Catalan Numbers

Dorota Czȩstochowska
University of Białystok

Adam Grabowski ${ }^{1}$
University of Białystok

Summary. In this paper, we define Catalan sequence (starting from 0) and prove some of its basic properties. The Catalan numbers $(0,1,1,2,5,14,42, \ldots)$ arise in a number of problems in combinatorics. They can be computed e.g. using the formula

$$
C_{n}=\frac{{ }^{2 n}}{n+1}
$$

their recursive definition is also well known:

$$
C_{1}=1, \quad C_{n}=\Sigma_{i=1}^{n-1} C_{i} C_{n-i}, \quad n \geqslant 2
$$

Among other things, the Catalan numbers describe the number of ways in which parentheses can be placed in a sequence of numbers to be multiplied, two at a time.

MML Identifier: CATALAN1.

The articles [2], [3], [4], [1], [5], [8], [6], and [7] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:
(1) For every natural number n such that $n>1$ holds $n-^{\prime} 1 \leqslant 2 \cdot n-^{\prime} 3$.
(2) For every natural number n such that $n \geqslant 1$ holds $n--^{\prime} 1 \leqslant 2 \cdot n-^{\prime} 2$.
(3) For every natural number n such that $n>1$ holds $n<2 \cdot n-^{\prime} 1$.
(4) For every natural number n such that $n>1$ holds $\left(n-^{\prime} 2\right)+1=n-^{\prime} 1$.
(5) For every natural number n such that $n>1$ holds $\frac{4 \cdot n \cdot n-2 \cdot n}{n+1}>1$.

[^0](6) For every natural number n such that $n>1$ holds $\left(2 \cdot n-^{\prime} 2\right)!\cdot n \cdot(n+1)<$ ($2 \cdot n$)!.
(7) For every natural number n holds $2 \cdot\left(2-\frac{3}{n+1}\right)<4$.

2. Definition of Catalan Numbers

Let n be a natural number. The functor Catalan (n) yields a real number and is defined as follows:

The following propositions are true:
(8) For every natural number n such that $n>1$ holds Catalan $(n)=$ $\frac{\left(2 \cdot n-{ }^{\prime}\right) \text {)! }}{\left(n-^{\prime}\right)!\cdot n!}$.
(9) For every natural number n such that $n>1$ holds $\operatorname{Catalan}(n)=4$. $\binom{2 \cdot n-^{\prime} 3}{n-1}-\binom{2 \cdot n-{ }^{\prime} 1}{n-1}$.
(10) $\operatorname{Catalan}(0)=0$.
(11) $\operatorname{Catalan}(1)=1$.
(12) $\operatorname{Catalan}(2)=1$.
(13) For every natural number n holds Catalan (n) is an integer.
(14) For every natural number k such that $k \geqslant 1$ holds Catalan $(k+1)=$ $\frac{(2 \cdot k)!}{k!\cdot(k+1)!}$.

3. Basic Properties of Catalan Numbers

We now state several propositions:
(15) For every natural number n such that $n>1$ holds Catalan $(n)<$ Catalan $(n+1)$.
(16) For every natural number n holds Catalan $(n) \leqslant \operatorname{Catalan}(n+1)$.
(17) For every natural number n holds Catalan $(n) \geqslant 0$.
(18) For every natural number n holds Catalan (n) is a natural number.
(19) For every natural number n such that $n>0$ holds Catalan $(n+1)=$ $2 \cdot\left(2-\frac{3}{n+1}\right) \cdot \operatorname{Catalan}(n)$.
Let n be a natural number. Note that Catalan (n) is natural.
Next we state the proposition
(20) For every natural number n such that $n>0$ holds Catalan $(n)>0$.

Let n be a non empty natural number. One can verify that $\operatorname{Catalan}(n)$ is non empty.

One can prove the following proposition
(21) For every natural number n such that $n>0$ holds Catalan $(n+1)<$ 4 - Catalan (n).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[6] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[7] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
[8] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by the CALCULEMUS grant HPRN-CT-200000102.

