Solving Roots of the Special Polynomial Equation with Real Coefficients

Yuzhong Ding QingDao University of Science and Technology

Xiquan Liang QingDao University of Science and Technology

MML Identifier: POLYEQ_4.

The papers [5], [4], [2], [3], and [1] provide the terminology and notation for this paper.

We follow the rules: x, y, a, b, c, p, q are real numbers and m, n are natural numbers.

We now state a number of propositions:

- (1) If $a \neq 0$ and $\frac{b}{a} < 0$ and $\frac{c}{a} > 0$ and $\Delta(a, b, c) \ge 0$, then $\frac{-b + \sqrt{\Delta(a, b, c)}}{2 \cdot a} > 0$ and $\frac{-b \sqrt{\Delta(a, b, c)}}{2 \cdot a} > 0$.
- (2) If $a \neq 0$ and $\frac{b}{a} > 0$ and $\frac{c}{a} > 0$ and $\Delta(a, b, c) \ge 0$, then $\frac{-b + \sqrt{\Delta(a, b, c)}}{2 \cdot a} < 0$ and $\frac{-b \sqrt{\Delta(a, b, c)}}{2 \cdot a} < 0$.
- (3) If $a \neq 0$ and $\frac{c}{a} < 0$, then $\frac{-b+\sqrt{\Delta(a,b,c)}}{2\cdot a} > 0$ and $\frac{-b-\sqrt{\Delta(a,b,c)}}{2\cdot a} < 0$ or $\frac{-b+\sqrt{\Delta(a,b,c)}}{2\cdot a} < 0$ and $\frac{-b-\sqrt{\Delta(a,b,c)}}{2\cdot a} > 0$.
- (4) If a > 0 and there exists m such that $n = 2 \cdot m$ and $m \ge 1$ and $x^n = a$, then $x = \sqrt[n]{a}$ or $x = -\sqrt[n]{a}$.
- (5) If $a \neq 0$ and $\operatorname{Poly2}(a, b, 0, x) = 0$, then x = 0 or $x = -\frac{b}{a}$.
- (6) If $a \neq 0$ and Poly2(a, 0, 0, x) = 0, then x = 0.
- (7) If $a \neq 0$ and there exists m such that $n = 2 \cdot m + 1$ and $\Delta(a, b, c) \ge 0$ and $\operatorname{Poly2}(a, b, c, x^n) = 0$, then $x = \sqrt[n]{\frac{-b + \sqrt{\Delta(a, b, c)}}{2 \cdot a}}$ or $x = \sqrt[n]{\frac{-b \sqrt{\Delta(a, b, c)}}{2 \cdot a}}$.
- (8) Suppose $a \neq 0$ and $\frac{b}{a} < 0$ and $\frac{c}{a} > 0$ and there exists m such that $n = 2 \cdot m$ and $m \ge 1$ and $\Delta(a, b, c) \ge 0$ and $\text{Poly2}(a, b, c, x^n) = 0$. Then

C 2004 University of Białystok ISSN 1426-2630

$$x = \sqrt[n]{\frac{-b+\sqrt{\Delta(a,b,c)}}{2\cdot a}} \text{ or } x = -\sqrt[n]{\frac{-b+\sqrt{\Delta(a,b,c)}}{2\cdot a}} \text{ or } x = \sqrt[n]{\frac{-b-\sqrt{\Delta(a,b,c)}}{2\cdot a}} \text{ or } x = \sqrt[n]{\frac{-b-\sqrt{\Delta(a,b,c)}}{2\cdot a}}.$$

(9) If $a \neq 0$ and there exists m such that $n = 2 \cdot m + 1$ and $\text{Poly2}(a, b, 0, x^n) =$ 0, then x = 0 or $x = \sqrt[n]{-\frac{b}{a}}$.

- (10) If $a \neq 0$ and $\frac{b}{a} < 0$ and there exists m such that $n = 2 \cdot m$ and $m \ge 1$ and Poly2(*a*, *b*, 0, *xⁿ*) = 0, then *x* = 0 or *x* = $\sqrt[n]{-\frac{b}{a}}$ or *x* = $-\sqrt[n]{-\frac{b}{a}}$.
- (11) $a^3 + b^3 = (a+b) \cdot ((a^2 a \cdot b) + b^2)$ and $a^5 + b^5 = (a+b) \cdot ((((a^4 a^3 + b^2)) + b^2))$ $b) + a^2 \cdot b^2) - a \cdot b^3) + b^4).$
- (12) Suppose $a \neq 0$ and $b^2 2 \cdot a \cdot b 3 \cdot a^2 \ge 0$ and Poly3(a, b, b, a, x) = 0. Then x = -1 or $x = \frac{(a-b)+\sqrt{b^2-2 \cdot a \cdot b 3 \cdot a^2}}{2 \cdot a}$ or $x = \frac{a-b-\sqrt{b^2-2 \cdot a \cdot b 3 \cdot a^2}}{2 \cdot a}$.

