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Summary. This article is an extension of [20].

MML Identifier: CLOPBAN3.

The articles [22], [24], [25], [5], [6], [3], [2], [21], [11], [1], [23], [4], [15], [16], [17],
[14], [12], [13], [19], [18], [10], [8], [9], [7], and [20] provide the notation and
terminology for this paper.

1. BASIC PROPERTIES OF SEQUENCES OF NORM SPACE

Let X be a non empty complex normed space structure and let s; be a se-
quence of X. The functor (3 5 _(s1)(c))xen yielding a sequence of X is defined
as follows:

(Def. 1) (>o0_o(s1)(@))wen(0) = s1(0) and for every natural number n holds
(X a=o(s1)(@))ren(n +1) = oo—o(s1)(@))ren(n) + s1(n +1).

One can prove the following proposition

(1) Let X be an add-associative right zeroed right complementable non
empty complex normed space structure and s; be a sequence of X. Sup-
pose that for every natural number n holds s;(n) = Ox. Let m be a natural
number. Then (3°0_(s1)(a))wen(m) = 0x.

Let X be a complex normed space and let s; be a sequence of X. We say
that s; is summable if and only if:

(Def. 2) (30 _o(s1)(@))ken is convergent.
Let X be a complex normed space. One can verify that there exists a sequ-
ence of X which is summable.
Let X be a complex normed space and let s1 be a sequence of X. The functor
>~ s1 yields an element of X and is defined by:
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(Def. 3) 3751 =lm((3a—(s1)(e))men)-

Let X be a complex normed space and let s; be a sequence of X. We say
that s; is norm-summable if and only if:

(Def. 4) ||s1]| is summable.
The following propositions are true:

(2) For every complex normed space X and for every sequence s; of X and
for every natural number m holds 0 < ||s1||(m).

(3) For every complex normed space X and for all elements z, y, z of X
holds ||z —yl| = [|(z — 2) + (z — y) ||

(4) Let X be a complex normed space and s; be a sequence of X. Suppose
s1 is convergent. Let s be a real number. Suppose 0 < s. Then there exists
a natural number n such that for every natural number m if n < m, then
[s1(m) —s1(n)]| <.

(5) Let X be a complex normed space and s; be a sequence of X. Then s; is
Cauchy sequence by norm if and only if for every real number p such that

p > 0 there exists a natural number n such that for every natural number
m such that n < m holds ||s1(m) — s1(n)|| < p.

(6) Let X be a complex normed space and s; be a sequence of X. Suppose
that for every natural number n holds s1(n) = Ox. Let m be a natural
number. Then (3"~ _|Is1]|(a))wen(m) = 0.

Let X be a complex normed space and let s; be a sequence of X. Let us
observe that s; is constant if and only if:
(Def. 5) There exists an element r of X such that for every natural number n
holds s1(n) =r.

Let X be a complex normed space, let s; be a sequence of X, and let k
be a natural number. The functor s; T k£ yielding a sequence of X is defined as
follows:

(Def. 6) For every natural number n holds (s; T k)(n) = s1(n + k).

Let X be a complex normed space and let s1, so be sequences of X. We say
that s; is a subsequence of ss if and only if:

(Def. 7) There exists an increasing sequence N of naturals such that s; = so- Nj.
Next we state a number of propositions:

(7) For every complex normed space X and for every sequence s; of X holds
S1 T 0= S1.

(8) For every complex normed space X and for every sequence s; of X and
for all natural numbers k£, m holds s1 TkTm =s1 Tm1Tk.

(9) For every complex normed space X and for every sequence s; of X and
for all natural numbers k, m holds s; Tk Tm = s1 1 (k+m).
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(10) Let X be a complex normed space and s1, s2 be sequences of X. If s9 is
a subsequence of s; and s; is convergent, then so is convergent.

(11) Let X be a complex normed space and s1, so be sequences of X. If s9 is
a subsequence of s; and s is convergent, then lim s5 = lim s.

(12) Let X be a complex normed space, s; be a sequence of X, and k be a
natural number. Then sy T k is a subsequence of s;.

(13) Let X be a complex normed space, s, s2 be sequences of X, and k
be a natural number. If s; is convergent, then s; T k is convergent and
lim(s; Tk) =lims;.

(14) Let X be a complex normed space and s1, s2 be sequences of X. Suppose
s1 is convergent and there exists a natural number k such that s; = so T k.
Then s, is convergent.

(15) Let X be a complex normed space and s1, s2 be sequences of X. Suppose
s1 is convergent and there exists a natural number k such that s; = so T k.
Then lim so = lim s1.

(16) For every complex normed space X and for every sequence s; of X such
that s; is constant holds s; is convergent.

(17) Let X be a complex normed space and s; be a sequence of X. If for
every natural number n holds s1(n) = Ox, then s; is norm-summable.

