
FORMALIZED MATHEMATICS

Volume 12, Number 3, 2004

University of Białystok

The Hall Marriage Theorem

Ewa Romanowicz

University of Białystok

Adam Grabowski1

University of Białystok

Summary. The Marriage Theorem, as credited to Philip Hall [7], gives the
necessary and sufficient condition allowing us to select a distinct element from

each of a finite collection {Ai} of n finite subsets. This selection, called a set of

different representatives (SDR), exists if and only if the marriage condition (or

Hall condition) is satisfied:

∀J⊆{1,...,n}|
⋃

i∈J

Ai| ­ |J |.

The proof which is given in this article (according to Richard Rado, 1967) is

based on the lemma that for finite sequences with non-trivial elements which

satisfy Hall property there exists a reduction (see Def. 5) such that Hall property

again holds (see Th. 29 for details).

MML Identifier: HALLMAR1.

The notation and terminology used here are introduced in the following papers:

[9], [5], [10], [11], [4], [8], [2], [6], [1], and [3].

1. Preliminaries

One can prove the following proposition

(1) For all finite setsX, Y holds card(X∪Y )+card(X∩Y ) = cardX+cardY.

In this article we present several logical schemes. The scheme Regr11 deals

with a natural number A and a unary predicate P, and states that:

For every natural number k such that 1 ¬ k and k ¬ A holds

P[k]
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provided the parameters meet the following conditions:

• P[A] and A ­ 2, and

• For every natural number k such that 1 ¬ k and k < A and

P[k + 1] holds P[k].

The scheme Regr2 concerns a unary predicate P, and states that:

P[1]

provided the parameters meet the following requirements:

• There exists a natural number n such that n > 1 and P[n], and

• For every natural number k such that k ­ 1 and P[k + 1] holds

P[k].

Let F be a non empty set. One can check that there exists a finite sequence

of elements of 2F which is non empty and non-empty.

We now state the proposition

(2) Let F be a non empty set, f be a non-empty finite sequence of elements

of 2F , and i be a natural number. If i ∈ dom f, then f(i) 6= ∅.

Let F be a finite set, let A be a finite sequence of elements of 2F , and let i

be a natural number. Note that A(i) is finite.

2. Union of Finite Sequences

Let F be a set, let A be a finite sequence of elements of 2F , and let J be a

set. The functor
⋃

J A yields a set and is defined as follows:

(Def. 1) For every set x holds x ∈
⋃

J A iff there exists a set j such that j ∈ J

and j ∈ domA and x ∈ A(j).

Next we state two propositions:

(3) For every set F and for every finite sequence A of elements of 2F and

for every set J holds
⋃

J A ⊆ F.

(4) Let F be a finite set, A be a finite sequence of elements of 2F , and J , K

be sets. If J ⊆ K, then
⋃

J A ⊆
⋃

K A.

Let F be a finite set, let A be a finite sequence of elements of 2F , and let J

be a set. One can verify that
⋃

J A is finite.

The following propositions are true:

(5) Let F be a finite set, A be a finite sequence of elements of 2F , and i be

a natural number. If i ∈ domA, then
⋃
{i}A = A(i).

(6) Let F be a finite set, A be a finite sequence of elements of 2F , and i, j be

natural numbers. If i ∈ domA and j ∈ domA, then
⋃
{i,j}A = A(i)∪A(j).

(7) Let J be a set, F be a finite set, A be a finite sequence of elements of

2F , and i be a natural number. If i ∈ J and i ∈ domA, then A(i) ⊆
⋃

J A.
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(8) Let J be a set, F be a finite set, i be a natural number, and A be a

finite sequence of elements of 2F . If i ∈ J and i ∈ domA, then
⋃

J A =
⋃

J\{i}A ∪A(i).

(9) Let J1, J2 be sets, F be a finite set, i be a natural number, and A be

a finite sequence of elements of 2F . If i ∈ domA, then
⋃
{i}∪J1∪J2

A =

A(i) ∪
⋃

J1∪J2
A.

(10) Let F be a finite set, A be a finite sequence of elements of 2F , i be a

natural number, and x, y be sets. If x 6= y and x ∈ A(i) and y ∈ A(i),

then (A(i) \ {x}) ∪ (A(i) \ {y}) = A(i).

3. Cut Operation for Finite Sequences

Let F be a finite set, let A be a finite sequence of elements of 2F , let i be

a natural number, and let x be a set. The functor Cut(A, i, x) yielding a finite

sequence of elements of 2F is defined by the conditions (Def. 2).

(Def. 2)(i) domCut(A, i, x) = domA, and

(ii) for every natural number k such that k ∈ domCut(A, i, x) holds if i = k,

then (Cut(A, i, x))(k) = A(k) \ {x} and if i 6= k, then (Cut(A, i, x))(k) =

A(k).

The following propositions are true:

(11) Let F be a finite set, A be a finite sequence of elements of 2F , i be

a natural number, and x be a set. If i ∈ domA and x ∈ A(i), then

card(Cut(A, i, x))(i) = cardA(i)− 1.

(12) Let F be a finite set, A be a finite sequence of elements of 2F , i be a

natural number, and x, J be sets. Then
⋃

J\{i}Cut(A, i, x) =
⋃

J\{i}A.

(13) Let F be a finite set, A be a finite sequence of elements of 2F , i be a

natural number, and x, J be sets. If i /∈ J, then
⋃

J A =
⋃

J Cut(A, i, x).

(14) Let F be a finite set, A be a finite sequence of elements of 2F , i be

a natural number, and x, J be sets. If i ∈ domCut(A, i, x) and J ⊆

domCut(A, i, x) and i ∈ J, then
⋃

J Cut(A, i, x) =
⋃

J\{i}A∪ (A(i)\{x}).

