and A4 ⊆ A2 ∪ A3

and A4 6= A2 and A4 6= A3.

Let r, s be real numbers and let F be a family of subsets of [r, s]T. Let us
assume that F is a cover of [r, s]T F is open F is connected and r ≤ s. A finite
sequence of elements of 2R is said to be an interval cover of F if it satisfies the
conditions (Def. 2).

(Def. 2)(i) rng it ⊆ F,

(ii)
⋃

rng it = [r, s],
(iii) for every natural number n such that 1 ≤ n holds if n ≤ len it, then

itn is non empty and if n + 1 ≤ len it, then inf(itn) ≤ inf(itn+1) and
sup(itn) ≤ sup(itn+1) and inf(itn+1) < sup(itn) and if n + 2 ≤ len it, then
sup(itn) ≤ inf(itn+2),

(iv) if [r, s] ∈ F, then it = 〈[r, s]〉, and
(v) if [r, s] /∈ F, then there exists a real number p such that r < p and

p ≤ s and it(1) = [r, p[ and there exists a real number p such that r ≤ p

and p < s and it(len it) = ]p, s] and for every natural number n such that
1 < n and n < len it there exist real numbers p, q such that r ≤ p and
p < q and q ≤ s and it(n) = ]p, q[.

We now state the proposition
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(63) If F is a cover of [r, s]T, open, and connected and r ≤ s and [r, s] ∈ F,

then 〈[r, s]〉 is an interval cover of F .

In the sequel C denotes an interval cover of F .
One can prove the following propositions:

(64) Let F be a family of subsets of [r, r]T and C be an interval cover of F .
If F is a cover of [r, r]T, open, and connected, then C = 〈[r, r]〉.

(65) If F is a cover of [r, s]T, open, and connected and r ≤ s, then 1 ≤ lenC.

(66) If F is a cover of [r, s]T, open, and connected and r ≤ s and len C = 1,

then C = 〈[r, s]〉.
(67) If F is a cover of [r, s]T, open, and connected and r ≤ s and n ∈ dom C

and m ∈ dom C and n < m, then inf(Cn) ≤ inf(Cm).

(68) If F is a cover of [r, s]T, open, and connected and r ≤ s and n ∈ dom C

and m ∈ dom C and n < m, then sup(Cn) ≤ sup(Cm).

(69) If F is a cover of [r, s]T, open, and connected and r ≤ s and 1 ≤ n and
n + 1 ≤ lenC, then ]inf(Cn+1), sup(Cn)[ is non empty.

(70) If F is a cover of [r, s]T, open, and connected and r ≤ s, then inf(C1) = r.

(71) If F is a cover of [r, s]T, open, and connected and r ≤ s, then r ∈ C1.

(72) If F is a cover of [r, s]T, open, and connected and r ≤ s, then
sup(Clen C) = s.

(73) If F is a cover of [r, s]T, open, and connected and r ≤ s, then s ∈ Clen C .

Let r, s be real numbers, let F be a family of subsets of [r, s]T, and let C be
an interval cover of F . Let us assume that F is a cover of [r, s]T F is open F is
connected and r ≤ s. A finite sequence of elements of R is said to be a chain of
rivets in interval cover C if it satisfies the conditions (Def. 3).

(Def. 3)(i) len it = lenC + 1,

(ii) it(1) = r,

(iii) it(len it) = s, and
(iv) for every natural number n such that 1 ≤ n and n + 1 < len it holds

it(n + 1) ∈ ]inf(Cn+1), sup(Cn)[.

In the sequel G denotes a chain of rivets in interval cover C.
One can prove the following propositions:

(74) If F is a cover of [r, s]T, open, and connected and r ≤ s, then 2 ≤ lenG.

(75) If F is a cover of [r, s]T, open, and connected and r ≤ s and len C = 1,

then G = 〈r, s〉.
(76) If F is a cover of [r, s]T, open, and connected and r ≤ s and 1 ≤ n and

n + 1 < lenG, then G(n + 1) < sup(Cn).

(77) If F is a cover of [r, s]T, open, and connected and r ≤ s and 1 < n and
n ≤ lenC, then inf(Cn) < G(n).
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(78) If F is a cover of [r, s]T, open, and connected and r ≤ s and 1 ≤ n and
n < lenC, then G(n) ≤ inf(Cn+1).

(79) If F is a cover of [r, s]T, open, and connected and r < s, then G is
increasing.

(80) If F is a cover of [r, s]T, open, and connected and r ≤ s and 1 ≤ n and
n < lenG, then [G(n), G(n + 1)] ⊆ C(n).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–

290, 1990.
[5] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics,

1(2):265–267, 1990.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
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1. Preliminaries

Let us observe that every element of Z+ is integer.
Let us note that Z+ is infinite.
Let S be an infinite 1-sorted structure. Note that the carrier of S is infinite.
In the sequel a, r, s denote real numbers.
One can prove the following propositions:

(1) If r ≤ s and 0 < a, then for every point p of [r, s]M holds Ball(p, a) = [r, s]
or Ball(p, a) = [r, p+a[ or Ball(p, a) = ]p−a, s] or Ball(p, a) = ]p−a, p+a[.

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-

versity, Japan.
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(2) Suppose r ≤ s. Then there exists a basis B of [r, s]T such that
(i) there exists a many sorted set f indexed by [r, s]T such that for every

point y of [r, s]M holds f(y) = {Ball(y, 1
n);n ranges over natural numbers:

n 6= 0} and B =
⋃

f, and
(ii) for every subset X of [r, s]T such that X ∈ B holds X is connected.
(3) For every topological structure T and for every subset A of T and for

every point t of T such that t ∈ A holds skl(t, A) ⊆ A.

Let T be a topological space and let A be an open subset of T . Observe that
T �A is open.

Next we state several propositions:
(4) Let T be a topological space, S be a subspace of T , A be a subset of T ,

and B be a subset of S. If A = B, then T �A = S�B.

(5) Let S, T be topological spaces, A, B be subsets of T , and C, D be
subsets of S. Suppose that

(i) the topological structure of S = the topological structure of T ,
(ii) A = C,

(iii) B = D, and
(iv) A and B are separated.

Then C and D are separated.
(6) Let S, T be topological spaces. Suppose the topological structure of S =

the topological structure of T and S is connected. Then T is connected.
(7) Let S, T be topological spaces, A be a subset of S, and B be a subset

of T . Suppose the topological structure of S = the topological structure
of T and A = B and A is connected. Then B is connected.

(8) Let S, T be non empty topological spaces, s be a point of S, t be a point
of T , and A be a neighbourhood of s. Suppose the topological structure of
S = the topological structure of T and s = t. Then A is a neighbourhood
of t.

(9) Let S, T be non empty topological spaces, A be a subset of S, B be a
subset of T , and N be a neighbourhood of A. Suppose the topological
structure of S = the topological structure of T and A = B. Then N is a
neighbourhood of B.

(10) Let S, T be non empty topological spaces, A, B be subsets of T , and
f be a map from S into T . Suppose f is a homeomorphism and A is a
component of B. Then f−1(A) is a component of f−1(B).
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2. Local Connectedness

The following propositions are true:
(11) Let T be a non empty topological space, S be a non empty subspace of

T , A be a non empty subset of T , and B be a non empty subset of S. If
A = B and A is locally connected, then B is locally connected.

(12) Let S, T be non empty topological spaces. Suppose the topological
structure of S = the topological structure of T and S is locally connected.
Then T is locally connected.

