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Summary. This is the next article in a series devoted to the homotopy
theory (following [11] and [12]). The concept of fundamental groups of pointed
topological spaces has been introduced. Isomorphism of fundamental groups de-
fined with respect to different points belonging to the same component has been
stated. Triviality of fundamental group(s) of R

n has been shown.

MML Identifier: TOPALG 1.

The articles [22], [7], [26], [27], [19], [4], [6], [5], [28], [2], [21], [1], [18], [20], [16],

[8], [3], [15], [13], [17], [29], [9], [14], [24], [23], [10], [11], [25], and [12] provide

the terminology and notation for this paper.

1. Preliminaries

We adopt the following convention: p, q, x, y are real numbers and n is a

natural number.

Next we state a number of propositions:

(1) Let G, H be groups and h be a homomorphism from G to H. If h ·h−1 =

idH and h−1 · h = idG, then h is an isomorphism.

(2) For every subset X of I and for every point a of I such that X = ]a, 1]

holds Xc = [0, a].

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan.
2This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-

00102 and KBN grant 4 T11C 039 24.
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(3) For every subset X of I and for every point a of I such that X = [0, a[

holds Xc = [a, 1].

(4) For every subset X of I and for every point a of I such that X = ]a, 1]

holds X is open.

(5) For every subset X of I and for every point a of I such that X = [0, a[

holds X is open.

(6) For every element f of Rn holds x · −f = −x · f.

(7) For all elements f , g of Rn holds x · (f − g) = x · f − x · g.

(8) For every element f of Rn holds (x− y) · f = x · f − y · f.

(9) For all elements f , g, h, k of Rn holds (f +g)−(h+k) = (f−h)+(g−k).

(10) For every element f of Rn such that 0 ¬ x and x ¬ 1 holds |x · f | ¬ |f |.

(11) For every element f of Rn and for every point p of I holds |p · f | ¬ |f |.

(12) Let e1, e2, e3, e4, e5, e6 be points of E
n and p1, p2, p3, p4 be points of E

n
T.

Suppose e1 = p1 and e2 = p2 and e3 = p3 and e4 = p4 and e5 = p1+p3 and

e6 = p2 + p4 and ρ(e1, e2) < x and ρ(e3, e4) < y. Then ρ(e5, e6) < x + y.

(13) Let e1, e2, e5, e6 be points of E
n and p1, p2 be points of E

n
T. If e1 = p1

and e2 = p2 and e5 = y · p1 and e6 = y · p2 and ρ(e1, e2) < x and y 6= 0,

then ρ(e5, e6) < |y| · x.

(14) Let e1, e2, e3, e4, e5, e6 be points of E
n and p1, p2, p3, p4 be points of E

n
T.

Suppose e1 = p1 and e2 = p2 and e3 = p3 and e4 = p4 and e5 = x·p1+y ·p3

and e6 = x · p2 + y · p4 and ρ(e1, e2) < p and ρ(e3, e4) < q and x 6= 0 and

y 6= 0. Then ρ(e5, e6) < |x| · p + |y| · q.

(16)3 Let X be a non empty topological space and f , g be maps from X into

En
T. Suppose f is continuous and for every point p ofX holds g(p) = y·f(p).

Then g is continuous.

(17) Let X be a non empty topological space and f1, f2, g be maps from X

into En
T. Suppose f1 is continuous and f2 is continuous and for every point

p of X holds g(p) = x · f1(p) + y · f2(p). Then g is continuous.

(18) Let F be a map from [: En
T, I :] into En

T. Suppose that for every point x

of En
T and for every point i of I holds F (x, i) = (1 − i) · x. Then F is

continuous.

(19) Let F be a map from [: En
T, I :] into En

T. Suppose that for every point x of

En
T and for every point i of I holds F (x, i) = i · x. Then F is continuous.

2. Paths

For simplicity, we follow the rules: X denotes a non empty topological space,

a, b, c, d, e, f denote points of X, T denotes a non empty arcwise connected

3The proposition (15) has been removed.



the fundamental group 263

topological space, and a1, b1, c1, d1, e1, f1 denote points of T .

One can prove the following propositions:

(20) Suppose a, b are connected and b, c are connected. Let A be a path from

a to b and B be a path from b to c. Then A, A + B +−B are homotopic.

(21) For every path A from a1 to b1 and for every path B from b1 to c1 holds

A, A + B +−B are homotopic.

(22) Suppose a, b are connected and c, b are connected. Let A be a path from

a to b and B be a path from c to b. Then A, A +−B + B are homotopic.

(23) For every path A from a1 to b1 and for every path B from c1 to b1 holds

A, A +−B + B are homotopic.

(24) Suppose a, b are connected and c, a are connected. Let A be a path from

a to b and B be a path from c to a. Then A, −B + B + A are homotopic.

