Exponential Function on Complex Banach Algebra

Noboru Endou
Gifu National College of Technology

Summary. This article is an extension of [18].

MML Identifier: CLOPBAN4.

The papers [23], [24], [4], [5], [2], [20], [21], [9], [1], [22], [13], [15], [16], [12], [10], [11], [17], [14], [25], [3], [7], [6], [19], and [8] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: X denotes a complex Banach algebra, w, z, z_{1}, z_{2} denote elements of X, k, l, m, n denote natural numbers, $s_{1}, s_{2}, s_{3}, s, s^{\prime}$ denote sequences of X, and r_{1} denotes a sequence of real numbers.

Let X be a non empty normed complex algebra structure and let x, y be elements of X. We say that x, y are commutative if and only if:

(Def. 1) $x \cdot y=y \cdot x$.

Let us note that the predicate x, y are commutative is symmetric.
One can prove the following propositions:
(1) If s_{2} is convergent and s_{3} is convergent and $\lim \left(s_{2}-s_{3}\right)=0_{X}$, then $\lim s_{2}=\lim s_{3}$.
(2) For every z such that for every natural number n holds $s(n)=z$ holds $\lim s=z$.
(3) If s is convergent and s^{\prime} is convergent, then $s \cdot s^{\prime}$ is convergent.
(4) If s is convergent, then $z \cdot s$ is convergent.
(5) If s is convergent, then $s \cdot z$ is convergent.
(6) If s is convergent, then $\lim (z \cdot s)=z \cdot \lim s$.
(7) If s is convergent, then $\lim (s \cdot z)=\lim s \cdot z$.
(8) If s is convergent and s^{\prime} is convergent, then $\lim \left(s \cdot s^{\prime}\right)=\lim s \cdot \lim s^{\prime}$.
(9) $\left(\sum_{\alpha=0}^{\kappa}\left(z \cdot s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=z \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ and $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1} \cdot z\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=$ $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}} \cdot z$.
(10) $\left\|\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right\| \leqslant\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$.
(11) If for every n such that $n \leqslant m$ holds $s_{2}(n)=s_{3}(n)$, then $\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m)=\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
(12) If for every n holds $\left\|s_{1}(n)\right\| \leqslant r_{1}(n)$ and r_{1} is convergent and $\lim r_{1}=0$, then s_{1} is convergent and $\lim s_{1}=0_{X}$.
Let us consider X, z. The functor z ExpSeq yields a sequence of X and is defined as follows:
(Def. 2) For every n holds $z \operatorname{ExpSeq}(n)=\frac{1_{\mathrm{C}}}{n!_{\mathrm{C}}} \cdot z_{\mathrm{N}}^{n}$.
The scheme ExNormSpace CASE deals with a non empty complex Banach algebra \mathcal{A} and a binary functor \mathcal{F} yielding a point of \mathcal{A}, and states that:

For every k there exists a sequence s_{1} of \mathcal{A} such that for every n
holds if $n \leqslant k$, then $s_{1}(n)=\mathcal{F}(k, n)$ and if $n>k$, then $s_{1}(n)=0_{\mathcal{A}}$
for all values of the parameters.
Let us consider X, s_{1}. The functor Shift s_{1} yielding a sequence of X is defined by:
(Def. 3) (Shift $\left.s_{1}\right)(0)=0_{X}$ and for every natural number k holds $\left(\operatorname{Shift} s_{1}\right)(k+$ 1) $=s_{1}(k)$.