(13) For every non empty topological space T holds T is locally connected iff
ΩT is locally connected.

(14) Let T be a non empty topological space and S be a non empty open
subspace of T . If T is locally connected, then S is locally connected.

(15) Let S, T be non empty topological spaces. Suppose S and T are home-
omorphic and S is locally connected. Then T is locally connected.

(16) Let T be a non empty topological space. Given a basis B of T such that
let X be a subset of T . If X ∈ B, then X is connected. Then T is locally
connected.

(17) If r ≤ s, then [r, s]T is locally connected.
Let us mention that I is locally connected.
Let A be a non empty open subset of I. Observe that I�A is locally connected.

3. Some Useful Functions

Let r be a real number. The functor ExtendInt r yielding a map from I into
R1 is defined as follows:

(Def. 1) For every point x of I holds (ExtendInt r)(x) = r · x.

Let r be a real number. One can check that ExtendInt r is continuous.
Let r be a real number. Then ExtendInt r is a path from R10 to R1r.

Let S, T , Y be non empty topological spaces, let H be a map from [:S, T :]
into Y , and let t be a point of T . The functor Prj1(t, H) yields a map from S

into Y and is defined by:
(Def. 2) For every point s of S holds (Prj1(t, H))(s) = H(s, t).

Let S, T , Y be non empty topological spaces, let H be a map from [:S, T :]
into Y , and let s be a point of S. The functor Prj2(s,H) yields a map from T

into Y and is defined as follows:
(Def. 3) For every point t of T holds (Prj2(s,H))(t) = H(s, t).

Let S, T , Y be non empty topological spaces, let H be a continuous map
from [:S, T :] into Y , and let t be a point of T . Note that Prj1(t, H) is continuous.
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Let S, T , Y be non empty topological spaces, let H be a continuous map
from [:S, T :] into Y , and let s be a point of S. One can check that Prj2(s,H)
is continuous.

One can prove the following two propositions:
(18) Let T be a non empty topological space, a, b be points of T , P , Q be

paths from a to b, H be a homotopy between P and Q, and t be a point
of I. If H is continuous, then Prj1(t, H) is continuous.

(19) Let T be a non empty topological space, a, b be points of T , P , Q be
paths from a to b, H be a homotopy between P and Q, and s be a point
of I. If H is continuous, then Prj2(s,H) is continuous.

Let r be a real number. The functor cLoop r yielding a map from I into
TopUnitCircle 2 is defined as follows:

(Def. 4) For every point x of I holds (cLoop r)(x) = [cos(2 ·π ·r ·x), sin(2 ·π ·r ·x)].
The following proposition is true

(20) cLoop r = CircleMap ·ExtendInt r.

Let n be an integer. Then cLoopn is a loop of c[10].

4. Main Theorems

Next we state four propositions:
(21) Let U1 be a family of subsets of TopUnitCircle 2. Suppose U1 is a cover

of TopUnitCircle 2 and open. Let Y be a non empty topological space, F

be a continuous map from [:Y, I :] into TopUnitCircle 2, and y be a point
of Y . Then there exists a non empty finite sequence T of elements of R
such that

(i) T (1) = 0,

(ii) T (lenT ) = 1,

(iii) T is increasing, and
(iv) there exists an open subset N of Y such that y ∈ N and for every

natural number i such that i ∈ dom T and i + 1 ∈ dom T there exists a
non empty subset U2 of TopUnitCircle 2 such that U2 ∈ U1 and F ◦[: N,

[T (i), T (i + 1)] :] ⊆ U2.

(22) Let Y be a non empty topological space, F be a map from [: Y, I :] into
TopUnitCircle 2, and F1 be a map from [: Y, Sspace(0I) :] into R1. Suppose
F is continuous and F1 is continuous and F �[: the carrier of Y , {0} :] =
CircleMap ·F1. Then there exists a map G from [: Y, I :] into R1 such that

(i) G is continuous,
(ii) F = CircleMap ·G,

(iii) G�[: the carrier of Y , {0} :] = F1, and
(iv) for every map H from [:Y, I :] into R1 such that H is continuous and

F = CircleMap ·H and H�[: the carrier of Y , {0} :] = F1 holds G = H.
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(23) Let x0, y0 be points of TopUnitCircle 2, x1 be a point of R1, and f be a
path from x0 to y0. Suppose x1 ∈ CircleMap−1({x0}). Then there exists
a map f1 from I into R1 such that

(i) f1(0) = x1,

(ii) f = CircleMap ·f1,

(iii) f1 is continuous, and
(iv) for every map f2 from I into R1 such that f2 is continuous and f =

CircleMap ·f2 and f2(0) = x1 holds f1 = f2.

(24) Let x0, y0 be points of TopUnitCircle 2, P , Q be paths from x0 to y0,
F be a homotopy between P and Q, and x1 be a point of R1. Suppose
P , Q are homotopic and x1 ∈ CircleMap−1({x0}). Then there exists a
point y1 of R1 and there exist paths P1, Q1 from x1 to y1 and there exists
a homotopy F1 between P1 and Q1 such that P1, Q1 are homotopic and
F = CircleMap ·F1 and y1 ∈ CircleMap−1({y0}) and for every homotopy
F2 between P1 and Q1 such that F = CircleMap ·F2 holds F1 = F2.

The map Ciso from Z+ into π1(TopUnitCircle 2, c[10]) is defined by:
(Def. 5) For every integer n holds (Ciso)(n) = [cLoop n]EqRel(TopUnitCircle 2,c[10]).

One can prove the following proposition
(25) For every integer i and for every path f from R10 to R1i holds (Ciso)(i) =

[CircleMap ·f ]EqRel(TopUnitCircle 2,c[10]).

Ciso is a homomorphism from Z+ to π1(TopUnitCircle 2, c[10]).
Let us mention that Ciso is one-to-one and onto.
We now state two propositions:

(26) Ciso is isomorphism.
(27) Let S be a subspace of E2

T satisfying conditions of simple closed curve
and x be a point of S. Then Z+ and π1(S, x) are isomorphic.

Let S be a subspace of E2
T satisfying conditions of simple closed curve and

let x be a point of S. Note that π1(S, x) is infinite.
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Summary. The article formalizes the proof of Brouwer’s Fixed Point
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we prove that any loop in the circle is homotopic to the constant loop what

contradicts with infiniteness of the fundamental group of a circle, see [15].
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In this paper n is a natural number, a, r are real numbers, and x is a point
of En

T.
Let S, T be non empty topological spaces. The functor DiffElems(S, T )

yielding a subset of [:S, T :] is defined by:
(Def. 1) DiffElems(S, T ) = {〈〈s, t〉〉; s ranges over points of S, t ranges over points

of T : s 6= t}.
One can prove the following proposition

(1) Let S, T be non empty topological spaces and x be a set. Then x ∈
DiffElems(S, T ) if and only if there exists a point s of S and there exists
a point t of T such that x = 〈〈s, t〉〉 and s 6= t.

1The paper was written during the first author’s post-doctoral fellowship granted by Shinshu

University, Japan.
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Let S be a non trivial non empty topological space and let T be a non empty
topological space. One can check that DiffElems(S, T ) is non empty.

Let S be a non empty topological space and let T be a non trivial non empty
topological space. Note that DiffElems(S, T ) is non empty.

We now state the proposition
(2) Ball(x, 0) = {x}.
Let n be a natural number, let x be a point of En

T, and let r be a real number.
The functor Tdisk(x, r) yields a subspace of En

T and is defined by:

(Def. 2) Tdisk(x, r) = (En
T)�Ball(x, r).