Let X be a complex normed space. Observe that there exists a sequence of
X which is norm-summable.
The following three propositions are true:

(18) Let X be a complex normed space and s be a sequence of X. If s is
summable, then s is convergent and lims = Ox.

(19) For every complex normed space X and for all sequences sz, sq4 of X
holds (324 _o(s3)(a))ken + (Xoa—o(54) (@) ren = (3oa—o(s3 + 54) (@) xen-

(20) For every complex normed space X and for all sequences s3, s4 of X
holds (325_0(s3)(a))wen — (Xao(s4)(@))ren = (2oq—o(s3 — 54)(@))ren.

Let X be a complex normed space and let s; be a norm-summable sequence
of X. Observe that ||s1]| is summable.

Let X be a complex normed space. One can check that every sequence of X
which is summable is also convergent.

The following two propositions are true:

(21) Let X be a complex normed space and s2, s5 be sequences of X. If s9 is
summable and s5 is summable, then sg+ s5 is summable and  J(sa+s5) =
>822+ ss.

(22) Let X be a complex normed space and sg, s5 be sequences of X. If s9 is
summable and s is summable, then sg — s5 is summable and ) (s2 —s5) =

> 89— ss.
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Let X be a complex normed space and let s9, s5 be summable sequences of
X. One can check that sy + s5 is summable and sy — s5 is summable.
The following propositions are true:

(23) For every complex normed space X and for every sequence s; of X
and for every complex number z holds (3°h_ (2 - s1)(@))keny = z -
(Xa=o(s1)(a))ren-

(24) Let X be a complex normed space, s; be a summable sequence of X, and
z be a complex number. Then z - s is summable and Y (z-s1) = 2> 1.

Let X be a complex normed space, let z be a complex number, and let s;
be a summable sequence of X. One can check that z - s; is summable.
Next we state two propositions:

(25) Let X be a complex normed space and s, s3 be sequences of X. If for
every natural number n holds s3(n) = s(0), then (35 _ (s 1 1)(a))ken =
(ZZ:O s(a))ken T 1 — s3.

(26) Let X be a complex normed space and s be a sequence of X. If s is
summable, then for every natural number n holds s T n is summable.

Let X be a complex normed space, let s1 be a summable sequence of X, and
let n be a natural number. Observe that s; Tn is summable.
We now state the proposition

(27) Let X be a complex normed space and s; be a sequence of X. Then
(>0 _ollsill(@))ken is upper bounded if and only if s; is norm-summable.

Let X be a complex normed space and let s; be a norm-summable sequence
of X. Note that (3 n_o|Is1]/(e))ken is upper bounded.
The following propositions are true:

(28) Let X be a complex Banach space and s; be a sequence of X. Then s;
is summable if and only if for every real number p such that 0 < p there
exists a natural number n such that for every natural number m such that
n < m holds [|(3o5—o(s1)(a))xen(m) — (o= (s1)(@))ren(n)[| < p.

(29) Let X be a complex normed space, s be a sequence of X, and
n, m be natural numbers. If n < m, then [|(3h_,s(@))ken(m) —
(Xa=o s(@))ren(n)ll < [(Xa=ollsll(a))ken(m) — (a—ollsll () ren(n)-

(30) For every complex Banach space X and for every sequence s; of X such
that s1 is norm-summable holds s; is summable.

(31) Let X be a complex normed space, r1 be a sequence of real numbers,
and s; be a sequence of X. Suppose r; is summable and there exists a
natural number m such that for every natural number n such that m <n
holds ||s5(n)|| < r1(n). Then s5 is norm-summable.

(32) Let X be a complex normed space and sa, s5 be sequences of X. Suppose
for every natural number n holds 0 < ||s2|[(n) and ||s2||(n) < ||s5]|(n) and
s is norm-summable. Then sg is norm-summable and Y ||s2|| < >_||s5]|-
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(33) Let X be a complex normed space and s; be a sequence of X. Suppose
that
(i)  for every natural number n holds ||s1]|(n) > 0, and
(ii)  there exists a natural number m such that for every natural number n
such that n > m holds % > 1.

Then s; is not norm-summable.

(34) Let X be a complex normed space, s; be a sequence of X, and r; be
a sequence of real numbers. Suppose for every natural number n holds
ri(n) = {/||s1]|(n) and 71 is convergent and limr; < 1. Then s; is norm-
summable.

(35) Let X be a complex normed space, s; be a sequence of X, and r; be a
sequence of real numbers. Suppose that
(i)  for every natural number n holds r1(n) = {/||s1||(n), and
(ii)  there exists a natural number m such that for every natural number n
such that m < n holds r1(n) > 1.
Then ||s1|| is not summable.

(36) Let X be a complex normed space, s; be a sequence of X, and r; be
a sequence of real numbers. Suppose for every natural number n holds
ri(n) = {/||s1||(n) and 7y is convergent and limr; > 1. Then s; is not
norm-summable.

