Solving Roots of the Special Polynomial Equation with Real Coefficients

Yuzhong Ding
QingDao University of Science and Technology
Xiquan Liang
QingDao University of Science and Technology

MML Identifier: POLYEQ_4.

The papers [5], [4], [2], [3], and [1] provide the terminology and notation for this paper.

We follow the rules: x, y, a, b, c, p, q are real numbers and m, n are natural numbers.

We now state a number of propositions:
(1) If $a \neq 0$ and $\frac{b}{a}<0$ and $\frac{c}{a}>0$ and $\Delta(a, b, c) \geqslant 0$, then $\frac{-b+\sqrt{\Delta(a, b, c)}}{2 \cdot a}>0$ and $\frac{-b-\sqrt{\Delta(a, b, c)}}{2 \cdot a}>0$.
(2) If $a \neq 0$ and $\frac{b}{a}>0$ and $\frac{c}{a}>0$ and $\Delta(a, b, c) \geqslant 0$, then $\frac{-b+\sqrt{\Delta(a, b, c)}}{2 \cdot a}<0$ and $\frac{-b-\sqrt{\Delta(a, b, c)}}{2 \cdot a}<0$.
(3) If $a \neq 0$ and $\frac{c}{a}<0$, then $\frac{-b+\sqrt{\Delta(a, b, c)}}{2 \cdot a}>0$ and $\frac{-b-\sqrt{\Delta(a, b, c)}}{2 \cdot a}<0$ or $\frac{-b+\sqrt{\Delta(a, b, c)}}{2 \cdot a}<0$ and $\frac{-b-\sqrt{\Delta(a, b, c)}}{2 \cdot a}>0$.
(4) If $a>0$ and there exists m such that $n=2 \cdot m$ and $m \geqslant 1$ and $x^{n}=a$, then $x=\sqrt[n]{a}$ or $x=-\sqrt[n]{a}$.
(5) If $a \neq 0$ and $\operatorname{Poly} 2(a, b, 0, x)=0$, then $x=0$ or $x=-\frac{b}{a}$.
(6) If $a \neq 0$ and Poly2 $(a, 0,0, x)=0$, then $x=0$.
(7) If $a \neq 0$ and there exists m such that $n=2 \cdot m+1$ and $\Delta(a, b, c) \geqslant 0$ and $\operatorname{Poly} 2\left(a, b, c, x^{n}\right)=0$, then $x=\sqrt[n]{\frac{-b+\sqrt{\Delta(a, b, c)}}{2 \cdot a}}$ or $x=\sqrt[n]{\frac{-b-\sqrt{\Delta(a, b, c)}}{2 \cdot a}}$.
(8) Suppose $a \neq 0$ and $\frac{b}{a}<0$ and $\frac{c}{a}>0$ and there exists m such that $n=2 \cdot m$ and $m \geqslant 1$ and $\Delta(a, b, c) \geqslant 0$ and $\operatorname{Poly} 2\left(a, b, c, x^{n}\right)=0$. Then
$x=\sqrt[n]{\frac{-b+\sqrt{\Delta(a, b, c)}}{2 \cdot a}}$ or $x=-\sqrt[n]{\frac{-b+\sqrt{\Delta(a, b, c)}}{2 \cdot a}}$ or $x=\sqrt[n]{\frac{-b-\sqrt{\Delta(a, b, c)}}{2 \cdot a}}$ or $x=-\sqrt[n]{\frac{-b-\sqrt{\Delta(a, b, c)}}{2 \cdot a}}$.
(9) If $a \neq 0$ and there exists m such that $n=2 \cdot m+1$ and $\operatorname{Poly} 2\left(a, b, 0, x^{n}\right)=$ 0 , then $x=0$ or $x=\sqrt[n]{-\frac{b}{a}}$.
(10) If $a \neq 0$ and $\frac{b}{a}<0$ and there exists m such that $n=2 \cdot m$ and $m \geqslant 1$ and Poly2 $\left(a, b, 0, x^{n}\right)=0$, then $x=0$ or $x=\sqrt[n]{-\frac{b}{a}}$ or $x=-\sqrt[n]{-\frac{b}{a}}$.
(11) $a^{3}+b^{3}=(a+b) \cdot\left(\left(a^{2}-a \cdot b\right)+b^{\mathbf{2}}\right)$ and $a^{5}+b^{5}=(a+b) \cdot\left(\left(\left(\left(a^{4}-a^{3}\right.\right.\right.\right.$. $\left.\left.\left.b)+a^{2} \cdot b^{2}\right)-a \cdot b^{3}\right)+b^{4}\right)$.
(12) Suppose $a \neq 0$ and $b^{2}-2 \cdot a \cdot b-3 \cdot a^{2} \geqslant 0$ and $\operatorname{Poly} 3(a, b, b, a, x)=0$. Then $x=-1$ or $x=\frac{(a-b)+\sqrt{b^{2}-2 \cdot a \cdot b-3 \cdot a^{2}}}{2 \cdot a}$ or $x=\frac{a-b-\sqrt{b^{2}-2 \cdot a \cdot b-3 \cdot a^{2}}}{2 \cdot a}$.

