The Hall Marriage Theorem

Ewa Romanowicz
University of Białystok

Adam Grabowski ${ }^{1}$
University of Białystok

Summary. The Marriage Theorem, as credited to Philip Hall [7], gives the necessary and sufficient condition allowing us to select a distinct element from each of a finite collection $\left\{A_{i}\right\}$ of n finite subsets. This selection, called a set of different representatives (SDR), exists if and only if the marriage condition (or Hall condition) is satisfied:

$$
\forall_{J \subseteq\{1, \ldots, n\}}\left|\bigcup_{i \in J} A_{i}\right| \geqslant|J| .
$$

The proof which is given in this article (according to Richard Rado, 1967) is based on the lemma that for finite sequences with non-trivial elements which satisfy Hall property there exists a reduction (see Def. 5) such that Hall property again holds (see Th. 29 for details).

MML Identifier: HALLMAR1.

The notation and terminology used here are introduced in the following papers: [9], [5], [10], [11], [4], [8], [2], [6], [1], and [3].

1. Preliminaries

One can prove the following proposition
(1) For all finite sets X, Y holds $\operatorname{card}(X \cup Y)+\operatorname{card}(X \cap Y)=\operatorname{card} X+\operatorname{card} Y$.

In this article we present several logical schemes. The scheme Regr11 deals with a natural number \mathcal{A} and a unary predicate \mathcal{P}, and states that:

For every natural number k such that $1 \leqslant k$ and $k \leqslant \mathcal{A}$ holds $\mathcal{P}[k]$

[^0]provided the parameters meet the following conditions:

- $\mathcal{P}[\mathcal{A}]$ and $\mathcal{A} \geqslant 2$, and
- For every natural number k such that $1 \leqslant k$ and $k<\mathcal{A}$ and $\mathcal{P}[k+1]$ holds $\mathcal{P}[k]$.
The scheme Regr2 concerns a unary predicate \mathcal{P}, and states that: $\mathcal{P}[1]$
provided the parameters meet the following requirements:
- There exists a natural number n such that $n>1$ and $\mathcal{P}[n]$, and
- For every natural number k such that $k \geqslant 1$ and $\mathcal{P}[k+1]$ holds $\mathcal{P}[k]$.
Let F be a non empty set. One can check that there exists a finite sequence of elements of 2^{F} which is non empty and non-empty.

We now state the proposition
(2) Let F be a non empty set, f be a non-empty finite sequence of elements of 2^{F}, and i be a natural number. If $i \in \operatorname{dom} f$, then $f(i) \neq \emptyset$.
Let F be a finite set, let A be a finite sequence of elements of 2^{F}, and let i be a natural number. Note that $A(i)$ is finite.

2. Union of Finite Sequences

Let F be a set, let A be a finite sequence of elements of 2^{F}, and let J be a set. The functor $\bigcup_{J} A$ yields a set and is defined as follows:
(Def. 1) For every set x holds $x \in \bigcup_{J} A$ iff there exists a set j such that $j \in J$ and $j \in \operatorname{dom} A$ and $x \in A(j)$.
Next we state two propositions:
(3) For every set F and for every finite sequence A of elements of 2^{F} and for every set J holds $\bigcup_{J} A \subseteq F$.
(4) Let F be a finite set, A be a finite sequence of elements of 2^{F}, and J, K be sets. If $J \subseteq K$, then $\bigcup_{J} A \subseteq \bigcup_{K} A$.
Let F be a finite set, let A be a finite sequence of elements of 2^{F}, and let J be a set. One can verify that $\bigcup_{J} A$ is finite.

The following propositions are true:
(5) Let F be a finite set, A be a finite sequence of elements of 2^{F}, and i be a natural number. If $i \in \operatorname{dom} A$, then $\bigcup_{\{i\}} A=A(i)$.
(6) Let F be a finite set, A be a finite sequence of elements of 2^{F}, and i, j be natural numbers. If $i \in \operatorname{dom} A$ and $j \in \operatorname{dom} A$, then $\bigcup_{\{i, j\}} A=A(i) \cup A(j)$.
(7) Let J be a set, F be a finite set, A be a finite sequence of elements of 2^{F}, and i be a natural number. If $i \in J$ and $i \in \operatorname{dom} A$, then $A(i) \subseteq \bigcup_{J} A$.
(8) Let J be a set, F be a finite set, i be a natural number, and A be a finite sequence of elements of 2^{F}. If $i \in J$ and $i \in \operatorname{dom} A$, then $\bigcup_{J} A=$ $\bigcup_{J \backslash\{i\}} A \cup A(i)$.
(9) Let J_{1}, J_{2} be sets, F be a finite set, i be a natural number, and A be a finite sequence of elements of 2^{F}. If $i \in \operatorname{dom} A$, then $\bigcup_{\{i\} \cup J_{1} \cup J_{2}} A=$ $A(i) \cup \bigcup_{J_{1} \cup J_{2}} A$.
(10) Let F be a finite set, A be a finite sequence of elements of $2^{F}, i$ be a natural number, and x, y be sets. If $x \neq y$ and $x \in A(i)$ and $y \in A(i)$, then $(A(i) \backslash\{x\}) \cup(A(i) \backslash\{y\})=A(i)$.

