Banach Algebra of Bounded Complex Linear Operators

Noboru Endou
Gifu National College of Technology

Summary. This article is an extension of [16].

MML Identifier: CLOPBAN2.

The terminology and notation used here are introduced in the following articles: [18], [8], [20], [5], [7], [6], [3], [1], [17], [13], [19], [14], [2], [4], [15], [10], [11], [9], and [12].

One can prove the following propositions:
(1) Let X, Y, Z be complex linear spaces, f be a linear operator from X into Y, and g be a linear operator from Y into Z. Then $g \cdot f$ is a linear operator from X into Z.
(2) Let X, Y, Z be complex normed spaces, f be a bounded linear operator from X into Y, and g be a bounded linear operator from Y into Z. Then
(i) $g \cdot f$ is a bounded linear operator from X into Z, and
(ii) for every vector x of X holds $\|(g \cdot f)(x)\| \leqslant(\operatorname{BdLinOpsNorm}(Y, Z))(g)$. $(\operatorname{BdLinOpsNorm}(X, Y))(f) \cdot\|x\|$ and $(\operatorname{BdLinOpsNorm}(X, Z))(g \cdot f) \leqslant$ $(\operatorname{BdLinOpsNorm}(Y, Z))(g) \cdot(\operatorname{BdLinOpsNorm}(X, Y))(f)$.
Let X be a complex normed space and let f, g be bounded linear operators from X into X. Then $g \cdot f$ is a bounded linear operator from X into X.

Let X be a complex normed space and let f, g be elements of $\operatorname{BdLinOps}(X, X)$. The functor $f+g$ yields an element of $\operatorname{BdLinOps}(X, X)$ and is defined by:
(Def. 1) $f+g=\left(\operatorname{Add_ }(\operatorname{BdLinOps}(X, X), \operatorname{CVSpLinOps}(X, X))\right)(f, g)$.
Let X be a complex normed space and let f, g be elements of $\operatorname{BdLinOps}(X, X)$. The functor $g \cdot f$ yields an element of $\operatorname{BdLinOps}(X, X)$ and is defined as follows:
(Def. 2) $\quad g \cdot f=\operatorname{modetrans}(g, X, X) \cdot \operatorname{modetrans}(f, X, X)$.
Let X be a complex normed space, let f be an element of $\operatorname{BdLinOps}(X, X)$, and let z be a complex number. The functor $z \cdot f$ yields an element of $\operatorname{BdLinOps}(X, X)$ and is defined by:
(Def. 3) $\quad z \cdot f=\left(\operatorname{Mult}_{-}(\operatorname{BdLinOps}(X, X), \operatorname{CVSpLinOps}(X, X))\right)(z, f)$.
Let X be a complex normed space. The functor FuncMult (X) yields a binary operation on $\mathrm{BdLinOps}(X, X)$ and is defined as follows:
(Def. 4) For all elements f, g of $\operatorname{BdLinOps}(X, X)$ holds $(\operatorname{FuncMult}(X))(f, g)=$ $f \cdot g$.
The following proposition is true
(3) For every complex normed space X holds $\operatorname{id}_{\text {the carrier }} X$ is a bounded linear operator from X into X.
Let X be a complex normed space. The functor $\operatorname{FuncUnit}(X)$ yielding an element of $\operatorname{BdLinOps}(X, X)$ is defined by:
(Def. 5) FuncUnit $(X)=\mathrm{id}_{\text {the }}$ carrier of X.
The following propositions are true:
(4) Let X be a complex normed space and f, g, h be bounded linear operators from X into X. Then $h=f \cdot g$ if and only if for every vector x of X holds $h(x)=f(g(x))$.
(5) For every complex normed space X and for all bounded linear operators f, g, h from X into X holds $f \cdot(g \cdot h)=(f \cdot g) \cdot h$.
(6) Let X be a complex normed space and f be a bounded linear operator from X into X. Then $f \cdot \operatorname{id}_{\text {the carrier of } X}=f$ and $\mathrm{id}_{\text {the carrier of } X} \cdot f=f$.
(7) For every complex normed space X and for all elements f, g, h of $\operatorname{BdLinOps}(X, X)$ holds $f \cdot(g \cdot h)=(f \cdot g) \cdot h$.
(8) For every complex normed space X and for every element f of $\operatorname{BdLinOps}(X, X)$ holds $f \cdot \operatorname{FuncUnit}(X)=f$ and FuncUnit $(X) \cdot f=f$.
(9) For every complex normed space X and for all elements f, g, h of $\operatorname{BdLinOps}(X, X)$ holds $f \cdot(g+h)=f \cdot g+f \cdot h$.
(10) For every complex normed space X and for all elements f, g, h of $\operatorname{BdLinOps}(X, X)$ holds $(g+h) \cdot f=g \cdot f+h \cdot f$.
(11) Let X be a complex normed space, f, g be elements of $\operatorname{BdLinOps}(X, X)$, and a, b be complex numbers. Then $(a \cdot b) \cdot(f \cdot g)=a \cdot f \cdot(b \cdot g)$.
(12) Let X be a complex normed space, f, g be elements of $\operatorname{BdLinOps}(X, X)$, and a be a complex number. Then $a \cdot(f \cdot g)=(a \cdot f) \cdot g$.
Let X be a complex normed space.
The functor RingOfBoundedLinearOperators (X) yields a double loop structure and is defined by:
(Def. 6) RingOfBoundedLinearOperators $(X)=\langle\operatorname{BdLinOps}(X, X)$,