(25) For every path A from a1 to b1 and for every path B from c1 to a1 holds

A, −B + B + A are homotopic.

(26) Suppose a, b are connected and a, c are connected. Let A be a path from

a to b and B be a path from a to c. Then A, B +−B + A are homotopic.

(27) For every path A from a1 to b1 and for every path B from a1 to c1 holds

A, B +−B + A are homotopic.

(28) Suppose a, b are connected and c, b are connected. Let A, B be paths

from a to b and C be a path from b to c. If A + C, B + C are homotopic,

then A, B are homotopic.

(29) Let A, B be paths from a1 to b1 and C be a path from b1 to c1. If A+C,

B + C are homotopic, then A, B are homotopic.

(30) Suppose a, b are connected and a, c are connected. Let A, B be paths

from a to b and C be a path from c to a. If C + A, C + B are homotopic,

then A, B are homotopic.

(31) Let A, B be paths from a1 to b1 and C be a path from c1 to a1. If C +A,

C + B are homotopic, then A, B are homotopic.

(32) Suppose a, b are connected and b, c are connected and c, d are connected

and d, e are connected. Let A be a path from a to b, B be a path from

b to c, C be a path from c to d, and D be a path from d to e. Then

A + B + C + D, A + (B + C) + D are homotopic.

(33) Let A be a path from a1 to b1, B be a path from b1 to c1, C be a path

from c1 to d1, and D be a path from d1 to e1. Then A + B + C + D,

A + (B + C) + D are homotopic.

(34) Suppose a, b are connected and b, c are connected and c, d are connected

and d, e are connected. Let A be a path from a to b, B be a path from

b to c, C be a path from c to d, and D be a path from d to e. Then

(A + B + C) + D, A + (B + C + D) are homotopic.
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(35) Let A be a path from a1 to b1, B be a path from b1 to c1, C be a path

from c1 to d1, and D be a path from d1 to e1. Then (A + B + C) + D,

A + (B + C + D) are homotopic.

(36) Suppose a, b are connected and b, c are connected and c, d are connected

and d, e are connected. Let A be a path from a to b, B be a path from

b to c, C be a path from c to d, and D be a path from d to e. Then

(A + (B + C)) + D, A + B + (C + D) are homotopic.

(37) Let A be a path from a1 to b1, B be a path from b1 to c1, C be a path

from c1 to d1, and D be a path from d1 to e1. Then (A + (B + C)) + D,

A + B + (C + D) are homotopic.

(38) Suppose a, b are connected and b, c are connected and b, d are connected.

Let A be a path from a to b, B be a path from d to b, and C be a path

from b to c. Then A +−B + B + C, A + C are homotopic.

(39) Let A be a path from a1 to b1, B be a path from d1 to b1, and C be a

path from b1 to c1. Then A +−B + B + C, A + C are homotopic.

(40) Suppose a, b are connected and a, c are connected and c, d are connected.

Let A be a path from a to b, B be a path from c to d, and C be a path

from a to c. Then A +−A + C + B +−B, C are homotopic.

(41) Let A be a path from a1 to b1, B be a path from c1 to d1, and C be a

path from a1 to c1. Then A +−A + C + B +−B, C are homotopic.

(42) Suppose a, b are connected and a, c are connected and d, c are connected.

Let A be a path from a to b, B be a path from c to d, and C be a path

from a to c. Then A + (−A + C + B) +−B, C are homotopic.

(43) Let A be a path from a1 to b1, B be a path from c1 to d1, and C be a

path from a1 to c1. Then A + (−A + C + B) +−B, C are homotopic.

(44) Suppose that

(i) a, b are connected,

(ii) b, c are connected,

(iii) c, d are connected,

(iv) d, e are connected, and

(v) a, f are connected.

Let A be a path from a to b, B be a path from b to c, C be a path from

c to d, D be a path from d to e, and E be a path from f to c. Then

(A + (B + C)) + D, A + B +−E + (E + C + D) are homotopic.

(45) Let A be a path from a1 to b1, B be a path from b1 to c1, C be a path

from c1 to d1, D be a path from d1 to e1, and E be a path from f1 to c1.

Then (A + (B + C)) + D, A + B +−E + (E + C + D) are homotopic.
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3. The Fundamental Group

Let T be a topological structure and let t be a point of T . A loop of t is a

path from t to t.

Let T be a non empty topological structure and let t be a point of T . The

functor Loops(t) is defined by:

(Def. 1) For every set x holds x ∈ Loops(t) iff x is a loop of t.

Let T be a non empty topological structure and let t be a point of T . Observe

that Loops(t) is non empty.