3. Cut Operation for Finite Sequences

Let F be a finite set, let A be a finite sequence of elements of 2^{F}, let i be a natural number, and let x be a set. The functor $\operatorname{Cut}(A, i, x)$ yielding a finite sequence of elements of 2^{F} is defined by the conditions (Def. 2).
(Def. 2)(i) $\quad \operatorname{dom} \operatorname{Cut}(A, i, x)=\operatorname{dom} A$, and
(ii) for every natural number k such that $k \in \operatorname{dom} \operatorname{Cut}(A, i, x)$ holds if $i=k$, then $(\operatorname{Cut}(A, i, x))(k)=A(k) \backslash\{x\}$ and if $i \neq k$, then $(\operatorname{Cut}(A, i, x))(k)=$ $A(k)$.
The following propositions are true:
(11) Let F be a finite set, A be a finite sequence of elements of $2^{F}, i$ be a natural number, and x be a set. If $i \in \operatorname{dom} A$ and $x \in A(i)$, then $\operatorname{card}(\operatorname{Cut}(A, i, x))(i)=\operatorname{card} A(i)-1$.
(12) Let F be a finite set, A be a finite sequence of elements of $2^{F}, i$ be a natural number, and x, J be sets. Then $\bigcup_{J \backslash\{i\}} \operatorname{Cut}(A, i, x)=\bigcup_{J \backslash\{i\}} A$.
(13) Let F be a finite set, A be a finite sequence of elements of $2^{F}, i$ be a natural number, and x, J be sets. If $i \notin J$, then $\bigcup_{J} A=\bigcup_{J} \operatorname{Cut}(A, i, x)$.
(14) Let F be a finite set, A be a finite sequence of elements of $2^{F}, i$ be a natural number, and x, J be sets. If $i \in \operatorname{dom~} \operatorname{Cut}(A, i, x)$ and $J \subseteq$ $\operatorname{dom} \operatorname{Cut}(A, i, x)$ and $i \in J$, then $\bigcup_{J} \operatorname{Cut}(A, i, x)=\bigcup_{J \backslash\{i\}} A \cup(A(i) \backslash\{x\})$.

4. System of Different Representatives and Hall Property

Let F be a finite set, let X be a finite sequence of elements of 2^{F}, and let A be a set. We say that A is a system of different representatives of X if and only if the condition (Def. 3) is satisfied.
(Def. 3) There exists a finite sequence f of elements of F such that $f=A$ and $\operatorname{dom} X=\operatorname{dom} f$ and for every natural number i such that $i \in \operatorname{dom} f$ holds $f(i) \in X(i)$ and f is one-to-one.

Let F be a finite set and let A be a finite sequence of elements of 2^{F}. We say that A satisfies Hall condition if and only if:
(Def. 4) For every finite set J such that $J \subseteq \operatorname{dom} A$ holds card $J \leqslant \operatorname{card} \bigcup_{J} A$.
Next we state four propositions:
(15) Let F be a finite set and A be a non empty finite sequence of elements of 2^{F}. If A satisfies Hall condition, then A is non-empty.
(16) Let F be a finite set, A be a finite sequence of elements of 2^{F}, and i be a natural number. If $i \in \operatorname{dom} A$ and A satisfies Hall condition, then $\operatorname{card} A(i) \geqslant 1$.
(17) Let F be a non empty finite set and A be a non empty finite sequence of elements of 2^{F}. Suppose for every natural number i such that $i \in \operatorname{dom} A$ holds card $A(i)=1$ and A satisfies Hall condition. Then there exists a set which is a system of different representatives of A.
(18) Let F be a finite set and A be a finite sequence of elements of 2^{F} such that there exists a set which is a system of different representatives of A. Then A satisfies Hall condition.

