Algebraic Properties of Homotopies

Adam Grabowski¹ University of Białystok Artur Korniłowicz² University of Białystok

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{BORSUK}_{-}6.$

The notation and terminology used here are introduced in the following papers: [21], [9], [25], [1], [20], [14], [24], [22], [2], [5], [27], [6], [7], [18], [11], [19], [10], [17], [26], [8], [15], [23], [12], [4], [3], [16], and [13].

1. Preliminaries

The scheme *ExFunc3CondD* deals with a non empty set \mathcal{A} , three unary functors \mathcal{F} , \mathcal{G} , and \mathcal{H} yielding sets, and three unary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , and states that:

There exists a function f such that dom $f = \mathcal{A}$ and for every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ and if $\mathcal{Q}[c]$, then $f(c) = \mathcal{G}(c)$ and if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$

provided the parameters meet the following conditions:

- For every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ and if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ and if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$, and
- For every element c of \mathcal{A} holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$.

Let n be a natural number. Observe that every element of $\mathcal{E}^n_{\mathrm{T}}$ is function-like and relation-like.

Let n be a natural number. Observe that every element of $\mathcal{E}_{\mathrm{T}}^{n}$ is finite sequence-like.

We now state a number of propositions:

(1) The carrier of [I, I] = [[0, 1], [0, 1]].

C 2004 University of Białystok ISSN 1426-2630

 $^{^1{\}rm This}$ work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-00102 and KBN grant 4 T11C 039 24.

 $^{^2 {\}rm The}$ paper was written during author's post-doctoral fellowship granted by Shinshu University, Japan.

ADAM GRABOWSKI AND ARTUR KORNIŁOWICZ

- (2) For every real number x such that $x \leq \frac{1}{2}$ holds $2 \cdot x 1 \leq 1 2 \cdot x$.
- (3) For every real number x such that $x \ge \frac{1}{2}$ holds $2 \cdot x 1 \ge 1 2 \cdot x$.
- (4) For all real numbers x, a, b, c, d such that $a \neq b$ holds $\frac{d-c}{b-a} \cdot (x-a) + c = (1 \frac{x-a}{b-a}) \cdot c + \frac{x-a}{b-a} \cdot d$.
- (5) For all real numbers a, b, x such that $a \leq x$ and $x \leq b$ holds $\frac{x-a}{b-a} \in$ the carrier of $[0, 1]_{\mathrm{T}}$.
- (6) For every point x of \mathbb{I} such that $x \leq \frac{1}{2}$ holds $2 \cdot x$ is a point of \mathbb{I} .
- (7) For every point x of \mathbb{I} such that $x \ge \frac{1}{2}$ holds $2 \cdot x 1$ is a point of \mathbb{I} .
- (8) For all points p, q of \mathbb{I} holds $p \cdot q$ is a point of \mathbb{I} .
- (9) For every point x of \mathbb{I} holds $\frac{1}{2} \cdot x$ is a point of \mathbb{I} .
- (10) For every point x of I such that $x \ge \frac{1}{2}$ holds $x \frac{1}{4}$ is a point of I.
- $(12)^3$ id_I is a path from 0_I to 1_I .
- (13) For all points a, b, c, d of \mathbb{I} such that $a \leq b$ and $c \leq d$ holds [[a, b], [c, d]] is a compact non empty subset of $[[\mathbb{I}, \mathbb{I}]]$.

2. Affine Maps

One can prove the following four propositions:

- (14) Let S, T be subsets of \mathcal{E}_{T}^{2} . Suppose $S = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{2} \leq 2 \cdot p_{1} - 1\}$ and $T = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{2} \leq p_{1}\}$. Then (AffineMap $(1, 0, \frac{1}{2}, \frac{1}{2}))^{\circ}S = T$.
- (15) Let S, T be subsets of \mathcal{E}_{T}^{2} . Suppose $S = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{2} \ge 2 \cdot p_{1} - 1\}$ and $T = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{2} \ge p_{1}\}$. Then (AffineMap $(1, 0, \frac{1}{2}, \frac{1}{2}))^{\circ}S = T$.
- (16) Let S, T be subsets of \mathcal{E}_{T}^{2} . Suppose $S = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{2} \ge 1 - 2 \cdot p_{1}\}$ and $T = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{2} \ge -p_{1}\}$. Then (AffineMap $(1, 0, \frac{1}{2}, -\frac{1}{2}))^{\circ}S = T$.
- (17) Let S, T be subsets of \mathcal{E}_{T}^{2} . Suppose $S = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{2} \leq 1 - 2 \cdot p_{1}\}$ and $T = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p_{2} \leq -p_{1}\}$. Then (AffineMap $(1, 0, \frac{1}{2}, -\frac{1}{2}))^{\circ}S = T$.