Let a, b, c, d, e, f, x be real numbers. The functor $\operatorname{Poly}_{5}(a, b, c, d, e, f, x)$ is defined by:
(Def. 1) $\operatorname{Poly}_{5}(a, b, c, d, e, f, x)=a \cdot x^{5}+b \cdot x^{4}+c \cdot x^{3}+d \cdot x^{2}+e \cdot x+f$.
We now state a number of propositions:
(13) Suppose $a \neq 0$ and $\left(b^{2}+2 \cdot a \cdot b+5 \cdot a^{2}\right)-4 \cdot a \cdot c>0$ and $\operatorname{Poly}_{5}(a, b, c, c, b, a, x)=0$. Let y_{1}, y_{2} be real numbers. Suppose $y_{1}=$ $\frac{(a-b)+\sqrt{\left(b^{2}+2 \cdot a \cdot b+5 \cdot a^{2}\right)-4 \cdot a \cdot c}}{2 \cdot a}$ and $y_{2}=\frac{a-b-\sqrt{\left(b^{2}+2 \cdot a \cdot b+5 \cdot a^{2}\right)-4 \cdot a \cdot c}}{2 \cdot a}$. Then $x=$ -1 or $x=\frac{y_{1}+\sqrt{\Delta\left(1,-y_{1}, 1\right)}}{2}$ or $x=\frac{y_{2}+\sqrt{\Delta\left(1,-y_{2}, 1\right)}}{2}$ or $x=\frac{y_{1}-\sqrt{\Delta\left(1,-y_{1}, 1\right)}}{2}$ or $x=\frac{y_{2}-\sqrt{\Delta\left(1,-y_{2}, 1\right)}}{2}$.
(14) Suppose $x+y=p$ and $x \cdot y=q$ and $p^{2}-4 \cdot q \geqslant 0$. Then $x=\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}$ and $y=\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}$ or $x=\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}$ and $y=\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}$.
(15) Suppose $x^{n}+y^{n}=p$ and $x^{n} \cdot y^{n}=q$ and $p^{2}-4 \cdot q \geqslant 0$ and there exists m such that $n=2 \cdot m+1$. Then $x=\sqrt[n]{\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}}$ and $y=\sqrt[n]{\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}}$ or $x=\sqrt[n]{\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}}$ and $y=\sqrt[n]{\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}}$.
(16) Suppose $x^{n}+y^{n}=p$ and $x^{n} \cdot y^{n}=q$ and $p^{2}-4 \cdot q \geqslant 0$ and $p>0$ and $q>0$ and there exists m such that $n=2 \cdot m$ and $m \geqslant 1$. Then $x=\sqrt[n]{\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}}$ and $y=\sqrt[n]{\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}}$ or $x=-\sqrt[n]{\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}}$ and $y=\sqrt[n]{\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}}$ or $x=\sqrt[n]{\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}}$ and $y=-\sqrt[n]{\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}}$ or $x=-\sqrt[n]{\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}}$ and $y=-\sqrt[n]{\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}}$ or $x=\sqrt[n]{\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}}$ and $y=\sqrt[n]{\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}}$ or $x=-\sqrt[n]{\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}}$ and $y=\sqrt[n]{\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}}$ or $x=\sqrt[n]{\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}}$ and $y=-\sqrt[n]{\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}}$ or $x=-\sqrt[n]{\frac{p-\sqrt{p^{2}-4 \cdot q}}{2}}$ and $y=-\sqrt[n]{\frac{p+\sqrt{p^{2}-4 \cdot q}}{2}}$.