5. Reductions and Singlifications of Finite Sequences

Let F be a set, let A be a finite sequence of elements of 2^{F}, and let i be a natural number. A finite sequence of elements of 2^{F} is said to be a reduction of A at i-th position if:
(Def. 5) domit $=\operatorname{dom} A$ and for every natural number j such that $j \in \operatorname{dom} A$ and $j \neq i$ holds $A(j)=\operatorname{it}(j)$ and $\operatorname{it}(i) \subseteq A(i)$.
Let F be a set and let A be a finite sequence of elements of 2^{F}. A finite sequence of elements of 2^{F} is said to be a reduction of A if:
(Def. 6) $\quad \operatorname{dom}$ it $=\operatorname{dom} A$ and for every natural number i such that $i \in \operatorname{dom} A$ holds $\operatorname{it}(i) \subseteq A(i)$.
Let F be a set, let A be a finite sequence of elements of 2^{F}, and let i be a natural number. Let us assume that $i \in \operatorname{dom} A$ and $A(i) \neq \emptyset$. A reduction of A is called a singlification of A at i-th position if:
(Def. 7) $\overline{\overline{\mathrm{it}(i)}}=1$.
One can prove the following propositions:
(19) Let F be a finite set, A be a finite sequence of elements of 2^{F}, and i be a natural number. Then every reduction of A at i-th position is a reduction of A.
(20) Let F be a finite set, A be a finite sequence of elements of 2^{F}, i be a natural number, and x be a set. If $i \in \operatorname{dom} A$ and $x \in A(i)$, then $\operatorname{Cut}(A, i, x)$ is a reduction of A at i-th position.
(21) Let F be a finite set, A be a finite sequence of elements of $2^{F}, i$ be a natural number, and x be a set. If $i \in \operatorname{dom} A$ and $x \in A(i)$, then $\operatorname{Cut}(A, i, x)$ is a reduction of A.
(22) Let F be a finite set, A be a finite sequence of elements of 2^{F}, and B be a reduction of A. Then every reduction of B is a reduction of A.
(23) Let F be a non empty finite set, A be a non-empty finite sequence of elements of $2^{F}, i$ be a natural number, and B be a singlification of A at i-th position. If $i \in \operatorname{dom} A$, then $B(i) \neq \emptyset$.
(24) Let F be a non empty finite set, A be a non-empty finite sequence of elements of $2^{F}, i, j$ be natural numbers, B be a singlification of A at i-th position, and C be a singlification of B at j-th position. Suppose $i \in \operatorname{dom} A$ and $j \in \operatorname{dom} A$ and $C(i) \neq \emptyset$ and $B(j) \neq \emptyset$. Then C is a singlification of A at j-th position and a singlification of A at i-th position.
(25) Let F be a set, A be a finite sequence of elements of 2^{F}, and i be a natural number. Then A is a reduction of A at i-th position.
(26) For every set F holds every finite sequence A of elements of 2^{F} is a reduction of A.
Let F be a non empty set and let A be a finite sequence of elements of 2^{F}. Let us assume that A is non-empty. A reduction of A is called a singlification of A if:
(Def. 8) For every natural number i such that $i \in \operatorname{dom} A$ holds $\overline{\overline{\mathrm{it}(i)}}=1$.
We now state the proposition
(27) Let F be a non empty finite set, A be a non empty non-empty finite sequence of elements of 2^{F}, and f be a function. Then f is a singlification of A if and only if the following conditions are satisfied:
(i) $\operatorname{dom} f=\operatorname{dom} A$, and
(ii) for every natural number i such that $i \in \operatorname{dom} A$ holds f is a singlification of A at i-th position.
Let F be a non empty finite set, let A be a non empty finite sequence of elements of 2^{F}, and let k be a natural number. Note that every singlification of A at k-th position is non empty.

Let F be a non empty finite set and let A be a non empty finite sequence of elements of 2^{F}. One can check that every singlification of A is non empty.

6. Rado's Proof of the Hall Marriage Theorem

One can prove the following propositions:
(28) Let F be a non empty finite set, A be a non empty finite sequence of elements of $2^{F}, X$ be a set, and B be a reduction of A. Suppose X is a
system of different representatives of B. Then X is a system of different representatives of A.
(29) Let F be a finite set and A be a finite sequence of elements of 2^{F}. Suppose A satisfies Hall condition. Let i be a natural number. If card $A(i) \geqslant 2$, then there exists a set x such that $x \in A(i)$ and $\operatorname{Cut}(A, i, x)$ satisfies Hall condition.
(30) Let F be a finite set, A be a finite sequence of elements of 2^{F}, and i be a natural number. If $i \in \operatorname{dom} A$ and A satisfies Hall condition, then there exists a singlification of A at i-th position which satisfies Hall condition.
(31) Let F be a non empty finite set and A be a non empty finite sequence of elements of 2^{F}. If A satisfies Hall condition, then there exists a singlification of A which satisfies Hall condition.
(32) Let F be a non empty finite set and A be a non empty finite sequence of elements of 2^{F}. Then there exists a set which is a system of different representatives of A if and only if A satisfies Hall condition.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[7] Philip Hall. On representatives of subsets. Journal of London Mathematical Society, 10:26-30, 1935.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 11, 2004

[^0]: ${ }^{1}$ This work has been partially supported by the CALCULEMUS grant HPRN-CT-200000102.