Let n be a natural number, let x be a point of En
T, and let r be a non negative

real number. Note that Tdisk(x, r) is non empty.
We now state the proposition

(3) The carrier of Tdisk(x, r) = Ball(x, r).

Let n be a natural number, let x be a point of En
T, and let r be a real number.

Note that Tdisk(x, r) is convex.
We adopt the following convention: n denotes a natural number, r denotes

a non negative real number, and s, t, x denote points of En
T.

One can prove the following two propositions:
(4) If s 6= t and s is a point of Tdisk(x, r) and s is not a point of Tcircle(x, r),

then there exists a point e of Tcircle(x, r) such that {e} = halfline(s, t) ∩
Sphere(x, r).

(5) Suppose s 6= t and s ∈ the carrier of Tcircle(x, r) and t is a point of
Tdisk(x, r). Then there exists a point e of Tcircle(x, r) such that e 6= s

and {s, e} = halfline(s, t) ∩ Sphere(x, r).

Let n be a non empty natural number, let o be a point of En
T, let s, t be

points of En
T, and let r be a non negative real number. Let us assume that s

is a point of Tdisk(o, r), and t is a point of Tdisk(o, r) and s 6= t. The functor
HC(s, t, o, r) yields a point of En

T and is defined as follows:

(Def. 3) HC(s, t, o, r) ∈ halfline(s, t) ∩ Sphere(o, r) and HC(s, t, o, r) 6= s.

In the sequel n is a non empty natural number and s, t, o are points of En
T.

We now state three propositions:
(6) If s is a point of Tdisk(o, r) and t is a point of Tdisk(o, r) and s 6= t,

then HC(s, t, o, r) is a point of Tcircle(o, r).
(7) Let S, T , O be elements of Rn. Suppose S = s and T = t and

O = o. Suppose s is a point of Tdisk(o, r) and t is a point of Tdisk(o, r)

and s 6= t and a = −|(t−s,s−o)|+
√
|(t−s,s−o)|2−

P
2(T−S)·(

P
2(S−O)−r2)P

2(T−S)
. Then

HC(s, t, o, r) = (1− a) · s + a · t.
(8) Let r1, r2, s1, s2 be real numbers and s, t, o be points of E2

T. Sup-
pose that s is a point of Tdisk(o, r) and t is a point of Tdisk(o, r) and
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s 6= t and r1 = t1 − s1 and r2 = t2 − s2 and s1 = s1 − o1 and

s2 = s2 − o2 and a = −(s1·r1+s2·r2)+
√

(s1·r1+s2·r2)2−(r1
2+r2

2)·((s1
2+s2

2)−r2)

r1
2+r2

2 .

Then HC(s, t, o, r) = [s1 + a · r1, s2 + a · r2].
Let n be a non empty natural number, let o be a point of En

T, let r be a non
negative real number, let x be a point of Tdisk(o, r), and let f be a map from
Tdisk(o, r) into Tdisk(o, r). Let us assume that x is not a fixpoint of f . The
functor HC(x, f) yielding a point of Tcircle(o, r) is defined as follows:

(Def. 4) There exist points y, z of En
T such that y = x and z = f(x) and

HC(x, f) = HC(z, y, o, r).
The following two propositions are true:

(9) Let x be a point of Tdisk(o, r) and f be a map from Tdisk(o, r) into
Tdisk(o, r). If x is not a fixpoint of f and x is a point of Tcircle(o, r), then
HC(x, f) = x.

(10) Let r be a positive real number, o be a point of E2
T, and Y be a non empty

subspace of Tdisk(o, r). If Y = Tcircle(o, r), then Y is not a retract of
Tdisk(o, r).

Let n be a non empty natural number, let r be a non negative real number,
let o be a point of En

T, and let f be a map from Tdisk(o, r) into Tdisk(o, r). The
functor BR-map f yielding a map from Tdisk(o, r) into Tcircle(o, r) is defined
as follows:

(Def. 5) For every point x of Tdisk(o, r) holds (BR-map f)(x) = HC(x, f).
The following propositions are true:

(11) Let o be a point of En
T, x be a point of Tdisk(o, r), and f be a map from

Tdisk(o, r) into Tdisk(o, r). If x is not a fixpoint of f and x is a point of
Tcircle(o, r), then (BR-map f)(x) = x.

(12) For every continuous map f from Tdisk(o, r) into Tdisk(o, r) such that
f has no fixpoint holds BR-map f�Sphere(o, r) = idTcircle(o,r).

(13) Let r be a positive real number, o be a point of E2
T, and f be a continuous

map from Tdisk(o, r) into Tdisk(o, r). If f has no fixpoint, then BR-map f

is continuous.
(14) For every non negative real number r and for every point o of E2

T holds
every continuous map from Tdisk(o, r) into Tdisk(o, r) has a fixpoint.

(15) Let r be a non negative real number, o be a point of E2
T, and f be

a continuous map from Tdisk(o, r) into Tdisk(o, r). Then there exists a
point x of Tdisk(o, r) such that f(x) = x.
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Summary. In this paper we define Stirling numbers of the second kind

by cardinality of certain functional classes so that

S(n, k) = {f where f is function of n, k : f is onto increasing}

After that we show basic properties of this number in order to prove recursive

dependence of Stirling number of the second kind. Consecutive theorems are

introduced to prove formula

S(n, k) =
1

k!

k−1

Σ
i=0

(−1)i

 
k

i

!
(k − i)n

where k ≤ n.

MML identifier: STIRL2 1, version: 7.5.01 4.39.921

The papers [18], [9], [21], [14], [23], [6], [24], [2], [3], [8], [10], [1], [22], [7], [11],
[20], [16], [19], [4], [5], [13], [12], [17], and [15] provide the terminology and
notation for this paper.

For simplicity, we adopt the following convention: k, l, m, n, i, j denote
natural numbers, K, N denote non empty subsets of N, K1, N1, M1 denote
subsets of N, and X, Y denote sets.

Let us consider k. Then {k} is a subset of N. Let us consider l. Then {k, l}
is a subset of N. Let us consider m. Then {k, l,m} is a non empty subset of N.

The following propositions are true:
(1) minN = min∗N.

(2) min(minK, minN) = min(K ∪N).
(3) min(min∗K1,min∗N1) ≤ min∗(K1 ∪N1).
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(4) If min∗N1 /∈ N1 ∩K1, then min∗N1 = min∗(N1 \K1).
(5) min∗{n} = n and min{n} = n.

(6) min∗{n, k} = min(n, k) and min{n, k} = min(n, k).
(7) min∗{n, k, l} = min(n, min(k, l)).
(8) n is a subset of N.

Let us consider n. One can verify that every element of n is natural.
We now state several propositions:

(9) If N ⊆ n, then n− 1 is a natural number.
(10) If k ∈ n, then k ≤ n− 1 and n− 1 is a natural number.
(11) min∗n = 0.

(12) If N ⊆ n, then min∗N ≤ n− 1.

(13) If N ⊆ n and N 6= {n− 1}, then min∗N < n− 1.

(14) If N1 ⊆ n and n > 0, then min∗N1 ≤ n− 1.

In the sequel f , g are functions from n into k.
Let us consider n, X, let f be a function from n into X, and let x be a set.

Then f−1(x) is a subset of N.
Let us consider X, k, let f be a function from X into k, and let x be a set.

