Catalan Numbers

Dorota Częstochowska Adam Grabowski¹ University of Białystok University of Białystok

Summary. In this paper, we define Catalan sequence (starting from 0) and prove some of its basic properties. The Catalan numbers (0, 1, 1, 2, 5, 14, 42, ...) arise in a number of problems in combinatorics. They can be computed e.g. using the formula

$$C_n = \frac{\frac{2n}{n}}{n+1},$$

their recursive definition is also well known:

$$C_1 = 1, \quad C_n = \sum_{i=1}^{n-1} C_i C_{n-i}, \quad n \ge 2$$

Among other things, the Catalan numbers describe the number of ways in which parentheses can be placed in a sequence of numbers to be multiplied, two at a time.

MML Identifier: CATALAN1.

The articles [2], [3], [4], [1], [5], [8], [6], and [7] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:

- (1) For every natural number n such that n > 1 holds $n 1 \leq 2 \cdot n 3$.
- (2) For every natural number n such that $n \ge 1$ holds $n 1 \le 2 \cdot n 2$.
- (3) For every natural number n such that n > 1 holds $n < 2 \cdot n 1$.
- (4) For every natural number n such that n > 1 holds (n 2) + 1 = n 1.
- (5) For every natural number n such that n > 1 holds $\frac{4 \cdot n \cdot n 2 \cdot n}{n+1} > 1$.

C 2004 University of Białystok ISSN 1426-2630

 $^{^1\}mathrm{This}$ work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-00102.

- (6) For every natural number n such that n > 1 holds $(2 \cdot n 2)! \cdot n \cdot (n+1) < (2 \cdot n)!$.
- (7) For every natural number n holds $2 \cdot (2 \frac{3}{n+1}) < 4$.

2. Definition of Catalan Numbers

Let n be a natural number. The functor Catalan(n) yields a real number and is defined as follows:

(Def. 1) Catalan
$$(n) = \frac{\binom{2 \cdot n - 2}{n - 1}}{n}.$$

The following propositions are true:

- (8) For every natural number n such that n > 1 holds $\operatorname{Catalan}(n) = \frac{(2 \cdot n '2)!}{(n '1)! \cdot n!}$.
- (9) For every natural number n such that n > 1 holds $\operatorname{Catalan}(n) = 4 \cdot \binom{2 \cdot n '3}{n '1} \binom{2 \cdot n '1}{n '1}$.
- (10) Catalan(0) = 0.
- (11) Catalan(1) = 1.
- (12) Catalan(2) = 1.
- (13) For every natural number n holds Catalan(n) is an integer.
- (14) For every natural number k such that $k \ge 1$ holds $\operatorname{Catalan}(k+1) = \frac{(2 \cdot k)!}{k! \cdot (k+1)!}$.

3. BASIC PROPERTIES OF CATALAN NUMBERS

We now state several propositions:

- (15) For every natural number n such that n > 1 holds Catalan(n) < Catalan(n+1).
- (16) For every natural number n holds $Catalan(n) \leq Catalan(n+1)$.
- (17) For every natural number n holds $\operatorname{Catalan}(n) \ge 0$.
- (18) For every natural number n holds Catalan(n) is a natural number.
- (19) For every natural number n such that n > 0 holds $\operatorname{Catalan}(n+1) = 2 \cdot (2 \frac{3}{n+1}) \cdot \operatorname{Catalan}(n).$

Let n be a natural number. Note that Catalan(n) is natural. Next we state the proposition

(20) For every natural number n such that n > 0 holds Catalan(n) > 0.

Let n be a non empty natural number. One can verify that Catalan(n) is non empty.

One can prove the following proposition

352

(21) For every natural number n such that n > 0 holds $\operatorname{Catalan}(n+1) < 4 \cdot \operatorname{Catalan}(n)$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–290, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [6] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [7] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001.
- [8] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.

Received May 31, 2004