
FORMALIZED MATHEMATICS

Volume 12, Number 3, 2004

University of Białystok

Catalan Numbers

Dorota Czȩstochowska
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Summary. In this paper, we define Catalan sequence (starting from 0) and

prove some of its basic properties. The Catalan numbers (0, 1, 1, 2, 5, 14, 42, . . .)

arise in a number of problems in combinatorics. They can be computed e.g. using

the formula

Cn =

�
2n

n

�

n + 1
,

their recursive definition is also well known:

C1 = 1, Cn = Σ
n−1

i=1
CiCn−i, n ­ 2.

Among other things, the Catalan numbers describe the number of ways in which

parentheses can be placed in a sequence of numbers to be multiplied, two at a

time.

MML Identifier: CATALAN1.

The articles [2], [3], [4], [1], [5], [8], [6], and [7] provide the terminology and

notation for this paper.

1. Preliminaries

One can prove the following propositions:

(1) For every natural number n such that n > 1 holds n−′ 1 ¬ 2 · n−′ 3.

(2) For every natural number n such that n ­ 1 holds n−′ 1 ¬ 2 · n−′ 2.

(3) For every natural number n such that n > 1 holds n < 2 · n−′ 1.

(4) For every natural number n such that n > 1 holds (n−′ 2) + 1 = n−′ 1.

(5) For every natural number n such that n > 1 holds 4·n·n−2·n
n+1 > 1.
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(6) For every natural number n such that n > 1 holds (2·n−′2)!·n·(n+1) <

(2 · n)!.

(7) For every natural number n holds 2 · (2− 3
n+1) < 4.

2. Definition of Catalan Numbers

Let n be a natural number. The functor Catalan(n) yields a real number

and is defined as follows:

(Def. 1) Catalan(n) =
(2·n−

′
2

n−′1
)

n
.

The following propositions are true:

(8) For every natural number n such that n > 1 holds Catalan(n) =
(2·n−′2)!
(n−′1)!·n! .

(9) For every natural number n such that n > 1 holds Catalan(n) = 4 ·
(

2·n−′3
n−′1

)

−
(

2·n−′1
n−′1

)

.

(10) Catalan(0) = 0.

(11) Catalan(1) = 1.

(12) Catalan(2) = 1.

(13) For every natural number n holds Catalan(n) is an integer.

(14) For every natural number k such that k ­ 1 holds Catalan(k + 1) =
(2·k)!

k!·(k+1)! .

3. Basic Properties of Catalan Numbers

We now state several propositions:

(15) For every natural number n such that n > 1 holds Catalan(n) <

Catalan(n + 1).

(16) For every natural number n holds Catalan(n) ¬ Catalan(n + 1).

(17) For every natural number n holds Catalan(n) ­ 0.

(18) For every natural number n holds Catalan(n) is a natural number.

(19) For every natural number n such that n > 0 holds Catalan(n + 1) =

2 · (2− 3
n+1) · Catalan(n).

Let n be a natural number. Note that Catalan(n) is natural.

Next we state the proposition

(20) For every natural number n such that n > 0 holds Catalan(n) > 0.

Let n be a non empty natural number. One can verify that Catalan(n) is

non empty.

One can prove the following proposition
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(21) For every natural number n such that n > 0 holds Catalan(n + 1) <

4 · Catalan(n).
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