Then f(x) is an element of k.
Let us consider X, N1, let f be a function from X into N1, and let x be a

set. One can verify that f(x) is natural.
Let us consider n, k and let f be a function from n into k. We say that f is

increasing if and only if:

(Def. 1) n = 0 iff k = 0 and for all l, m such that l ∈ rng f and m ∈ rng f and
l < m holds min∗(f−1({l})) < min∗(f−1({m})).

We now state several propositions:
(15) If n = 0 and k = 0, then f is onto and increasing.
(16) If n > 0, then min∗(f−1({m})) ≤ n− 1.

(17) If f is onto, then n ≥ k.

(18) If f is onto and increasing, then for every m such that m < k holds
m ≤ min∗(f−1({m})).

(19) If f is onto and increasing, then for every m such that m < k holds
min∗(f−1({m})) ≤ (n− k) + m.

(20) If f is onto and increasing and n = k, then f = idn.

(21) If f = idn and n > 0, then f is increasing.
(22) If n = 0 iff k = 0, then there exists a function from n into k which is

increasing.
(23) If n = 0 iff k = 0 and n ≥ k, then there exists a function from n into k

which is onto and increasing.
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The scheme Sch1 deals with natural numbers A, B and a unary predicate
P, and states that:

{f ; f ranges over functions from A into B : P[f ]} is finite
for all values of the parameters.

In the sequel f is a function from n into k.
One can prove the following propositions:

(24) For all n, k holds {f : f is onto and increasing} is finite.

(25) For all n, k holds {f : f is onto and increasing} is a natural number.
Let us consider n, k. The functor n block k yields a natural number and is

defined by:

(Def. 2) n block k = {f : f is onto and increasing} .

Next we state several propositions:
(26) n blockn = 1.

(27) If k 6= 0, then 0 block k = 0.

(28) 0 block k = 1 iff k = 0.

(29) If n < k, then n block k = 0.

(30) n block 0 = 1 iff n = 0.

(31) If n 6= 0, then n block 0 = 0.

(32) If n 6= 0, then n block 1 = 1.

(33) 1 ≤ k and k ≤ n or k = n iff n block k > 0.

In the sequel x, y denote sets.
Now we present three schemes. The scheme Sch2 deals with sets A, B, C,

D, a function E from A into B, and a unary functor F yielding a set, and states
that:

There exists a function h from C into D such that h�A = E and
for every x such that x ∈ C \ A holds h(x) = F(x)

provided the parameters satisfy the following conditions:
• For every x such that x ∈ C \ A holds F(x) ∈ D,

• A ⊆ C and B ⊆ D, and
• If B is empty, then A is empty.

The scheme Sch3 deals with sets A, B, C, D, a unary functor F yielding a
set, and a ternary predicate P, and states that:
{f ; f ranges over functions from A into B :P[f,A,B]} =
{f ; f ranges over functions from C into D :P[f, C,D]
∧ rng(f�A) ⊆ B ∧

∧
x (x ∈ C \ A ⇒ f(x) = F(x))}

provided the following requirements are met:
• For every x such that x ∈ C \ A holds F(x) ∈ D,

• A ⊆ C and B ⊆ D,

• If B is empty, then A is empty, and
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• Let f be a function from C into D. Suppose that for every x such
that x ∈ C \ A holds F(x) = f(x). Then P[f, C,D] if and only if
P[f�A,A,B].

The scheme Sch4 deals with sets A, B, C, D and a ternary predicate P, and
states that:

{f ; f ranges over functions from A into B : P[f,A,B]} =
{f ; f ranges over functions from A ∪ {C} into B ∪ {D} :
P[f,A ∪ {C},B ∪ {D}] ∧ rng(f�A) ⊆ B ∧ f(C) = D}

provided the parameters meet the following conditions:
• If B is empty, then A is empty,
• C /∈ A, and
• For every function f from A∪{C} into B∪{D} such that f(C) = D

holds P[f,A ∪ {C},B ∪ {D}] iff P[f�A,A,B].
We now state several propositions:

(34) For every function f from n + 1 into k + 1 such that f is onto and
increasing and f−1({f(n)}) = {n} holds f(n) = k.

(35) For every function f from n+1 into k such that k 6= 0 and f−1({f(n)}) 6=
{n} there exists m such that m ∈ f−1({f(n)}) and m 6= n.

(36) Let f be a function from n into k and g be a function from n + m into
k + l. Suppose g is increasing and f = g�n. Let given i, j. If i ∈ rng f and
j ∈ rng f and i < j, then min∗(f−1({i})) < min∗(f−1({j})).

(37) Let f be a function from n+1 into k+1. Suppose f is onto and increasing
and f−1({f(n)}) = {n}. Then rng(f�n) ⊆ k and for every function g from
n into k such that g = f�n holds g is onto and increasing.

(38) Let f be a function from n + 1 into k and g be a function from n into
k. Suppose f is onto and increasing and f−1({f(n)}) 6= {n} and f�n = g.

Then g is onto and increasing.
(39) Let f be a function from n into k and g be a function from n + 1 into

k + m. Suppose f is onto and increasing and f = g�n. Let given i, j. If
i ∈ rng g and j ∈ rng g and i < j, then min∗(g−1({i})) < min∗(g−1({j})).

(40) Let f be a function from n into k and g be a function from n + 1 into
k + 1. Suppose f is onto and increasing and f = g�n and g(n) = k. Then
g is onto and increasing and g−1({g(n)}) = {n}.

(41) Let f be a function from n into k and g be a function from n + 1 into
k. Suppose f is onto and increasing and f = g�n and g(n) < k. Then g is
onto and increasing and g−1({g(n)}) 6= {n}.

In the sequel f1 denotes a function from n + 1 into k + 1 and f denotes a
function from n into k.

We now state the proposition

(42) {f1 : f1 is onto and increasing ∧ f1
−1({f1(n)}) = {n}} =
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{f : f is onto and increasing} .

In the sequel f ′ is a function from n + 1 into k.
The following proposition is true

(43) For every l such that l < k holds
{f ′ : f ′ is onto and increasing ∧ f ′−1({f ′(n)}) 6= {n} ∧ f ′(n) = l} =
{f : f is onto and increasing} .

For simplicity, we adopt the following convention: D denotes a non empty
set, F , G denote finite 0-sequences of D, F1 denotes a finite 0-sequence of N, b

denotes a binary operation on D, and d, d1, d2 denote elements of D.
Let us consider D, F , b. Let us assume that b has a unity or lenF ≥ 1. The

functor b� F yielding an element of D is defined as follows:
(Def. 3)(i) b� F = 1b if b has a unity and lenF = 0,

(ii) there exists a function f from N into D such that f(0) = F (0) and for
every n such that n + 1 < lenF holds f(n + 1) = b(f(n), F (n + 1)) and
b� F = f(lenF − 1), otherwise.

One can prove the following three propositions:
(44) b� 〈d〉 = d.

(45) If b has a unity or lenF > 0, then b� F a 〈d〉 = b(b� F, d).
(46) If F 6= 〈〉D, then there exist G, d such that F = G a 〈d〉.

The scheme Sch5 deals with a non empty set A and a unary predicate P,

and states that:
For every finite 0-sequence F of A holds P[F ]

provided the parameters satisfy the following conditions:
• P[〈〉A], and
• For every finite 0-sequence F of A and for every element d of A

such that P[F ] holds P[F a 〈d〉].
Next we state the proposition

(47) If b is associative and if b has a unity or lenF ≥ 1 and lenG ≥ 1, then
b� F a G = b(b� F, b�G).