(37) Let X be a complex normed space, s; be a sequence of X, and r; be
a sequence of real numbers. Suppose ||s1]| is non-increasing and for every
natural number n holds r1(n) = 2™ - ||s1||(2"). Then s; is norm-summable
if and only if r is summable.

(38) Let X be a complex normed space, s; be a sequence of X, and p be a
real number. Suppose p > 1 and for every natural number n such that
n > 1 holds [s1[|(n) = 5. Then s; is norm-summable.

(39) Let X be a complex normed space, s; be a sequence of X, and p be a
real number. Suppose p < 1 and for every natural number n such that
n > 1 holds [s1[|(n) = 5. Then s; is not norm-summable.

(40) Let X be a complex normed space, s; be a sequence of X, and r; be
a sequence of real numbers. Suppose for every natural number n holds
si(n) # 0x and r1(n) = Hsnlsq('i"z:)l) and ry is convergent and limr; < 1.
Then s; is norm-summable.

(41) Let X be a complex normed space and s; be a sequence of X. Suppose
that

(i)  for every natural number n holds s1(n) # O0x, and
(ii)  there exists a natural number m such that for every natural number n
such that n > m holds ls1lln+1) > 1.

lls1ll(n)
Then s; is not norm-summable.
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Let X be a complex Banach space. One can check that every sequence of X
which is norm-summable is also summable.

2. BASIC PROPERTIES OF SEQUENCE OF BANACH ALGEBRA

The scheme FExNCBCASeq deals with a non empty normed complex algebra
structure A and a unary functor F yielding a point of A, and states that:
There exists a sequence S of A such that for every natural number
n holds S(n) = F(n)
for all values of the parameters.
We now state the proposition

(42) Let X be a complex Banach algebra, x, y, z be elements of X, and a, b

be complex numbers. Then z+y =y+z and (r+y)+2 =2+ (y+2) and

r + 0x = x and there exists an element ¢ of X such that x +¢ = 0x and

(x-y)-z=x-(y-2z)and 1Ic-x =z and Oc - * = 0x and a-0x = Ox and

(—lg)-z=—-zandzx-lx =zand lx-z=zxzandz-(y+2)=2-y+z-2

and (y+z)-z=y-x+z-zanda-(z-y)=(a-2)-yanda-(x+y) =

a-r4+a-yand (a+bdb)-z=a-x+b-zand (a-b)-z =a-(b-x) and

(a-b)-(x-y)=a-xz-(b-y)anda-(z-y) =z-(a-y) and Ox - = 0x and

z-0x =0xandz-(y—2)=z-y—z-zand (y—2)-z=y-x— 2 -z and

(x4y)—z=a+(y—2) and (zr—y)+z =z—(y—2) and x—y—2z = x—(y+2)

andz+y = (r—2)+(z+y)and z—y = (r—2)+ (2 —y) and z = (x—y)+y

and x =y — (y — ) and ||z|]| = 0 iff x = O0x and ||a - z| = |a| - ||z|| and

o+ il < llall + Iyl and flz - yll < [l2] - |yl and [[1x] = 1 and X is

complete.

Let X be a non empty normed complex algebra structure, let S be a sequence

of X, and let a be an element of X. The functor a - S yields a sequence of X
and is defined by:

(Def. 8) For every natural number n holds (a - S)(n) =a-S(n).
Let X be a non empty normed complex algebra structure, let S be a sequence
of X, and let a be an element of X. The functor S - a yields a sequence of X
and is defined by:
(Def. 9) For every natural number n holds (S - a)(n) = S(n) - a.
Let X be a non empty normed complex algebra structure and let sg, s5 be
sequences of X. The functor s - s5 yielding a sequence of X is defined by:
(Def. 10) For every natural number n holds (s2 - s5)(n) = sa(n) - s5(n).
Let X be a complex Banach algebra and let = be an element of X. Let
us assume that x is invertible. The functor z~! yields an element of X and is
defined as follows:

(Def. 11) z-2'=1yandaz ! -z =1x.
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Let X be a complex Banach algebra and let z be an element of X. The
functor (2").en yielding a sequence of X is defined as follows:
(Def. 12)  (2")ken(0) = 1x and for every natural number n holds (2").en(n+1) =
(2")ken(n) - z.
Let X be a complex Banach algebra, let z be an element of X, and let n be
a natural number. The functor zg yielding an element of X is defined as follows:

(Def. 13) 25 = (2")ken(n).
The following propositions are true:
(43) For every complex Banach algebra X and for every element z of X holds
ZI% =1x.
(44) For every complex Banach algebra X and for every element z of X such
that ||z|| < 1 holds (2").en is summable and norm-summable.

(45) Let X be a complex Banach algebra and z be a point of X. If ||[1x —z|| <
1, then ((1x —)")ken is summable and ((1x —2)").en is norm-summable.

(46) For every complex Banach algebra X and for every point x of X such
that ||[1x — || < 1 holds x is invertible and 27 = Y ((1x — 2)")xen)-
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