Let X be a non empty topological space and let a be a point of X. The

functor EqRel(X, a) yielding a binary relation on Loops(a) is defined by:

(Def. 2) For all loops P , Q of a holds 〈〈P, Q〉〉 ∈ EqRel(X, a) iff P , Q are homo-

topic.

Let X be a non empty topological space and let a be a point of X. One can

check that EqRel(X, a) is non empty, total, symmetric, and transitive.

We now state two propositions:

(46) For all loops P , Q of a holds Q ∈ [P ]EqRel(X,a) iff P , Q are homotopic.

(47) For all loops P , Q of a holds [P ]EqRel(X,a) = [Q]EqRel(X,a) iff P , Q are

homotopic.

Let X be a non empty topological space and let a be a point of X. The

functor FundamentalGroup(X, a) yielding a strict groupoid is defined by the

conditions (Def. 3).

(Def. 3)(i) The carrier of FundamentalGroup(X, a) = Classes EqRel(X, a), and

(ii) for all elements x, y of FundamentalGroup(X, a) there exist loops P ,

Q of a such that x = [P ]EqRel(X,a) and y = [Q]EqRel(X,a) and (the multi-

plication of FundamentalGroup(X, a))(x, y) = [P + Q]EqRel(X,a).

We introduce π1(X, a) as a synonym of FundamentalGroup(X, a).

Let X be a non empty topological space and let a be a point of X. One can

verify that π1(X, a) is non empty.

Next we state the proposition

(48) For every set x holds x ∈ the carrier of π1(X, a) iff there exists a loop P

of a such that x = [P ]EqRel(X,a).

Let X be a non empty topological space and let a be a point of X. Note

that π1(X, a) is associative and group-like.

Let T be a non empty topological space, let x0, x1 be points of T , and let P

be a path from x0 to x1. Let us assume that x0, x1 are connected. The functor

π1-iso(P ) yielding a map from π1(T, x1) into π1(T, x0) is defined by:

(Def. 4) For every loop Q of x1 holds (π1-iso(P ))([Q]EqRel(T,x1)) =

[P + Q +−P ]EqRel(T,x0).
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For simplicity, we follow the rules: x0, x1 denote points of X, P , Q denote

paths from x0 to x1, y0, y1 denote points of T , and R, V denote paths from y0

to y1.

Next we state three propositions:

(49) If x0, x1 are connected and P , Q are homotopic, then π1-iso(P ) =

π1-iso(Q).

(50) If R, V are homotopic, then π1-iso(R) = π1-iso(V ).

(51) If x0, x1 are connected, then π1-iso(P ) is a homomorphism from

π1(X, x1) to π1(X, x0).

Let T be a non empty arcwise connected topological space, let x0, x1 be po-

ints of T , and let P be a path from x0 to x1. Then π1-iso(P ) is a homomorphism

from π1(T, x1) to π1(T, x0).

The following propositions are true:

(52) If x0, x1 are connected, then π1-iso(P ) is one-to-one.

(53) If x0, x1 are connected, then π1-iso(P ) is onto.

Let T be a non empty arcwise connected topological space, let x0, x1 be

points of T , and let P be a path from x0 to x1. One can verify that π1-iso(P ) is

one-to-one and onto.

One can prove the following propositions:

(54) If x0, x1 are connected, then (π1-iso(P ))−1 = π1-iso(−P ).

(55) (π1-iso(R))−1 = π1-iso(−R).

(56) If x0, x1 are connected, then for every homomorphism h from π1(X, x1)

to π1(X, x0) such that h = π1-iso(P ) holds h is an isomorphism.

(57) π1-iso(R) is an isomorphism.

(58) If x0, x1 are connected, then π1(X,x0) and π1(X,x1) are isomorphic.

(59) π1(T, y0) and π1(T, y1) are isomorphic.

4. Euclidean Topological Space

Let n be a natural number, let a, b be points of En
T, and let P , Q be paths

from a to b. The functor RealHomotopy(P, Q) yields a map from [: I, I :] into En
T

and is defined by:

(Def. 5) For all elements s, t of I holds (RealHomotopy(P,Q))(s, t) = (1 − t) ·

P (s) + t ·Q(s).

The following proposition is true

(60) For all points a, b of En
T and for all paths P , Q from a to b holds P , Q

are homotopic.

Let n be a natural number, let a, b be points of En
T, and let P , Q be paths

from a to b. Then RealHomotopy(P, Q) is a homotopy between P and Q.
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Let n be a natural number, let a, b be points of En
T, and let P , Q be paths

from a to b. One can check that every homotopy between P and Q is continuous.

Next we state the proposition

(61) For every point a of En
T and for every loop C of a holds the carrier of

π1(E
n
T, a) = {[C]EqRel(En

T
,a)}.

Let n be a natural number and let a be a point of En
T. Note that π1(E

n
T, a)

is trivial.
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