Let us consider D and let us consider d, d1. Then 〈d, d1〉 is a finite 0-sequence
of D. Let us consider d2. Then 〈d, d1, d2〉 is a finite 0-sequence of D.

The following propositions are true:
(48) b� 〈d1, d2〉 = b(d1, d2).
(49) b� 〈d, d1, d2〉 = b(b(d, d1), d2).

Let us consider F1. The functor
∑

F1 yields a natural number and is defined
by:

(Def. 4)
∑

F1 = +N � F1.

Let us consider F1, x. Then F1(x) is a natural number.
One can prove the following propositions:
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(50) If for every n such that n ∈ dom F1 holds F1(n) ≤ k, then
∑

F1 ≤
lenF1 · k.

(51) If for every n such that n ∈ dom F1 holds F1(n) ≥ k, then
∑

F1 ≥
lenF1 · k.

(52) If lenF1 > 0 and there exists x such that x ∈ dom F1 and F1(x) = k,

then
∑

F1 ≥ k.

(53)
∑

F1 = 0 iff lenF1 = 0 or for every n such that n ∈ dom F1 holds
F1(n) = 0.

(54) For every function f and for every n holds
⋃

rng(f�n) ∪ f(n) =⋃
rng(f�(n + 1)).

Now we present three schemes. The scheme Sch6 deals with a non empty
set A, a natural number B, and a binary predicate P, and states that:

There exists a finite 0-sequence p of A such that dom p = B and
for every k such that k ∈ B holds P[k, p(k)]

provided the parameters have the following property:
• For every k such that k ∈ B there exists an element x of A such

that P[k, x].
The scheme Sch7 deals with a non empty set A and a finite 0-sequence B of

A, and states that:
There exists a finite 0-sequence C1 of N such that dom C1 = domB
and for every i such that i ∈ dom C1 holds C1(i) = B(i) and⋃

rngB =
∑

C1

provided the following requirements are met:
• For every i such that i ∈ domB holds B(i) is finite, and
• For all i, j such that i ∈ domB and j ∈ domB and i 6= j holds
B(i) misses B(j).

The scheme Sch8 deals with finite sets A, B, a set C, a function D from
cardB into B, and a unary predicate P, and states that:

There exists a finite 0-sequence F of N such that
(i) domF = cardB,

(ii) {g; g ranges over functions from A into B :P[g]} =
∑

F,

and
(iii) for every i such that i ∈ dom F holds F (i) =
{g; g ranges over functions from A into B :P[g] ∧ g(C) = D(i)}

provided the parameters have the following properties:
• D is onto and one-to-one,
• B is non empty, and
• C ∈ A.

One can prove the following propositions:

(55) k·(n block k) = {f ′ : f ′ is onto and increasing ∧ f ′−1({f ′(n)}) 6= {n}} .
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(56) (n + 1) block(k + 1) = (k + 1) · (n block(k + 1)) + (n block k).
(57) If n ≥ 1, then n block 2 = 1

2 · (2
n − 2).

(58) If n ≥ 2, then n block 3 = 1
6 · ((3

n − 3 · 2n) + 3).
(59) If n ≥ 3, then n block 4 = 1

24 · (((4
n − 4 · 3n) + 6 · 2n)− 4).

(60) 3! = 6 and 4! = 24.

(61)
(
n
1

)
= n and

(
n
2

)
= n·(n−1)

2 and
(
n
3

)
= n·(n−1)·(n−2)

6 and
(
n
4

)
=

n·(n−1)·(n−2)·(n−3)
24 .

(62) (n + 1) block n =
(
n+1

2

)
.

(63) (n + 2) block n = 3 ·
(
n+2

4

)
+

(
n+2

3

)
.

(64) For every function F and for every y holds rng(F �(dom F \F−1({y}))) =
rng F \ {y} and for every x such that x 6= y holds (F �(dom F \
F−1({y})))−1({x}) = F−1({x}).

(65) If X = k + 1 and x ∈ X, then X \ {x} = k.

The scheme Sch9 concerns a unary predicate P and a binary predicate Q,

and states that:
For every function F such that rng F is finite holds P[F ]

provided the following conditions are met:
• P[∅], and
• For every function F such that for every x such that x ∈ rng F

and Q[x, F ] holds P[F �(dom F \ F−1({x}))] holds P[F ].
We now state several propositions:

(66) For every subset N of N such that N is finite there exists k such that
for every n such that n ∈ N holds n ≤ k.

(67) Let given X, Y , x, y. Suppose if Y is empty, then X is empty and
x /∈ X. Let F be a function from X into Y . Then there exists a function
G from X ∪ {x} into Y ∪ {y} such that G�X = F and G(x) = y.

(68) Let given X, Y , x, y such that if Y is empty, then X is empty. Let F be
a function from X into Y and G be a function from X ∪ {x} into Y ∪ {y}
such that G�X = F and G(x) = y. Then

(i) if F is onto, then G is onto, and
(ii) if y /∈ Y and F is one-to-one, then G is one-to-one.

(69) Let N be a finite subset of N. Then there exists a function O1 from N

into cardN such that O1 is bijective and for all n, k such that n ∈ dom O1

and k ∈ dom O1 and n < k holds O1(n) < O1(k).
(70) Let X, Y be finite sets and F be a function from X into Y . If card X =

cardY, then F is onto iff F is one-to-one.
(71) Let F , G be functions and given y. Suppose y ∈ rng(G · F ) and G is

one-to-one. Then there exists x such that x ∈ dom G and x ∈ rng F and
G−1({y}) = {x} and F−1({x}) = (G · F )−1({y}).
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Let us consider N1, K1 and let f be a function from N1 into K1. We say
that f is increasing if and only if:

(Def. 5) For all l, m such that l ∈ rng f and m ∈ rng f and l < m holds
min∗(f−1({l})) < min∗(f−1({m})).

The following four propositions are true:
(72) For every function F from N1 into K1 such that F is increasing holds

min∗ rng F = F (min∗ dom F ).
(73) Let F be a function from N1 into K1. Suppose rng F is finite. Then

there exists a function I from N1 into K1 and there exists a permutation
P of rng F such that F = P · I and rng F = rng I and I is increasing.

(74) Let F be a function from N1 into K1. Suppose rng F is finite. Let I1, I2

be functions from N1 into M1 and P1, P2 be functions. Suppose that P1 is
one-to-one and P2 is one-to-one and rng I1 = rng I2 and rng I1 = dom P1

and dom P1 = dom P2 and F = P1 · I1 and F = P2 · I2 and I1 is increasing
and I2 is increasing. Then P1 = P2 and I1 = I2.

(75) Let F be a function from N1 into K1. Suppose rng F is finite. Let I1,
I2 be functions from N1 into K1 and P1, P2 be permutations of rng F.

Suppose F = P1 ·I1 and F = P2 ·I2 and rng F = rng I1 and rng F = rng I2

and I1 is increasing and I2 is increasing. Then P1 = P2 and I1 = I2.
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[8] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[9] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[10] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[11] Agata Darmochwa l and Andrzej Trybulec. Similarity of formulae. Formalized Mathemat-

ics, 2(5):635–642, 1991.
[12] Rafa l Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,

1990.
[13] Library Committee of the Association of Mizar Users. Binary operations on numbers. To

appear in Formalized Mathematics.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[16] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[17] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,

1(2):369–376, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.



stirling numbers of the second kind 345
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The notation and terminology used here are introduced in the following papers:
[9], [1], [13], [2], [10], [6], [11], [4], [12], [14], [8], [7], [3], and [5].