4. System of Different Representatives and Hall Property

Let F be a finite set, let X be a finite sequence of elements of 2F , and let A

be a set. We say that A is a system of different representatives of X if and only

if the condition (Def. 3) is satisfied.

(Def. 3) There exists a finite sequence f of elements of F such that f = A and

domX = dom f and for every natural number i such that i ∈ dom f holds

f(i) ∈ X(i) and f is one-to-one.
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Let F be a finite set and let A be a finite sequence of elements of 2F . We

say that A satisfies Hall condition if and only if:

(Def. 4) For every finite set J such that J ⊆ domA holds cardJ ¬ card
⋃

J A.

Next we state four propositions:

(15) Let F be a finite set and A be a non empty finite sequence of elements

of 2F . If A satisfies Hall condition, then A is non-empty.

(16) Let F be a finite set, A be a finite sequence of elements of 2F , and i

be a natural number. If i ∈ domA and A satisfies Hall condition, then

cardA(i) ­ 1.

(17) Let F be a non empty finite set and A be a non empty finite sequence of

elements of 2F . Suppose for every natural number i such that i ∈ domA

holds cardA(i) = 1 and A satisfies Hall condition. Then there exists a set

which is a system of different representatives of A.

(18) Let F be a finite set and A be a finite sequence of elements of 2F such

that there exists a set which is a system of different representatives of A.

Then A satisfies Hall condition.

5. Reductions and Singlifications of Finite Sequences

Let F be a set, let A be a finite sequence of elements of 2F , and let i be a

natural number. A finite sequence of elements of 2F is said to be a reduction of

A at i-th position if:

(Def. 5) dom it = domA and for every natural number j such that j ∈ domA

and j 6= i holds A(j) = it(j) and it(i) ⊆ A(i).

Let F be a set and let A be a finite sequence of elements of 2F . A finite

sequence of elements of 2F is said to be a reduction of A if:

(Def. 6) dom it = domA and for every natural number i such that i ∈ domA

holds it(i) ⊆ A(i).

Let F be a set, let A be a finite sequence of elements of 2F , and let i be a

natural number. Let us assume that i ∈ domA and A(i) 6= ∅. A reduction of A

is called a singlification of A at i-th position if:

(Def. 7) it(i) = 1.

One can prove the following propositions:

(19) Let F be a finite set, A be a finite sequence of elements of 2F , and i be a

natural number. Then every reduction of A at i-th position is a reduction

of A.

(20) Let F be a finite set, A be a finite sequence of elements of 2F , i be

a natural number, and x be a set. If i ∈ domA and x ∈ A(i), then

Cut(A, i, x) is a reduction of A at i-th position.
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(21) Let F be a finite set, A be a finite sequence of elements of 2F , i be

a natural number, and x be a set. If i ∈ domA and x ∈ A(i), then

Cut(A, i, x) is a reduction of A.

(22) Let F be a finite set, A be a finite sequence of elements of 2F , and B be

a reduction of A. Then every reduction of B is a reduction of A.

(23) Let F be a non empty finite set, A be a non-empty finite sequence of

elements of 2F , i be a natural number, and B be a singlification of A at

i-th position. If i ∈ domA, then B(i) 6= ∅.

(24) Let F be a non empty finite set, A be a non-empty finite sequence of

elements of 2F , i, j be natural numbers, B be a singlification of A at i-th

position, and C be a singlification of B at j-th position. Suppose i ∈ domA

and j ∈ domA and C(i) 6= ∅ and B(j) 6= ∅. Then C is a singlification of

A at j-th position and a singlification of A at i-th position.

(25) Let F be a set, A be a finite sequence of elements of 2F , and i be a

natural number. Then A is a reduction of A at i-th position.

(26) For every set F holds every finite sequence A of elements of 2F is a

reduction of A.

Let F be a non empty set and let A be a finite sequence of elements of 2F .

Let us assume that A is non-empty. A reduction of A is called a singlification

of A if:

(Def. 8) For every natural number i such that i ∈ domA holds it(i) = 1.

We now state the proposition

(27) Let F be a non empty finite set, A be a non empty non-empty finite

sequence of elements of 2F , and f be a function. Then f is a singlification

of A if and only if the following conditions are satisfied:

(i) dom f = domA, and

(ii) for every natural number i such that i ∈ domA holds f is a singlification

of A at i-th position.

Let F be a non empty finite set, let A be a non empty finite sequence of

elements of 2F , and let k be a natural number. Note that every singlification of

A at k-th position is non empty.

Let F be a non empty finite set and let A be a non empty finite sequence of

elements of 2F . One can check that every singlification of A is non empty.

6. Rado’s Proof of the Hall Marriage Theorem

One can prove the following propositions:

(28) Let F be a non empty finite set, A be a non empty finite sequence of

elements of 2F , X be a set, and B be a reduction of A. Suppose X is a
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system of different representatives of B. Then X is a system of different

representatives of A.

(29) Let F be a finite set and A be a finite sequence of elements of 2F . Suppose

A satisfies Hall condition. Let i be a natural number. If cardA(i) ­ 2,

then there exists a set x such that x ∈ A(i) and Cut(A, i, x) satisfies Hall

condition.

(30) Let F be a finite set, A be a finite sequence of elements of 2F , and i be

a natural number. If i ∈ domA and A satisfies Hall condition, then there

exists a singlification of A at i-th position which satisfies Hall condition.

(31) Let F be a non empty finite set and A be a non empty finite sequ-

ence of elements of 2F . If A satisfies Hall condition, then there exists a

singlification of A which satisfies Hall condition.

(32) Let F be a non empty finite set and A be a non empty finite sequence

of elements of 2F . Then there exists a set which is a system of different

representatives of A if and only if A satisfies Hall condition.
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