The Hall Marriage Theorem

Ewa Romanowicz University of Białystok Adam Grabowski¹ University of Białystok

Summary. The Marriage Theorem, as credited to Philip Hall [7], gives the necessary and sufficient condition allowing us to select a distinct element from each of a finite collection $\{A_i\}$ of n finite subsets. This selection, called a set of different representatives (SDR), exists if and only if the marriage condition (or Hall condition) is satisfied:

$$\forall_{J\subseteq\{1,\ldots,n\}}|\bigcup_{i\in J}A_i|\geqslant |J|.$$

The proof which is given in this article (according to Richard Rado, 1967) is based on the lemma that for finite sequences with non-trivial elements which satisfy Hall property there exists a reduction (see Def. 5) such that Hall property again holds (see Th. 29 for details).

MML Identifier: HALLMAR1.

The notation and terminology used here are introduced in the following papers: [9], [5], [10], [11], [4], [8], [2], [6], [1], and [3].

1. Preliminaries

One can prove the following proposition

(1) For all finite sets X, Y holds $\operatorname{card}(X \cup Y) + \operatorname{card}(X \cap Y) = \operatorname{card} X + \operatorname{card} Y$.

In this article we present several logical schemes. The scheme Regr11 deals with a natural number \mathcal{A} and a unary predicate \mathcal{P} , and states that:

For every natural number k such that $1 \leq k$ and $k \leq \mathcal{A}$ holds $\mathcal{P}[k]$

C 2004 University of Białystok ISSN 1426-2630

 $^{^1\}mathrm{This}$ work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-00102.

provided the parameters meet the following conditions:

- $\mathcal{P}[\mathcal{A}]$ and $\mathcal{A} \ge 2$, and
- For every natural number k such that $1 \leq k$ and k < A and $\mathcal{P}[k+1]$ holds $\mathcal{P}[k]$.
- The scheme Regr2 concerns a unary predicate \mathcal{P} , and states that: $\mathcal{P}[1]$

provided the parameters meet the following requirements:

- There exists a natural number n such that n > 1 and $\mathcal{P}[n]$, and
- For every natural number k such that $k \ge 1$ and $\mathcal{P}[k+1]$ holds $\mathcal{P}[k]$.

Let F be a non empty set. One can check that there exists a finite sequence of elements of 2^F which is non empty and non-empty.

We now state the proposition

(2) Let F be a non empty set, f be a non-empty finite sequence of elements of 2^F , and i be a natural number. If $i \in \text{dom } f$, then $f(i) \neq \emptyset$.

Let F be a finite set, let A be a finite sequence of elements of 2^F , and let i be a natural number. Note that A(i) is finite.

2. Union of Finite Sequences

Let F be a set, let A be a finite sequence of elements of 2^F , and let J be a set. The functor $\bigcup_J A$ yields a set and is defined as follows:

(Def. 1) For every set x holds $x \in \bigcup_J A$ iff there exists a set j such that $j \in J$ and $j \in \text{dom } A$ and $x \in A(j)$.

Next we state two propositions:

- (3) For every set F and for every finite sequence A of elements of 2^F and for every set J holds $\bigcup_J A \subseteq F$.
- (4) Let F be a finite set, A be a finite sequence of elements of 2^F , and J, K be sets. If $J \subseteq K$, then $\bigcup_J A \subseteq \bigcup_K A$.

Let F be a finite set, let A be a finite sequence of elements of 2^F , and let J be a set. One can verify that $\bigcup_J A$ is finite.

The following propositions are true:

- (5) Let F be a finite set, A be a finite sequence of elements of 2^F , and i be a natural number. If $i \in \text{dom } A$, then $\bigcup_{\{i\}} A = A(i)$.
- (6) Let F be a finite set, A be a finite sequence of elements of 2^F , and i, j be natural numbers. If $i \in \text{dom } A$ and $j \in \text{dom } A$, then $\bigcup_{\{i,j\}} A = A(i) \cup A(j)$.
- (7) Let J be a set, F be a finite set, A be a finite sequence of elements of 2^F , and i be a natural number. If $i \in J$ and $i \in \text{dom } A$, then $A(i) \subseteq \bigcup_J A$.