For simplicity, we adopt the following rules: n, m, k, k1, k2 denote natural
numbers, x, X, Y , Z denote sets, A denotes a subset of X, B, A1, A2, A3 denote
sequences of subsets of X, S1 denotes a σ-field of subsets of X, and S, S2, S3,
S4 denote sequences of subsets of S1.

Next we state a number of propositions:
(1) For every function f from N into Y and for every n holds {f(k) : n ≤

k} 6= ∅.
(2) For every function f from N into Y holds f(n + m) ∈ {f(k) : n ≤ k}.
(3) For every function f from N into Y holds {f(k1) : n ≤ k1} = {f(k2) :

n + 1 ≤ k2} ∪ {f(n)}.
(4) Let f be a function from N into Y . Then for every k1 holds x ∈ f(n+k1)

if and only if for every Z such that Z ∈ {f(k2) : n ≤ k2} holds x ∈ Z.

(5) For every non empty set Y and for every function f from N into Y holds
x ∈ rng f iff there exists n such that x = f(n).

(6) For every non empty set Y and for every function f from N into Y holds
rng f = {f(k)}.
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(7) For every non empty set Y and for every function f from N into Y holds
rng(f ↑ k) = {f(n) : k ≤ n}.

(8) x ∈
⋂

rng B iff for every n holds x ∈ B(n).
(9) Intersection B =

⋂
rng B.

(10) Intersection B ⊆
⋃

B.

(11) If for every n holds B(n) = A, then
⋃

B = A.

(12) If for every n holds B(n) = A, then IntersectionB = A.

(13) If B is constant, then
⋃

B = Intersection B.

(14) If B is constant and the value of B = A, then for every n holds
⋃
{B(k) :

n ≤ k} = A.

(15) If B is constant and the value of B = A, then for every n holds
⋂
{B(k) :

n ≤ k} = A.

(16) Let given X, B and f be a function. Suppose dom f = N and for every
n holds f(n) =

⋂
{B(k) : n ≤ k}. Then f is a sequence of subsets of X.

(17) Let X be a set, B be a sequence of subsets of X, and f be a function.
Suppose dom f = N and for every n holds f(n) =

⋃
{B(k) : n ≤ k}. Then

f is a function from N into 2X .
Let us consider X, B. We say that B is monotone if and only if:

(Def. 1) B is non-decreasing or non-increasing.
Let B be a function. The inferior setsequence B yields a function and is

defined by the conditions (Def. 2).
(Def. 2)(i) dom (the inferior setsequence B) = N, and

(ii) for every n holds (the inferior setsequence B)(n) =
⋂
{B(k) : n ≤ k}.

Let X be a set and let B be a sequence of subsets of X. Then the inferior
setsequence B is a sequence of subsets of X.

Let B be a function. The superior setsequence B yields a function and is
defined by the conditions (Def. 3).

(Def. 3)(i) dom (the superior setsequence B) = N, and
(ii) for every n holds (the superior setsequence B)(n) =

⋃
{B(k) : n ≤ k}.

Let X be a set and let B be a sequence of subsets of X. Then the superior
setsequence B is a sequence of subsets of X.

Next we state several propositions:
(18) (The inferior setsequence B)(0) = IntersectionB.

(19) (The superior setsequence B)(0) =
⋃

B.

(20) x ∈ (the inferior setsequence B)(n) iff for every k holds x ∈ B(n + k).
(21) x ∈ (the superior setsequence B)(n) iff there exists k such that x ∈

B(n + k).
(22) (The inferior setsequence B)(n) = (the inferior setsequence B)(n + 1) ∩

B(n).
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(23) (The superior setsequence B)(n) = (the superior setsequence B)(n+1)∪
B(n).

(24) The inferior setsequence B is non-decreasing.
(25) The superior setsequence B is non-increasing.
(26) The inferior setsequence B is monotone and the superior setsequence B

is monotone.

Let X be a set and let A be a sequence of subsets of X. Observe that the
inferior setsequence A is non-decreasing.

Let X be a set and let A be a sequence of subsets of X. Observe that the
superior setsequence A is non-increasing.

The following propositions are true:
(27) Intersection B ⊆ (the inferior setsequence B)(n).
(28) (The superior setsequence B)(n) ⊆

⋃
B.

(29) For all B, n holds {B(k) : n ≤ k} is a family of subsets of X.
(30)

⋃
B = (Intersection Complement B)c.

(31) (The inferior setsequence B)(n) = (the superior setsequence
ComplementB)(n)c.

(32) (The superior setsequence B)(n) = (the inferior setsequence
ComplementB)(n)c.

(33) Complement (the inferior setsequence B) = the superior setsequence
ComplementB.

(34) Complement (the superior setsequence B) = the inferior setsequence
ComplementB.

(35) Suppose that for every n holds A3(n) = A1(n)∪A2(n). Let given n. Then
(the inferior setsequence B)(n) ∪ (the inferior setsequence A2)(n) ⊆ (the
inferior setsequence A3)(n).

(36) Suppose that for every n holds A3(n) = A1(n)∩A2(n). Let given n. Then
(the inferior setsequence A3)(n) = (the inferior setsequence A1)(n) ∩ (the
inferior setsequence A2)(n).

(37) Suppose that for every n holds A3(n) = A1(n)∪A2(n). Let given n. Then
(the superior setsequence A3)(n) = (the superior setsequence A1)(n)∪(the
superior setsequence A2)(n).

(38) Suppose that for every n holds A3(n) = A1(n)∩A2(n). Let given n. Then
(the superior setsequence A3)(n) ⊆ (the superior setsequence A1)(n)∩(the
superior setsequence A2)(n).

(39) If B is constant and the value of B = A, then for every n holds (the
inferior setsequence B)(n) = A.

(40) If B is constant and the value of B = A, then for every n holds (the
superior setsequence B)(n) = A.



350 bo zhang et al.

(41) If B is non-decreasing, then B(n) ⊆ (the superior setsequence B)(n+1).
(42) If B is non-decreasing, then (the superior setsequence B)(n) = (the

superior setsequence B)(n + 1).
(43) If B is non-decreasing, then (the superior setsequence B)(n) =

⋃
B.

(44) If B is non-decreasing, then Intersection (the superior setsequence B) =⋃
B.

(45) If B is non-decreasing, then B(n) ⊆ (the inferior setsequence B)(n + 1).
(46) If B is non-decreasing, then (the inferior setsequence B)(n) = B(n).
(47) If B is non-decreasing, then the inferior setsequence B = B.

(48) If B is non-increasing, then (the superior setsequence B)(n+1) ⊆ B(n).
(49) If B is non-increasing, then (the superior setsequence B)(n) = B(n).
(50) If B is non-increasing, then the superior setsequence B = B.

(51) If B is non-increasing, then (the inferior setsequence B)(n + 1) ⊆ B(n).
(52) If B is non-increasing, then (the inferior setsequence B)(n) = (the infe-

rior setsequence B)(n + 1).
(53) If B is non-increasing, then (the inferior setsequence B)(n) =

IntersectionB.

(54) If B is non-increasing, then
⋃

(the inferior setsequence B) =
IntersectionB.