Let us consider n, X, z, w. The functor $\operatorname{Expan}(n, z, w)$ yielding a sequence of X is defined by:
(Def. 4) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Expan}(n, z, w))(k)=$ $(\operatorname{Coef} n)(k) \cdot z_{\mathbb{N}}^{k} \cdot w_{\mathbb{N}}^{n-{ }^{\prime} k}$ and if $n<k$, then $(\operatorname{Expan}(n, z, w))(k)=0_{X}$.
Let us consider n, X, z, w. The functor Expan_e (n, z, w) yields a sequence of X and is defined as follows:
(Def. 5) For every natural number k holds if $k \leqslant n$, then $\left(\operatorname{Expan} _\mathrm{e}(n, z, w)\right)(k)=$ (Coef_e $n)(k) \cdot z_{\mathbb{N}}^{k} \cdot w_{\mathbb{N}}^{n-{ }^{\prime} k}$ and if $n<k$, then (Expan_e $\left.(n, z, w)\right)(k)=0_{X}$.
Let us consider n, X, z, w. The functor $\operatorname{Alfa}(n, z, w)$ yielding a sequence of X is defined by:
(Def. 6) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Alfa}(n, z, w))(k)=$ $z \operatorname{ExpSeq}(k) \cdot\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}\left(n-^{\prime} k\right)$ and if $n<k$, then $(\operatorname{Alfa}(n, z, w))(k)=0_{X}$.
Let us consider X, z, w, n. The functor $\operatorname{Conj}(n, z, w)$ yields a sequence of X and is defined as follows:
(Def. 7) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Conj}(n, z, w))(k)=$ $z \operatorname{ExpSeq}(k) \cdot\left(\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)-\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}\left(n-^{\prime}\right.\right.$ $k))$ and if $n<k$, then $(\operatorname{Conj}(n, z, w))(k)=0_{X}$.
Next we state several propositions:
(13) $z \operatorname{ExpSeq}(n+1)=\frac{1_{\mathrm{C}}}{(n+1)+0 i} \cdot z \cdot z \operatorname{ExpSeq}(n)$ and $z \operatorname{ExpSeq}(0)=\mathbf{1}_{X}$ and $\|z \operatorname{ExpSeq}(n)\| \leqslant\|z\| \operatorname{ExpSeq}(n)$.
(14) If $0<k$, then $\left(\right.$ Shift $\left.s_{1}\right)(k)=s_{1}\left(k-^{\prime} 1\right)$. $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)=\left(\sum_{\alpha=0}^{\kappa}\left(\text { Shift } s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)+s_{1}(k)$.
(16) For all z, w such that z, w are commutative holds $(z+w)_{\mathbb{N}}^{n}=$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Expan}(n, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(17) $\operatorname{Expan}-\mathrm{e}(n, z, w)=\frac{1_{\mathrm{C}}}{n!\mathrm{C}} \cdot \operatorname{Expan}(n, z, w)$.
(18) For all z, w such that z, w are commutative holds $\frac{1_{\mathbb{C}}}{n!_{\mathrm{C}}} \cdot(z+w)_{\mathbb{N}}^{n}=$ $\left(\sum_{\alpha=0}^{\kappa}(\text { Expan_e }(n, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(19) 0_{X} ExpSeq is norm-summable and $\sum\left(0_{X}\right.$ ExpSeq $)=\mathbf{1}_{X}$.

Let us consider X and let z be an element of X. One can check that z ExpSeq is norm-summable.

