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Summary. In this article we formalize theorems from Chapter 1 of [7].
Our article covers Theorems 1.5.4, 1.5.5 (inequality on indices), 1.5.6 (equality of

indices), Lemma 1.6.1 and several other supporting theorems needed to complete

the formalization.

MML Identifier: GROUP 8.

The articles [1], [12], [5], [19], [20], [3], [4], [13], [16], [6], [14], [15], [10], [8], [17],

[18], [11], [2], and [9] provide the terminology and notation for this paper.

For simplicity, we adopt the following rules: G is a strict group, a, b, x, y, z

are elements of the carrier of G, H, K are strict subgroups of G, p is a natural

number, and A is a subset of the carrier of G.

We now state a number of propositions:

(1) If p is prime and ord(G) = p and G is finite, then there exists a such

that ord(a) = p.

(2) Let a1, a2 be elements of the carrier of H and b1, b2 be elements of the

carrier of G. If a1 = b1 and a2 = b2, then a1 · a2 = b1 · b2.

(3) Let a be an element of the carrier of H and b be an element of the carrier

of G. If a = b, then for every natural number n holds an = bn.

(4) Let a be an element of the carrier of H and b be an element of the carrier

of G. If a = b, then for every integer i holds ai = bi.
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(5) Let a be an element of the carrier of H and b be an element of the carrier

of G. If a = b and G is finite, then ord(a) = ord(b).

(6) For every element h of the carrier of G such that h ∈ H holds H ·h ⊆ the

carrier of H.

(7) For every a such that a 6= 1G holds gr({a}) 6= {1}G.

(8) For every integer m holds (1G)m = 1G.

(9) For every integer m holds am·ord(a) = 1G.

(10) For every a such that a is not of order 0 and for every integer m holds

am = ammod ord(a).

(11) If b is not of order 0, then gr({b}) is finite.

(12) If b is of order 0, then b−1 is of order 0.

(13) b is of order 0 iff for every integer n such that bn = 1G holds n = 0.

(14) Let given G. Given a such that a 6= 1G. Then for every H holds H = G

or H = {1}G if and only if the following conditions are satisfied:

(i) G is a cyclic group and finite, and

(ii) there exists a natural number p such that ord(G) = p and p is prime.

(15) Let x, y, z be elements of the carrier of G and A be a subset of the

carrier of G. Then z ∈ x · A · y if and only if there exists an element a of

the carrier of G such that z = x · a · y and a ∈ A.

(16) For every non empty subset A of G and for every element x of the carrier

of G holds A = x−1 ·A · x.

Let us consider G, H, K. The functor DoubleCosets(H, K) yielding a family

of subsets of the carrier of G is defined as follows:

(Def. 1) A ∈ DoubleCosets(H, K) iff there exists a such that A = H · a ·K.

We now state two propositions:

(17) z ∈ H · x ·K iff there exist elements g, h of the carrier of G such that

z = g · x · h and g ∈ H and h ∈ K.

(18) For all H, K holds H ·x ·K = H · y ·K or it is not true that there exists

z such that z ∈ H · x ·K and z ∈ H · y ·K.

In the sequel B, A denote strict subgroups of G and D denotes a strict

subgroup of A.

Let us consider G, A. Observe that the left cosets of A is non empty.

Let us consider G and let H be a subgroup of G. We introduce [G : H]N as

a synonym of |• : H|N.

Next we state several propositions:

(19) If G = A ⊔B and D = A ∩B and G is finite, then [G : B]N ­ [A : D]N.

(20) If G is finite, then [G : H]N > 0.

(21) Let G be a strict group. Suppose G is finite. Let C be a strict subgroup

of G and A, B be strict subgroups of C. Suppose C = A ⊔B. Let D be a
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strict subgroup of A. Suppose D = A∩B. Let E be a strict subgroup of B.

Suppose E = A∩B. Let F be a strict subgroup of C. Suppose F = A∩B.

Suppose the left cosets of B is finite and the left cosets of A is finite and

[A : C]N and [B : C]N are relative prime. Then [B : C]N = [D : A]N and

[A : C]N = [E : B]N.

(22) For every element a of the carrier of G such that a ∈ H and for every

integer j holds aj ∈ H.

(23) For every strict group G such that G 6= {1}G there exists an element b

of the carrier of G such that b 6= 1G.

(24) Let G be a strict group and a be an element of the carrier of G. Suppose

G = gr({a}) and G 6= {1}G. Let H be a strict subgroup of G. IfH 6= {1}G,

then there exists a natural number k such that 0 < k and ak ∈ H.

(25) Let G be a strict cyclic group. Suppose G 6= {1}G. Let H be a strict

subgroup of G. If H 6= {1}G, then H is a cyclic group.
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