Let X be a set and let B be a sequence of subsets of X. Then lim inf B can
be characterized by the condition:

(Def. 4) lim inf B =
⋃

(the inferior setsequence B).
Let X be a set and let B be a sequence of subsets of X. Then lim supB can

be characterized by the condition:
(Def. 5) lim supB = Intersection (the superior setsequence B).

Let X be a set and let B be a sequence of subsets of X. We introduce lim B

as a synonym of lim supB.

Next we state a number of propositions:
(55) Intersection B ⊆ lim inf B.

(56) lim inf B = lim (the inferior setsequence B).
(57) lim supB = lim (the superior setsequence B).
(58) lim supB = (lim inf Complement B)c.
(59) If B is constant and the value of B = A, then B is convergent and

lim B = A and lim inf B = A and lim supB = A.

(60) If B is non-decreasing, then lim supB =
⋃

B.

(61) If B is non-decreasing, then lim inf B =
⋃

B.

(62) If B is non-increasing, then lim supB = IntersectionB.

(63) If B is non-increasing, then lim inf B = Intersection B.
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(64) If B is non-decreasing, then B is convergent and lim B =
⋃

B.

(65) If B is non-increasing, then B is convergent and lim B = Intersection B.

(66) If B is monotone, then B is convergent.
Let X be a set, let S1 be a σ-field of subsets of X, and let S be a sequence

of subsets of S1. Let us observe that S is constant if and only if:
(Def. 6) There exists an element A of S1 such that for every n holds S(n) = A.

Let X be a set, let S1 be a σ-field of subsets of X, and let S be a sequence
of subsets of S1. Then the inferior setsequence S is a sequence of subsets of S1.

Let X be a set, let S1 be a σ-field of subsets of X, and let S be a sequence
of subsets of S1. Then the superior setsequence S is a sequence of subsets of S1.

The following propositions are true:
(67) x ∈ lim supS iff for every n there exists k such that x ∈ S(n + k).
(68) x ∈ lim inf S iff there exists n such that for every k holds x ∈ S(n + k).
(69) Intersection S ⊆ lim inf S.

(70) lim supS ⊆
⋃

S.

(71) lim inf S ⊆ lim supS.

Let X be a set, let S1 be a σ-field of subsets of X, and let S be a sequence of
subsets of S1. The functor Sc yields a sequence of subsets of S1 and is defined
by:

(Def. 7) Sc = Complement S.

Next we state a number of propositions:
(72) lim inf S = (lim sup(Sc))c.
(73) lim supS = (lim inf(Sc))c.
(74) If for every n holds S4(n) = S2(n)∪ S3(n), then lim inf S2 ∪ lim inf S3 ⊆

lim inf S4.

(75) If for every n holds S4(n) = S2(n)∩ S3(n), then lim inf S4 = lim inf S2 ∩
lim inf S3.

(76) If for every n holds S4(n) = S2(n)∪S3(n), then lim supS4 = lim supS2∪
lim supS3.

(77) If for every n holds S4(n) = S2(n)∩S3(n), then lim supS4 ⊆ lim supS2∩
lim supS3.

(78) If S is constant and the value of S = A, then S is convergent and
lim S = A and lim inf S = A and lim supS = A.

(79) If S is non-decreasing, then lim supS =
⋃

S.

(80) If S is non-decreasing, then lim inf S =
⋃

S.

(81) If S is non-decreasing, then S is convergent and lim S =
⋃

S.

(82) If S is non-increasing, then lim supS = Intersection S.

(83) If S is non-increasing, then lim inf S = IntersectionS.
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(84) If S is non-increasing, then S is convergent and lim S = IntersectionS.

(85) If S is monotone, then S is convergent.
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Summary. We formalized the article “New concepts in the theory of

topological space – supercondensed set, subcondensed set, and condensed set”

by Yoshinori Isomichi [4]. First we defined supercondensed, subcondensed, and

condensed sets and then gradually, defining other attributes such as regular open

set or regular closed set, we formalized all the theorems and remarks that one

can find in Isomichi’s article.

In the last section, the classification of subsets of a topological space is given,

depending on the inclusion relation between the interior of the closure and the

closure of the interior of a given subset.
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The notation and terminology used in this paper are introduced in the following
papers: [10], [11], [1], [6], [8], [9], [7], [12], [2], [3], and [5].

1. Preliminaries

In this paper T denotes a topological space and A, B denote subsets of T .
Let D be a non trivial set. Note that ADTS(D) is non trivial.
One can check that there exists a topological space which is anti-discrete,

non trivial, non empty, and strict.
One can prove the following propositions:

1This work has been partially supported by the KBN grant 4 T11C 039 24 and the FP6

IST grant TYPES No. 510996.
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(1) Int IntA ∩ Int IntB = Int Int(A ∩B).

(2) IntA ∪B = IntA ∪ IntB.

2. Connections between Supercondensed, Condensed, and

Subcondensed Sets

Let T be a topological structure and let A be a subset of T . We say that A

is supercondensed if and only if:

(Def. 1) Int A = Int A.

We say that A is subcondensed if and only if:

(Def. 2) IntA = A.

Next we state two propositions:

(3) If A is closed, then A is supercondensed.

(4) If A is open, then A is subcondensed.

Let T be a topological space and let A be a subset of T . Let us observe that
A is condensed if and only if:

(Def. 3) IntA = A and Int A = Int A.

We now state the proposition

(5) A is condensed iff A is subcondensed and supercondensed.

Let T be a topological space. One can verify that every subset of T which
is condensed is also subcondensed and supercondensed and every subset of T

which is subcondensed and supercondensed is also condensed.
Let T be a topological space. Observe that there exists a subset of T which

is condensed, subcondensed, and supercondensed.
One can prove the following propositions:

(6) If A is supercondensed, then Ac is subcondensed.

(7) If A is subcondensed, then Ac is supercondensed.

(8) A is supercondensed iff IntA ⊆ A.

(9) A is subcondensed iff A ⊆ IntA.

Let T be a topological space. Note that every subset of T which is sub-
condensed is also semi-open and every subset of T which is semi-open is also
subcondensed.

We now state the proposition

(10) A is condensed iff Int A ⊆ A and A ⊆ IntA.
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3. Regular Open and Regular Closed Sets

Let T be a topological structure and let A be a subset of T . We introduce
A is regular open as a synonym of A is open condensed.

Let T be a topological structure and let A be a subset of T . We introduce
A is regular closed as a synonym of A is closed condensed.

The following proposition is true
(11) For every topological space T holds ΩT is regular open and ΩT is regular

closed.
Let T be a topological space. Note that ΩT is regular open and regular

closed.
We now state the proposition

(12) For every topological space X holds ∅X is regular open and ∅X is regular
closed.

Let T be a topological space. One can verify that ∅T is regular open and
regular closed.

The following propositions are true:
(14)2 Int ∅T = ∅T .

(15) If A is regular open, then Ac is regular closed.
Let T be a topological space. Observe that there exists a subset of T which

is regular open and regular closed.
Let T be a topological space and let A be a regular open subset of T . Observe

that Ac is regular closed.
One can prove the following proposition

(16) If A is regular closed, then Ac is regular open.
Let T be a topological space and let A be a regular closed subset of T . One

can check that Ac is regular open.
Let T be a topological space. Note that every subset of T which is regular

open is also open and every subset of T which is regular closed is also closed.
Next we state the proposition

(17) Int A is regular open and IntA is regular closed.
Let T be a topological space and let A be a subset of T . Observe that Int A

is regular open and IntA is regular closed.
Next we state two propositions:

(18) A is regular open iff A is supercondensed and open.
(19) A is regular closed iff A is subcondensed and closed.