- (8) Let J be a set, F be a finite set, i be a natural number, and A be a finite sequence of elements of 2^F . If $i \in J$ and $i \in \text{dom } A$, then $\bigcup_J A = \bigcup_{J \setminus \{i\}} A \cup A(i)$.
- (9) Let J_1 , J_2 be sets, F be a finite set, i be a natural number, and A be a finite sequence of elements of 2^F . If $i \in \text{dom } A$, then $\bigcup_{\{i\} \cup J_1 \cup J_2} A = A(i) \cup \bigcup_{J_1 \cup J_2} A$.
- (10) Let F be a finite set, A be a finite sequence of elements of 2^F , i be a natural number, and x, y be sets. If $x \neq y$ and $x \in A(i)$ and $y \in A(i)$, then $(A(i) \setminus \{x\}) \cup (A(i) \setminus \{y\}) = A(i)$.

3. Cut Operation for Finite Sequences

Let F be a finite set, let A be a finite sequence of elements of 2^{F} , let i be a natural number, and let x be a set. The functor $\operatorname{Cut}(A, i, x)$ yielding a finite sequence of elements of 2^{F} is defined by the conditions (Def. 2).

(Def. 2)(i) dom $\operatorname{Cut}(A, i, x) = \operatorname{dom} A$, and

(ii) for every natural number k such that $k \in \text{dom Cut}(A, i, x)$ holds if i = k, then $(\text{Cut}(A, i, x))(k) = A(k) \setminus \{x\}$ and if $i \neq k$, then (Cut(A, i, x))(k) = A(k).

The following propositions are true:

- (11) Let F be a finite set, A be a finite sequence of elements of 2^F , i be a natural number, and x be a set. If $i \in \text{dom } A$ and $x \in A(i)$, then $\operatorname{card}(\operatorname{Cut}(A, i, x))(i) = \operatorname{card} A(i) 1$.
- (12) Let F be a finite set, A be a finite sequence of elements of 2^F , i be a natural number, and x, J be sets. Then $\bigcup_{J \setminus \{i\}} \operatorname{Cut}(A, i, x) = \bigcup_{J \setminus \{i\}} A$.
- (13) Let F be a finite set, A be a finite sequence of elements of 2^F , i be a natural number, and x, J be sets. If $i \notin J$, then $\bigcup_I A = \bigcup_I \operatorname{Cut}(A, i, x)$.
- (14) Let F be a finite set, A be a finite sequence of elements of 2^F , i be a natural number, and x, J be sets. If $i \in \text{dom Cut}(A, i, x)$ and $J \subseteq \text{dom Cut}(A, i, x)$ and $i \in J$, then $\bigcup_J \text{Cut}(A, i, x) = \bigcup_{J \setminus \{i\}} A \cup (A(i) \setminus \{x\})$.

4. System of Different Representatives and Hall Property

Let F be a finite set, let X be a finite sequence of elements of 2^F , and let A be a set. We say that A is a system of different representatives of X if and only if the condition (Def. 3) is satisfied.

(Def. 3) There exists a finite sequence f of elements of F such that f = A and dom X = dom f and for every natural number i such that $i \in \text{dom } f$ holds $f(i) \in X(i)$ and f is one-to-one.

Let F be a finite set and let A be a finite sequence of elements of 2^{F} . We say that A satisfies Hall condition if and only if:

- (Def. 4) For every finite set J such that $J \subseteq \text{dom } A$ holds $\text{card } J \leq \text{card } \bigcup_J A$. Next we state four propositions:
 - (15) Let F be a finite set and A be a non empty finite sequence of elements of 2^{F} . If A satisfies Hall condition, then A is non-empty.
 - (16) Let F be a finite set, A be a finite sequence of elements of 2^F , and i be a natural number. If $i \in \text{dom } A$ and A satisfies Hall condition, then $\operatorname{card} A(i) \ge 1$.
 - (17) Let F be a non empty finite set and A be a non empty finite sequence of elements of 2^{F} . Suppose for every natural number i such that $i \in \text{dom } A$ holds card A(i) = 1 and A satisfies Hall condition. Then there exists a set which is a system of different representatives of A.
 - (18) Let F be a finite set and A be a finite sequence of elements of 2^F such that there exists a set which is a system of different representatives of A. Then A satisfies Hall condition.
 - 5. Reductions and Singlifications of Finite Sequences

Let F be a set, let A be a finite sequence of elements of 2^F , and let i be a natural number. A finite sequence of elements of 2^F is said to be a reduction of A at *i*-th position if:

(Def. 5) dom it = dom A and for every natural number j such that $j \in \text{dom } A$ and $j \neq i$ holds A(j) = it(j) and $\text{it}(i) \subseteq A(i)$.