We now state a number of propositions:
(20) $z \operatorname{ExpSeq}(0)=\mathbf{1}_{X}$ and $(\operatorname{Expan}(0, z, w))(0)=\mathbf{1}_{X}$.
(21) If $l \leqslant k$, then $(\operatorname{Alfa}(k+1, z, w))(l)=(\operatorname{Alfa}(k, z, w))(l)+(\operatorname{Expan}-\mathrm{e}(k+$ $1, z, w)(l)$.
(22) $\quad\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Alfa}(k+1, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Alfa}(k, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)+$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Expan} \mathrm{e}(k+1, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$.
(23) $z \operatorname{ExpSeq}(k)=(\operatorname{Expan} \mathrm{e}(k, z, w))(k)$.
(24) For all z, w such that z, w are commutative holds $\left(\sum_{\alpha=0}^{\kappa} z+\right.$ $w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n)=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Alfa}(n, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(25) For all z, w such that z, w are commutative holds $\left(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k) \cdot\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)-\left(\sum_{\alpha=0}^{\kappa} z+\right.$ $w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k)=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Conj}(k, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$.
(26) $0 \leqslant\|z\| \operatorname{ExpSeq}(n)$.
(27) $\left\|\left(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right\| \leqslant\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$ and $\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k) \leqslant \sum(\|z\| \operatorname{ExpSeq})$ and $\left\|\left(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right\| \leqslant \sum(\|z\| \operatorname{ExpSeq})$.
(28) $1 \leqslant \sum(\|z\| \operatorname{ExpSeq})$.
(29) $\left|\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|=\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$ and if $n \leqslant m$, then $\left|\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|$ $=\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(30) $\left|\left(\sum_{\alpha=0}^{\kappa}\|\operatorname{Conj}(k, z, w)\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|=\left(\sum_{\alpha=0}^{\kappa}\|\operatorname{Conj}(k, z, w)\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(31) For every real number p such that $p>0$ there exists n such that for every k such that $n \leqslant k$ holds $\left|\left(\sum_{\alpha=0}^{\kappa}\|\operatorname{Conj}(k, z, w)\|(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right|<p$.
(32) For every s_{1} such that for every k holds $s_{1}(k)=$
$\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Conj}(k, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$ holds s_{1} is convergent and $\lim s_{1}=0_{X}$.
Let us consider X. The functor $\exp X$ yields a function from the carrier of X into the carrier of X and is defined by:
(Def. 8) For every element z of the carrier of X holds $(\exp X)(z)=\sum(z \operatorname{ExpSeq})$.
Let us consider X, z. The functor $\exp z$ yielding an element of X is defined as follows:
(Def. 9) $\exp z=(\exp X)(z)$.
The following propositions are true:
(33) For every z holds $\exp z=\sum(z \operatorname{ExpSeq})$.
(34) Let given z_{1}, z_{2}. Suppose z_{1}, z_{2} are commutative. Then $\exp \left(z_{1}+z_{2}\right)=$ $\exp z_{1} \cdot \exp z_{2}$ and $\exp \left(z_{2}+z_{1}\right)=\exp z_{2} \cdot \exp z_{1}$ and $\exp \left(z_{1}+z_{2}\right)=\exp \left(z_{2}+\right.$ $\left.z_{1}\right)$ and $\exp z_{1}, \exp z_{2}$ are commutative.
(35) For all z_{1}, z_{2} such that z_{1}, z_{2} are commutative holds $z_{1} \cdot \exp z_{2}=\exp z_{2} \cdot z_{1}$.
(36) $\exp \left(0_{X}\right)=\mathbf{1}_{X}$.
(37) $\exp z \cdot \exp (-z)=\mathbf{1}_{X}$ and $\exp (-z) \cdot \exp z=\mathbf{1}_{X}$.
(38) $\exp z$ is invertible and $(\exp z)^{-1}=\exp (-z)$ and $\exp (-z)$ is invertible and $(\exp (-z))^{-1}=\exp z$
(39) For every z and for all complex numbers s, t holds $s \cdot z, t \cdot z$ are commutative.
(40) Let given z and s, t be complex numbers. Then $\exp (s \cdot z) \cdot \exp (t \cdot z)=$ $\exp ((s+t) \cdot z)$ and $\exp (t \cdot z) \cdot \exp (s \cdot z)=\exp ((t+s) \cdot z)$ and $\exp ((s+t) \cdot z)=$ $\exp ((t+s) \cdot z)$ and $\exp (s \cdot z), \exp (t \cdot z)$ are commutative.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Noboru Endou. Banach algebra of bounded complex linear operators. Formalized Mathematics, 12(3):237-242, 2004.
[7] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[8] Noboru Endou. Series on complex Banach algebra. Formalized Mathematics, 12(3):281288, 2004.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[11] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[14] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[17] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[18] Yasunari Shidama. The exponential function on Banach algebra. Formalized Mathematics, 12(2):173-177, 2004.
[19] Yasunari Shidama. The series on Banach algebra. Formalized Mathematics, 12(2):131138, 2004.
[20] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[21] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[25] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received April 6, 2004