Add_($\operatorname{BdLinOps}(X, X), \operatorname{CVSpLinOps}(X, X)), \operatorname{FuncMult}(X), \operatorname{FuncUnit}(X)$, Zero_(BdLinOps $(X, X), \mathrm{CVSpLinOps}(X, X))\rangle$.
Let X be a complex normed space.
Note that RingOfBoundedLinearOperators (X) is non empty and strict.
Next we state two propositions:
(13) Let X be a complex normed space and x, y, z be elements of RingOfBoundedLinearOperators (X). Then $x+y=y+x$ and $(x+$ $y)+z=x+(y+z)$ and $x+0_{\text {RingOfBoundedLinearOperators }(X)}=x$ and there exists an element t of RingOfBoundedLinearOperators (X) such that $x+t=0_{\text {RingOfBoundedLinearOperators }(X)}$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ and $x \cdot \mathbf{1}_{\text {RingOfBoundedLinearOperators }(X)}=x$ and $\mathbf{1}_{\text {RingOfBoundedLinearOperators }(X)}$. $x=x$ and $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$.
(14) For every complex normed space X holds

RingOfBoundedLinearOperators (X) is a ring.
Let X be a complex normed space.
Observe that RingOfBoundedLinearOperators (X) is Abelian, add-associative, right zeroed, right complementable, associative, left unital, right unital, and distributive.

Let X be a complex normed space. The functor $\mathrm{CAlgBdLinOps}(X)$ yields a complex algebra structure and is defined by:
(Def. 7) $\mathrm{CAlgBdLinOps}(X)=\left\langle\operatorname{BdLinOps}(X, X)\right.$, FuncMult (X), $\operatorname{Add}_{-}(\operatorname{BdLinOps}$ $(X, X), \operatorname{CVSpLinOps}(X, X)), \operatorname{Mult}^{(\operatorname{BdLinOps}(X, X), \operatorname{CVSpLinOps}(X, X)), ~}$ FuncUnit (X), Zero_($\operatorname{BdLinOps}(X, X), \operatorname{CVSpLinOps}(X, X))\rangle$.
Let X be a complex normed space. Note that $\operatorname{CAlgBdLinOps}(X)$ is non empty and strict.

The following proposition is true
(15) Let X be a complex normed space, x, y, z be elements of $\mathrm{CAlgBdLinOps}(X)$, and a, b be complex numbers. Then $x+y=y+x$ and $(x+y)+z=x+(y+z)$ and $x+0_{\mathrm{CAlgBdLinOps}(X)}=x$ and there exists an element t of $\mathrm{CAlgBdLinOps}(X)$ such that $x+t=0_{\mathrm{CAlgBdLinOps}(X)}$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ and $x \cdot \mathbf{1}_{\mathrm{CAlgBdLinOps}(X)}=x$ and $\mathbf{1}_{\mathrm{CAlgBdLinOps}(X)} \cdot x=x$ and $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$ and $a \cdot(x \cdot y)=(a \cdot x) \cdot y$ and $a \cdot(x+y)=a \cdot x+a \cdot y$ and $(a+b) \cdot x=a \cdot x+b \cdot x$ and $(a \cdot b) \cdot x=a \cdot(b \cdot x)$ and $(a \cdot b) \cdot(x \cdot y)=a \cdot x \cdot(b \cdot y)$.
A complex BL algebra is an Abelian add-associative right zeroed right complementable associative complex algebra-like non empty complex algebra structure.

We now state the proposition
(16) For every complex normed space X holds $C A l g B d \operatorname{LinOps}(X)$ is a complex BL algebra.

Let us note that Complex-11-Space is complete.
Let us mention that Complex-11-Space is non trivial.
Let us note that there exists a complex Banach space which is non trivial.
The following two propositions are true:
(17) For every non trivial complex normed space X there exists a vector w of X such that $\|w\|=1$.
(18) For every non trivial complex normed space X holds $(\operatorname{BdLinOpsNorm}(X, X))\left(\mathrm{id}_{\text {the }}\right.$ carrier of $\left.X\right)=1$.
We introduce normed complex algebra structures which are extensions of complex algebra structure and complex normed space structure and are systems

〈 a carrier, a multiplication, an addition, an external multiplication, a unity, a zero, a norm \rangle,
where the carrier is a set, the multiplication and the addition are binary operations on the carrier, the external multiplication is a function from : \mathbb{C}, the carrier: into the carrier, the unity and the zero are elements of the carrier, and the norm is a function from the carrier into \mathbb{R}.