Let a, b, c, d, e, f, x be real numbers. The functor $Poly_5(a, b, c, d, e, f, x)$ is defined by:

(Def. 1)
$$\operatorname{Poly}_5(a, b, c, d, e, f, x) = a \cdot x^5 + b \cdot x^4 + c \cdot x^3 + d \cdot x^2 + e \cdot x + f.$$

We now state a number of propositions:

We now state a number of propositions:

- (13) Suppose $a \neq 0$ and $(b^2 + 2 \cdot a \cdot b + 5 \cdot a^2) 4 \cdot a \cdot c > 0$ and $Poly_5(a, b, c, c, b, a, x) = 0$. Let y_1, y_2 be real numbers. Suppose $y_1 =$ $\frac{(a-b)+\sqrt{(b^2+2\cdot a\cdot b+5\cdot a^2)-4\cdot a\cdot c}}{2\cdot a} \text{ and } y_2 = \frac{a-b-\sqrt{(b^2+2\cdot a\cdot b+5\cdot a^2)-4\cdot a\cdot c}}{2\cdot a}. \text{ Then } x = \frac{-1 \text{ or } x = \frac{y_1+\sqrt{\Delta(1,-y_1,1)}}{2}}{2} \text{ or } x = \frac{y_2+\sqrt{\Delta(1,-y_2,1)}}{2} \text{ or } x = \frac{y_2-\sqrt{\Delta(1,-y_2,1)}}{2}.$
- (14) Suppose x + y = p and $x \cdot y = q$ and $p^2 4 \cdot q \ge 0$. Then $x = \frac{p + \sqrt{p^2 4 \cdot q}}{2}$ and $y = \frac{p - \sqrt{p^2 - 4 \cdot q}}{2}$ or $x = \frac{p - \sqrt{p^2 - 4 \cdot q}}{2}$ and $y = \frac{p + \sqrt{p^2 - 4 \cdot q}}{2}$
- (15) Suppose $x^n + y^n = p$ and $x^n \cdot y^n = q$ and $p^2 4 \cdot q \ge 0$ and there exists *m* such that $n = 2 \cdot m + 1$. Then $x = \sqrt[n]{\frac{p + \sqrt{p^2 - 4 \cdot q}}{2}}$ and $y = \sqrt[n]{\frac{p - \sqrt{p^2 - 4 \cdot q}}{2}}$ or $x = \sqrt[n]{\frac{p-\sqrt{p^2-4\cdot q}}{2}}$ and $y = \sqrt[n]{\frac{p+\sqrt{p^2-4\cdot q}}{2}}$.
- (16) Suppose $x^n + y^n = p$ and $x^n \cdot y^n = q$ and $p^2 4 \cdot q \ge 0$ and p > 0 and q > 0and there exists m such that $n = 2 \cdot m$ and $m \ge 1$. Then $x = \sqrt[n]{\frac{p + \sqrt{p^2 - 4 \cdot q}}{2}}$ and $y = \sqrt[n]{\frac{p - \sqrt{p^2 - 4 \cdot q}}{2}}$ or $x = -\sqrt[n]{\frac{p + \sqrt{p^2 - 4 \cdot q}}{2}}$ and $y = \sqrt[n]{\frac{p - \sqrt{p^2 - 4 \cdot q}}{2}}$ or $x = \sqrt[n]{\frac{p+\sqrt{p^2-4\cdot q}}{2}}$ and $y = -\sqrt[n]{\frac{p-\sqrt{p^2-4\cdot q}}{2}}$ or $x = -\sqrt[n]{\frac{p+\sqrt{p^2-4\cdot q}}{2}}$ and $y = -\sqrt[n]{\frac{p-\sqrt{p^2-4\cdot q}}{2}}$ or $x = \sqrt[n]{\frac{p-\sqrt{p^2-4\cdot q}}{2}}$ and $y = \sqrt[n]{\frac{p+\sqrt{p^2-4\cdot q}}{2}}$ or $x = -\sqrt[n]{\frac{p-\sqrt{p^2-4\cdot q}}{2}}$ and $y = \sqrt[n]{\frac{p+\sqrt{p^2-4\cdot q}}{2}}$ or $x = \sqrt[n]{\frac{p-\sqrt{p^2-4\cdot q}}{2}}$ and $y = -\sqrt[n]{\frac{p+\sqrt{p^2-4\cdot q}}{2}}$ or $x = -\sqrt[n]{\frac{p-\sqrt{p^2-4\cdot q}}{2}}$ and $y = -\sqrt[n]{\frac{p+\sqrt{p^2-4\cdot q}}{2}}$.