Let T be a topological space. One can check the following observations:
∗ every subset of T which is regular open is also condensed and open,

2The proposition (13) has been removed.
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∗ every subset of T which is condensed and open is also regular open,
∗ every subset of T which is regular closed is also condensed and closed,

and
∗ every subset of T which is condensed and closed is also regular closed.
One can prove the following two propositions:

(20) A is condensed iff there exists B such that B is regular open and B ⊆ A

and A ⊆ B.

(21) A is condensed iff there exists B such that B is regular closed and Int B ⊆
A and A ⊆ B.

4. Boundaries and Borders

Let T be a topological structure and let A be a subset of T . We introduce
Bound A as a synonym of FrA.

Let T be a topological structure and let A be a subset of T . Then Fr A can
be characterized by the condition:

(Def. 4) FrA = A \ IntA.

One can prove the following proposition
(22) FrA is closed.

Let T be a topological space and let A be a subset of T . Observe that FrA

is closed.
One can prove the following proposition

(23) A is condensed iff FrA = IntA \ IntA and FrA = IntA ∩ Int(Ac).
Let T be a topological structure and let A be a subset of T . The functor

BorderA yields a subset of T and is defined by:
(Def. 5) Border A = Int Fr A.

One can prove the following proposition
(24) Border A is regular open and BorderA = Int A \ IntA and BorderA =

IntA ∩ IntAc.

Let T be a topological space and let A be a subset of T . One can verify that
BorderA is regular open.

One can prove the following two propositions:
(25) A is supercondensed iff IntA is regular open and Border A is empty.
(26) A is subcondensed iff A is regular closed and BorderA is empty.

Let T be a topological space and let A be a subset of T . One can verify that
BorderBorder A is empty.

The following proposition is true
(27) A is condensed iff Int A is regular open and A is regular closed and

BorderA is empty.
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5. Auxiliary Theorems about Intervals

Next we state a number of propositions:
(28) For every subset A of R1 and for every real number a such that A =

]−∞, a] holds IntA = ]−∞, a[.
(29) For every subset A of R1 and for every real number a such that A =

[a,+∞[ holds IntA = ]a,+∞[.
(30) For every subset A of R1 and for all real numbers a, b such that A =

]−∞, a]∪]a, b[IQ ∪ [b, +∞[ holds A = the carrier of R1.
(31) For every subset A of R1 and for all real numbers a, b such that A =]a, b[Q

holds IntA = ∅.
(32) For every subset A of R1 and for all real numbers a, b such that A =

]a, b[IQ holds IntA = ∅.
(33) For all real numbers a, b holds ]−∞, a] \ ]−∞, b[ = [b, a].
(34) For all real numbers a, b such that a < b holds [b, +∞[ misses ]−∞, a[.
(35) For all real numbers a, b such that a ≥ b holds ]a, b[IQ = ∅.
(36) For all real numbers a, b holds ]a, b[IQ ⊆ [a,+∞[.
(37) For every subset A of R1 and for all real numbers a, b, c such that

A = ]−∞, a[∪]b, c[Q and a < b and b < c holds IntA = ]−∞, a[.
(38) For all real numbers a, b holds [a, b] misses ]b, +∞[.
(39) For every real number b holds [b, +∞[ \ ]b, +∞[ = {b}.
(40) For all real numbers a, b such that a < b holds [a, b] = [a,+∞[ \ ]b, +∞[.
(41) For all real numbers a, b such that a < b holds R = ]−∞, a[ ∪ [a, b] ∪

]b, +∞[.
(42) For all real numbers a, b holds ]a, b[ = ]a,+∞[ \ [b, +∞[.
(43) For all real numbers a, b, c such that b < c and c < a holds ]−∞, a[ \

[b, c] = ]−∞, b[ ∪ ]c, a[.
(44) For every subset A of R1 and for all real numbers a, b, c such that

A = ]−∞, a] ∪ [b, c] and a < b and b < c holds IntA = ]−∞, a[ ∪ ]b, c[.

6. Classification of Subsets

Let A, B be sets. We introduce A and B are ⊆-incomparable as an antonym
of A and B are ⊆-comparable.

We now state the proposition
(45) For all sets A, B holds A and B are ⊆-incomparable or A ⊆ B or B ⊂ A.

Let us consider T , A. We say that A is of the 1st class if and only if:
(Def. 6) Int A ⊆ IntA.
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We say that A is of the 2nd class if and only if:
(Def. 7) IntA ⊂ IntA.

We say that A is of the 3rd class if and only if:
(Def. 8) IntA and Int A are ⊆-incomparable.

The following proposition is true
(46) A is of the 1st class, or of the 2nd class, or of the 3rd class.

Let T be a topological space. One can verify the following observations:
∗ every subset of T which is of the 1st class is also non of the 2nd class and

non of the 3rd class,
∗ every subset of T which is of the 2nd class is also non of the 1st class and

non of the 3rd class, and
∗ every subset of T which is of the 3rd class is also non of the 1st class and

non of the 2nd class.
One can prove the following proposition

(47) A is of the 1st class iff BorderA is empty.
Let T be a topological space. Note that every subset of T which is super-

condensed is also of the 1st class and every subset of T which is subcondensed
is also of the 1st class.

Let T be a topological space. We say that T has subsets of the 1st class if
and only if:

(Def. 9) There exists a subset of T which is of the 1st class.
We say that T has subsets of the 2nd class if and only if:

(Def. 10) There exists a subset of T which is of the 2nd class.
We say that T has subsets of the 3rd class if and only if:

(Def. 11) There exists a subset of T which is of the 3rd class.
Let T be an anti-discrete non empty topological space. Note that every

subset of T which is proper and non empty is also of the 2nd class.
Let T be an anti-discrete non trivial non empty strict topological space.

Observe that there exists a subset of T which is of the 2nd class.
One can verify that there exists a topological space which is non empty,

strict, and non trivial and has subsets of the 1st class and subsets of the 2nd

class and there exists a topological space which is non empty and strict and has
subsets of the 3rd class.

Let us consider T . Observe that there exists a subset of T which is of the
1st class.

Let T be a topological space with subsets of the 2nd class. One can verify
that there exists a subset of T which is of the 2nd class.

Let T be a topological space with subsets of the 3rd class. Observe that
there exists a subset of T which is of the 3rd class.



the properties of supercondensed sets, . . . 359

The following propositions are true:
(48) A is of the 1st class iff Ac is of the 1st class.
(49) A is of the 2nd class iff Ac is of the 2nd class.
(50) A is of the 3rd class iff Ac is of the 3rd class.

Let us consider T and let A be an of the 1st class subset of T . Observe that
Ac is of the 1st class.

Let T be a topological space with subsets of the 2nd class and let A be an
of the 2nd class subset of T . Note that Ac is of the 2nd class.

Let T be a topological space with subsets of the 3rd class and let A be an of
the 3rd class subset of T . Note that Ac is of the 3rd class.

Next we state four propositions:
(51) If A is of the 1st class, then IntA = Int IntA and IntA = IntA.

(52) If Int A = Int IntA or IntA = IntA, then A is of the 1st class.
(53) Suppose A is of the 1st class and B is of the 1st class. Then IntA∩IntB =

IntA ∩B and IntA ∪ IntB = Int(A ∪B).
(54) Suppose A is of the 1st class and B is of the 1st class. Then A ∪B is of

the 1st class and A ∩B is of the 1st class.
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