Let F be a set and let A be a finite sequence of elements of 2^{F} . A finite sequence of elements of 2^{F} is said to be a reduction of A if:

(Def. 6) dom it = dom A and for every natural number i such that $i \in \text{dom } A$ holds it $(i) \subseteq A(i)$.

Let F be a set, let A be a finite sequence of elements of 2^F , and let i be a natural number. Let us assume that $i \in \text{dom } A$ and $A(i) \neq \emptyset$. A reduction of A is called a singlification of A at i-th position if:

(Def. 7)
$$it(i) = 1$$
.

One can prove the following propositions:

- (19) Let F be a finite set, A be a finite sequence of elements of 2^{F} , and i be a natural number. Then every reduction of A at i-th position is a reduction of A.
- (20) Let F be a finite set, A be a finite sequence of elements of 2^{F} , i be a natural number, and x be a set. If $i \in \text{dom } A$ and $x \in A(i)$, then Cut(A, i, x) is a reduction of A at *i*-th position.

- (21) Let F be a finite set, A be a finite sequence of elements of 2^F , i be a natural number, and x be a set. If $i \in \text{dom } A$ and $x \in A(i)$, then Cut(A, i, x) is a reduction of A.
- (22) Let F be a finite set, A be a finite sequence of elements of 2^F , and B be a reduction of A. Then every reduction of B is a reduction of A.
- (23) Let F be a non empty finite set, A be a non-empty finite sequence of elements of 2^F , i be a natural number, and B be a singlification of A at *i*-th position. If $i \in \text{dom } A$, then $B(i) \neq \emptyset$.
- (24) Let F be a non empty finite set, A be a non-empty finite sequence of elements of 2^{F} , i, j be natural numbers, B be a singlification of A at i-th position, and C be a singlification of B at j-th position. Suppose $i \in \text{dom } A$ and $j \in \text{dom } A$ and $C(i) \neq \emptyset$ and $B(j) \neq \emptyset$. Then C is a singlification of A at j-th position and a singlification of A at i-th position.
- (25) Let F be a set, A be a finite sequence of elements of 2^F , and i be a natural number. Then A is a reduction of A at *i*-th position.
- (26) For every set F holds every finite sequence A of elements of 2^F is a reduction of A.

Let F be a non empty set and let A be a finite sequence of elements of 2^{F} . Let us assume that A is non-empty. A reduction of A is called a singlification of A if:

- (Def. 8) For every natural number i such that $i \in \text{dom } A$ holds $\overline{\overline{\text{it}(i)}} = 1$. We now state the proposition
 - (27) Let F be a non empty finite set, A be a non empty non-empty finite sequence of elements of 2^F , and f be a function. Then f is a singlification of A if and only if the following conditions are satisfied:
 - (i) $\operatorname{dom} f = \operatorname{dom} A$, and
 - (ii) for every natural number i such that $i \in \text{dom } A$ holds f is a singlification of A at i-th position.

Let F be a non empty finite set, let A be a non empty finite sequence of elements of 2^{F} , and let k be a natural number. Note that every singlification of A at k-th position is non empty.

Let F be a non empty finite set and let A be a non empty finite sequence of elements of 2^{F} . One can check that every singlification of A is non empty.

6. RADO'S PROOF OF THE HALL MARRIAGE THEOREM

One can prove the following propositions:

(28) Let F be a non empty finite set, A be a non empty finite sequence of elements of 2^F , X be a set, and B be a reduction of A. Suppose X is a

system of different representatives of B. Then X is a system of different representatives of A.

- (29) Let F be a finite set and A be a finite sequence of elements of 2^{F} . Suppose A satisfies Hall condition. Let i be a natural number. If card $A(i) \ge 2$, then there exists a set x such that $x \in A(i)$ and Cut(A, i, x) satisfies Hall condition.
- (30) Let F be a finite set, A be a finite sequence of elements of 2^{F} , and i be a natural number. If $i \in \text{dom } A$ and A satisfies Hall condition, then there exists a singlification of A at *i*-th position which satisfies Hall condition.
- (31) Let F be a non empty finite set and A be a non empty finite sequence of elements of 2^{F} . If A satisfies Hall condition, then there exists a singlification of A which satisfies Hall condition.
- (32) Let F be a non empty finite set and A be a non empty finite sequence of elements of 2^{F} . Then there exists a set which is a system of different representatives of A if and only if A satisfies Hall condition.

References

- Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe*matics*, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- Philip Hall. On representatives of subsets. Journal of London Mathematical Society, 10:26-30, 1935.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 11, 2004