3. Real-Membered Structures

Let T be a 1-sorted structure. We say that T is real-membered if and only if:

(Def. 1) The carrier of T is real-membered.

We now state the proposition

252

³The proposition (11) has been removed.

(18) For every non empty 1-sorted structure T holds T is real-membered iff every element of T is real.

Let us mention that \mathbb{I} is real-membered.

One can verify that there exists a 1-sorted structure which is non empty and real-membered and there exists a topological space which is non empty and real-membered.

Let T be a real-membered 1-sorted structure. Note that every element of T is real.

Let T be a real-membered topological structure. Note that every subspace of T is real-membered.

Let S, T be real-membered non empty topological spaces and let p be an element of [S, T]. One can check that p_1 is real and p_2 is real.

Let T be a non empty subspace of [I, I] and let x be a point of T. One can check that x_1 is real and x_2 is real.

One can check that \mathbb{R}^1 is real-membered.

4. CLOSED SUBSETS OF EUCLIDEAN TOPOLOGICAL SPACES

The following propositions are true:

- (19) { $p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: p_2 \leq 2 \cdot p_1 1$ } is a closed subset of $\mathcal{E}_{\mathrm{T}}^2$.
- (20) { $p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{2} \ge 2 \cdot p_{1} 1$ } is a closed subset of \mathcal{E}_{T}^{2} .
- (21) { $p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: p_2 \leqslant 1 2 \cdot p_1$ } is a closed subset of $\mathcal{E}_{\mathrm{T}}^2$.
- (22) { $p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{2} \ge 1 2 \cdot p_{1}$ } is a closed subset of \mathcal{E}_{T}^{2} .
- (23) { $p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: p_2 \ge 1 2 \cdot p_1 \land p_2 \ge 2 \cdot p_1 1$ } is a closed subset of $\mathcal{E}_{\mathrm{T}}^2$.
- (24) There exists a map f from $[\mathbb{R}^1, \mathbb{R}^1]$ into \mathcal{E}^2_T such that for all real numbers x, y holds $f(\langle x, y \rangle) = \langle x, y \rangle$.
- (25) { $p; p \text{ ranges over points of } [\mathbb{R}^1, \mathbb{R}^1] : p_2 \leq 1 2 \cdot p_1$ } is a closed subset of [$\mathbb{R}^1, \mathbb{R}^1$].
- (26) { $p; p \text{ ranges over points of } [\mathbb{R}^1, \mathbb{R}^1] : p_2 \leq 2 \cdot p_1 1$ } is a closed subset of [$\mathbb{R}^1, \mathbb{R}^1$].
- (27) { $p; p \text{ ranges over points of } [\mathbb{R}^1, \mathbb{R}^1] : p_2 \ge 1 2 \cdot p_1 \land p_2 \ge 2 \cdot p_1 1$ } is a closed subset of $[\mathbb{R}^1, \mathbb{R}^1]$.
- (28) {p; p ranges over points of $[I, I]: p_2 \leq 1 2 \cdot p_1$ } is a closed non empty subset of [I, I].
- (29) { $p; p \text{ ranges over points of } [\mathbb{I}, \mathbb{I}]: p_2 \ge 1 2 \cdot p_1 \land p_2 \ge 2 \cdot p_1 1$ } is a closed non empty subset of $[\mathbb{I}, \mathbb{I}].$
- (30) { $p; p \text{ ranges over points of } [\mathbb{I}, \mathbb{I}]: p_2 \leq 2 \cdot p_1 1$ } is a closed non empty subset of [\mathbb{I}, \mathbb{I}].

ADAM GRABOWSKI AND ARTUR KORNIŁOWICZ

- (31) Let S, T be non empty topological spaces and p be a point of [S, T]. Then p_1 is a point of S and p_2 is a point of T.
- (32) For all subsets A, B of $[\mathbb{I}, \mathbb{I}]$ such that $A = [[0, \frac{1}{2}], [0, 1]]$ and $B = [[\frac{1}{2}, 1], [0, 1]]$ holds $\Omega_{[\mathbb{I}, \mathbb{I}] \upharpoonright A} \cup \Omega_{[\mathbb{I}, \mathbb{I}] \upharpoonright B} = \Omega_{[\mathbb{I}, \mathbb{I}]}$.
- (33) For all subsets A, B of $[\mathbb{I}, \mathbb{I}]$ such that $A = [[0, \frac{1}{2}], [0, 1]]$ and $B = [[\frac{1}{2}, 1], [0, 1]]$ holds $\Omega_{[\mathbb{I}, \mathbb{I}] \cap A} \cap \Omega_{[\mathbb{I}, \mathbb{I}] \cap B} = [\{\frac{1}{2}\}, [0, 1]].$

5. Compact Spaces

Let T be a topological structure. Note that \emptyset_T is compact.