One can check that there exists a normed complex algebra structure which is non empty.

Let X be a complex normed space. The functor $\operatorname{CNAlgBdLinOps}(X)$ yields a normed complex algebra structure and is defined by:
(Def. 8) $\operatorname{CNAlgBdLinOps}(X)=\langle\operatorname{BdLinOps}(X, X), \operatorname{FuncMult}(X)$, Add_($\operatorname{BdLinOps}(X, X), \operatorname{CVSpLinOps}(X, X)), \operatorname{Mult}(\operatorname{BdLinOps}(X, X)$, CVSpLinOps (X, X)), FuncUnit(X), Zero_($\operatorname{BdLinOps}(X, X)$, $\operatorname{CVSpLinOps}(X, X)), \operatorname{BdLinOpsNorm}(X, X)\rangle$.
Let X be a complex normed space. Note that $\operatorname{CNAlgBdLinOps}(X)$ is non empty and strict.

The following propositions are true:
(19) Let X be a complex normed space, x, y, z be elements of CNAlgBdLinOps (X), and a, b be complex numbers. Then $x+y=y+x$ and $(x+y)+z=x+(y+z)$ and $x+0_{\mathrm{CNAlgBdLinOps}(X)}=x$ and there exists an element t of CNAlgBdLinOps (X) such that $x+t=0_{\text {CNAlgBdLinOps }(X)}$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ and $x \cdot \mathbf{1}_{\mathrm{CNAlgBdLinOps}(X)}=x$ and $\mathbf{1}_{\mathrm{CNAlgBdLinOps}(X)} \cdot x=$ x and $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$ and $a \cdot(x \cdot y)=(a \cdot x) \cdot y$ and $(a \cdot b) \cdot(x \cdot y)=a \cdot x \cdot(b \cdot y)$ and $a \cdot(x+y)=a \cdot x+a \cdot y$ and $(a+b) \cdot x=a \cdot x+b \cdot x$ and $(a \cdot b) \cdot x=a \cdot(b \cdot x)$ and $1_{\mathbb{C}} \cdot x=x$.
(20) Let X be a complex normed space. Then CNAlgBdLinOps (X) is complex normed space-like, Abelian, add-associative, right zeroed, right complementable, associative, complex algebra-like, and complex linear spacelike.
Let us observe that there exists a non empty normed complex algebra structure which is complex normed space-like, Abelian, add-associative, right zeroed,
right complementable, associative, complex algebra-like, complex linear spacelike, and strict.

A normed complex algebra is a complex normed space-like Abelian addassociative right zeroed right complementable associative complex algebra-like complex linear space-like non empty normed complex algebra structure.

Let X be a complex normed space. One can check that CNAlgBdLinOps (X) is complex normed space-like, Abelian, add-associative, right zeroed, right complementable, associative, complex algebra-like, and complex linear space-like.

Let X be a non empty normed complex algebra structure. We say that X is Banach Algebra-like1 if and only if:
(Def. 9) For all elements x, y of X holds $\|x \cdot y\| \leqslant\|x\| \cdot\|y\|$.
We say that X is Banach Algebra-like2 if and only if:
(Def. 10) $\quad\left\|\mathbf{1}_{X}\right\|=1$.
We say that X is Banach Algebra-like3 if and only if:
(Def. 11) For every complex number a and for all elements x, y of X holds $a \cdot(x$. $y)=x \cdot(a \cdot y)$.
Let X be a normed complex algebra. We say that X is Banach Algebra-like if and only if the condition (Def. 12) is satisfied.
(Def. 12) X is Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left unital, left distributive, and complete.
One can verify that every normed complex algebra which is Banach Algebralike is also Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left distributive, left unital, and complete and every normed complex algebra which is Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left distributive, left unital, and complete is also Banach Algebra-like.

Let X be a non trivial complex Banach space. One can verify that CNAlgBdLinOps (X) is Banach Algebra-like.

One can check that there exists a normed complex algebra which is Banach Algebra-like.

A complex Banach algebra is a Banach Algebra-like normed complex algebra.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] Noboru Endou. Complex Banach space of bounded linear operators. Formalized Mathematics, 12(2):201-209, 2004.
[10] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[11] Noboru Endou. Complex linear space of complex sequences. Formalized Mathematics, 12(2):109-117, 2004.
[12] Noboru Endou. Complex valued functions space. Formalized Mathematics, 12(3):231-235, 2004.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[15] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[16] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103-108, 2004.
[17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