$(18)^{1} \quad$ Suppose $x^{n}+y^{n}=a$ and $x^{n}-y^{n}=b$ and there exists m such that $n=2 \cdot m$ and $m \geqslant 1$ and $a>0$ and $a+b>0$ and $a-b>0$. Then
(i) $\quad x=\sqrt[n]{\frac{a+b}{2}}$ and $y=\sqrt[n]{\frac{a-b}{2}}$, or
(ii) $x=\sqrt[n]{\frac{a+b}{2}}$ and $y=-\sqrt[n]{\frac{a-b}{2}}$, or
(iii) $\quad x=-\sqrt[n]{\frac{a+b}{2}}$ and $y=\sqrt[n]{\frac{a-b}{2}}$, or
(iv) $x=-\sqrt[n]{\frac{a+b}{2}}$ and $y=-\sqrt[n]{\frac{a-b}{2}}$.
(19) If $a \cdot x^{n}+b \cdot y^{n}=p$ and $x \cdot y=0$ and there exists m such that $n=2 \cdot m+1$ and $a \cdot b \neq 0$, then $x=0$ and $y=\sqrt[n]{\frac{p}{b}}$ or $x=\sqrt[n]{\frac{p}{a}}$ and $y=0$.
(20) Suppose $a \cdot x^{n}+b \cdot y^{n}=p$ and $x \cdot y=0$ and there exists m such that $n=2 \cdot m$ and $m \geqslant 1$ and $\frac{p}{b}>0$ and $\frac{p}{a}>0$ and $a \cdot b \neq 0$. Then $x=0$ and $y=\sqrt[n]{\frac{p}{b}}$ or $x=0$ and $y=-\sqrt[n]{\frac{p}{b}}$ or $x=\sqrt[n]{\frac{p}{a}}$ and $y=0$ or $x=-\sqrt[n]{\frac{p}{a}}$ and $y=0$.
(21) If $a \cdot x^{n}=p$ and $x \cdot y=q$ and there exists m such that $n=2 \cdot m+1$ and $p \cdot a \neq 0$, then $x=\sqrt[n]{\frac{p}{a}}$ and $y=q \cdot \sqrt[n]{\frac{a}{p}}$.
(22) Suppose $a \cdot x^{n}=p$ and $x \cdot y=q$ and there exists m such that $n=2 \cdot m$ and $m \geqslant 1$ and $\frac{p}{a}>0$ and $a \neq 0$. Then $x=\sqrt[n]{\frac{p}{a}}$ and $y=q \cdot \sqrt[n]{\frac{a}{p}}$ or $x=-\sqrt[n]{\frac{p}{a}}$ and $y=-q \cdot \sqrt[n]{\frac{a}{p}}$.
$(24)^{2}$ For all real numbers a, x such that $a>0$ and $a \neq 1$ and $a^{x}=1$ holds $x=0$.
(25) For all real numbers a, x such that $a>0$ and $a \neq 1$ and $a^{x}=a$ holds $x=1$.
$(27)^{3}$ For all real numbers a, b, x such that $a>0$ and $a \neq 1$ and $x>0$ and $\log _{a} x=0$ holds $x=1$.
(28) For all real numbers a, b, x such that $a>0$ and $a \neq 1$ and $x>0$ and $\log _{a} x=1$ holds $x=a$.

References

[1] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[2] Xiquan Liang. Solving roots of polynomial equations of degree 2 and 3 with real coefficients. Formalized Mathematics, 9(2):347-350, 2001.
[3] Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507-509, 1991.
[4] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[5] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

[^0]Received March 18, 2004

[^0]: ${ }^{1}$ The proposition (17) has been removed.
 ${ }^{2}$ The proposition (23) has been removed.
 ${ }^{3}$ The proposition (26) has been removed.