(18)¹ Suppose $x^n + y^n = a$ and $x^n - y^n = b$ and there exists m such that $n = 2 \cdot m$ and $m \ge 1$ and $a \ge 0$ and $a + b \ge 0$ and $a - b \ge 0$. Then

(i)
$$x = \sqrt[n]{\frac{a+b}{2}}$$
 and $y = \sqrt[n]{\frac{a-b}{2}}$, or

(ii)
$$x = \sqrt[n]{\frac{a+b}{2}}$$
 and $y = -\sqrt[n]{\frac{a-b}{2}}$, or

(iii)
$$x = -\sqrt[n]{\frac{a+b}{2}}$$
 and $y = \sqrt[n]{\frac{a-b}{2}}$, or

(iv)
$$x = -\sqrt[n]{\frac{a+b}{2}}$$
 and $y = -\sqrt[n]{\frac{a-b}{2}}$

- (19) If $a \cdot x^n + b \cdot y^n = p$ and $x \cdot y = 0$ and there exists m such that $n = 2 \cdot m + 1$ and $a \cdot b \neq 0$, then x = 0 and $y = \sqrt[n]{\frac{p}{b}}$ or $x = \sqrt[n]{\frac{p}{a}}$ and y = 0.
- (20) Suppose $a \cdot x^n + b \cdot y^n = p$ and $x \cdot y = 0$ and there exists m such that $n = 2 \cdot m$ and $m \ge 1$ and $\frac{p}{b} > 0$ and $\frac{p}{a} > 0$ and $a \cdot b \ne 0$. Then x = 0 and $y = \sqrt[n]{\frac{p}{b}}$ or x = 0 and $y = -\sqrt[n]{\frac{p}{b}}$ or $x = \sqrt[n]{\frac{p}{a}}$ and y = 0 or $x = -\sqrt[n]{\frac{p}{a}}$ and y = 0.
- (21) If $a \cdot x^n = p$ and $x \cdot y = q$ and there exists m such that $n = 2 \cdot m + 1$ and $p \cdot a \neq 0$, then $x = \sqrt[n]{\frac{p}{a}}$ and $y = q \cdot \sqrt[n]{\frac{a}{p}}$.
- (22) Suppose $a \cdot x^n = p$ and $x \cdot y = q$ and there exists m such that $n = 2 \cdot m$ and $m \ge 1$ and $\frac{p}{a} > 0$ and $a \ne 0$. Then $x = \sqrt[n]{\frac{p}{a}}$ and $y = q \cdot \sqrt[n]{\frac{a}{p}}$ or $x = -\sqrt[n]{\frac{p}{a}}$ and $y = -q \cdot \sqrt[n]{\frac{a}{p}}$.
- $(24)^2$ For all real numbers a, x such that a > 0 and $a \neq 1$ and $a^x = 1$ holds x = 0.
- (25) For all real numbers a, x such that a > 0 and $a \neq 1$ and $a^x = a$ holds x = 1.
- $(27)^3$ For all real numbers a, b, x such that a > 0 and $a \neq 1$ and x > 0 and $\log_a x = 0$ holds x = 1.
- (28) For all real numbers a, b, x such that a > 0 and $a \neq 1$ and x > 0 and $\log_a x = 1$ holds x = a.

References

- [1] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887–890, 1990
- [2] Xiquan Liang. Solving roots of polynomial equations of degree 2 and 3 with real coefficients. Formalized Mathematics, 9(2):347–350, 2001.
- [3] Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507-509, 1991.
- [4] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
- [5] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

¹The proposition (17) has been removed.

^{2}The proposition (23) has been removed.

³The proposition (26) has been removed.

YUZHONG DING AND XIQUAN LIANG

Received March 18, 2004

_