Let T be a topological structure. Observe that there exists a subset of T which is empty and compact.

Next we state three propositions:

- (34) For every topological structure T holds \emptyset is an empty compact subset of T.
- (35) Let T be a topological structure and a, b be real numbers. If a > b, then [a, b] is an empty compact subset of T.
- (36) For all points a, b, c, d of \mathbb{I} holds [[a, b], [c, d]] is a compact subset of $[[\mathbb{I}, \mathbb{I}]]$.

6. Continuous Maps

Let a, b, c, d be real numbers. The functor $L_{01}(a, b, c, d)$ yielding a map from $[a, b]_T$ into $[c, d]_T$ is defined by:

(Def. 2) $L_{01}(a, b, c, d) = L_{01}(c_{[c,d]_{\mathrm{T}}}, d_{[c,d]_{\mathrm{T}}}) \cdot P_{01}(a, b, 0_{[0,1]_{\mathrm{T}}}, 1_{[0,1]_{\mathrm{T}}}).$

The following propositions are true:

- (37) For all real numbers a, b, c, d such that a < b and c < d holds $(L_{01}(a, b, c, d))(a) = c$ and $(L_{01}(a, b, c, d))(b) = d$.
- (38) For all real numbers a, b, c, d such that a < b and $c \leq d$ holds $L_{01}(a, b, c, d)$ is a continuous map from $[a, b]_T$ into $[c, d]_T$.
- (39) Let a, b, c, d be real numbers. Suppose a < b and $c \leq d$. Let x be a real number. If $a \leq x$ and $x \leq b$, then $(L_{01}(a, b, c, d))(x) = \frac{d-c}{b-a} \cdot (x-a) + c$.
- (40) Let f_1 , f_2 be maps from $[\mathbb{I}, \mathbb{I}]$ into \mathbb{I} . Suppose f_1 is continuous and f_2 is continuous and for every point p of $[\mathbb{I}, \mathbb{I}]$ holds $f_1(p) \cdot f_2(p)$ is a point of \mathbb{I} . Then there exists a map g from $[\mathbb{I}, \mathbb{I}]$ into \mathbb{I} such that
 - (i) for every point p of $[\mathbb{I}, \mathbb{I}]$ and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_1 \cdot r_2$, and
 - (ii) g is continuous.

254

- (41) Let f_1 , f_2 be maps from $[\mathbb{I}, \mathbb{I}]$ into \mathbb{I} . Suppose f_1 is continuous and f_2 is continuous and for every point p of $[\mathbb{I}, \mathbb{I}]$ holds $f_1(p) + f_2(p)$ is a point of \mathbb{I} . Then there exists a map g from $[\mathbb{I}, \mathbb{I}]$ into \mathbb{I} such that
 - (i) for every point p of $[\mathbb{I}, \mathbb{I}]$ and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_1 + r_2$, and
 - (ii) g is continuous.
- (42) Let f_1 , f_2 be maps from $[\mathbb{I}, \mathbb{I}]$ into \mathbb{I} . Suppose f_1 is continuous and f_2 is continuous and for every point p of $[\mathbb{I}, \mathbb{I}]$ holds $f_1(p) f_2(p)$ is a point of \mathbb{I} . Then there exists a map g from $[\mathbb{I}, \mathbb{I}]$ into \mathbb{I} such that
 - (i) for every point p of $[\mathbb{I}, \mathbb{I}]$ and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_1 r_2$, and
 - (ii) g is continuous.

7. Paths

We follow the rules: T denotes a non empty topological space and a, b, c, d denote points of T.

The following three propositions are true:

- (43) For every path P from a to b such that P is continuous holds $P \cdot L_{01}(1_{[0,1]_T}, 0_{[0,1]_T})$ is a continuous map from \mathbb{I} into T.
- (44) Let X be a non empty topological structure, a, b be points of X, and P be a path from a to b. If P(0) = a and P(1) = b, then $(P \cdot L_{01}(1_{[0,1]_{T}}, 0_{[0,1]_{T}}))(0) = b$ and $(P \cdot L_{01}(1_{[0,1]_{T}}, 0_{[0,1]_{T}}))(1) = a$.
- (45) Let P be a path from a to b. Suppose P is continuous and P(0) = a and P(1) = b. Then -P is continuous and (-P)(0) = b and (-P)(1) = a.

Let T be a topological structure and let a, b be points of T. We say that a, b are connected if and only if:

(Def. 3) There exists a map f from \mathbb{I} into T such that f is continuous and f(0) = aand f(1) = b.

Let T be a non empty topological space and let a, b be points of T. Let us notice that the predicate a, b are connected is reflexive and symmetric.

We now state several propositions:

- (46) If a, b are connected and b, c are connected, then a, c are connected.
- (47) For every arcwise connected topological structure T and for all points a, b of T holds a, b are connected.
- (48) For every path A from a to a holds A, A are homotopic.
- (49) If a, b are connected, then for every path A from a to b holds A, A are homotopic.
- (50) If a, b are connected, then for every path A from a to b holds A = --A.

- (51) Let T be a non empty arcwise connected topological space, a, b be points of T, and A be a path from a to b. Then A = --A.
- (52) If a, b are connected, then every path from a to b is continuous.

8. REEXAMINATION OF A PATH CONCEPT

Let T be a non empty arcwise connected topological space, let a, b, c be points of T, let P be a path from a to b, and let Q be a path from b to c. Then P + Q can be characterized by the condition:

(Def. 4) For every point t of I holds if $t \leq \frac{1}{2}$, then $(P+Q)(t) = P(2 \cdot t)$ and if $\frac{1}{2} \leq t$, then $(P+Q)(t) = Q(2 \cdot t - 1)$.

Let T be a non empty arcwise connected topological space, let a, b be points of T, and let P be a path from a to b. Then -P can be characterized by the condition:

(Def. 5) For every point t of \mathbb{I} holds (-P)(t) = P(1-t).

9. Reparametrizations

Let T be a non empty topological space, let a, b be points of T, let P be a path from a to b, and let f be a continuous map from I into I. Let us assume that f(0) = 0 and f(1) = 1 and a, b are connected. The functor $\operatorname{RePar}(P, f)$ yields a path from a to b and is defined by:

(Def. 6) RePar $(P, f) = P \cdot f$.

Next we state two propositions:

- (53) Let P be a path from a to b and f be a continuous map from I into I. Suppose f(0) = 0 and f(1) = 1 and a, b are connected. Then $\operatorname{RePar}(P, f)$, P are homotopic.
- (54) Let T be a non empty arcwise connected topological space, a, b be points of T, P be a path from a to b, and f be a continuous map from I into I. If f(0) = 0 and f(1) = 1, then $\operatorname{RePar}(P, f)$, P are homotopic.

The map $1^{st}RP$ from \mathbb{I} into \mathbb{I} is defined as follows:

(Def. 7) For every point t of \mathbb{I} holds if $t \leq \frac{1}{2}$, then $(1^{\text{st}} \text{RP})(t) = 2 \cdot t$ and if $t > \frac{1}{2}$, then $(1^{\text{st}} \text{RP})(t) = 1$.

Let us note that $1^{st}RP$ is continuous.

One can prove the following proposition

(55) $(1^{st}RP)(0) = 0$ and $(1^{st}RP)(1) = 1$.

The map $2^{nd}RP$ from \mathbb{I} into \mathbb{I} is defined by:

(Def. 8) For every point t of \mathbb{I} holds if $t \leq \frac{1}{2}$, then $(2^{nd}RP)(t) = 0$ and if $t > \frac{1}{2}$, then $(2^{nd}RP)(t) = 2 \cdot t - 1$.

One can verify that 2ndRP is continuous.

One can prove the following proposition

(56) $(2^{nd}RP)(0) = 0$ and $(2^{nd}RP)(1) = 1$.

The map $3^{rd}RP$ from I into I is defined by the condition (Def. 9).

- (Def. 9) Let x be a point of \mathbb{I} . Then
 - if $x \leq \frac{1}{2}$, then $(3^{rd}RP)(x) = \frac{1}{2} \cdot x$, (i)
 - if $x > \frac{1}{2}$ and $x \le \frac{3}{4}$, then $(3^{rd}RP)(x) = x \frac{1}{4}$, and if $x > \frac{3}{4}$, then $(3^{rd}RP)(x) = 2 \cdot x 1$. (ii)
 - (iii)

Let us note that 3rdRP is continuous. We now state four propositions:

- (57) $(3^{rd}RP)(0) = 0$ and $(3^{rd}RP)(1) = 1$.
- (58) Let P be a path from a to b and Q be a constant path from b to b. If a, b are connected, then $\operatorname{RePar}(P, 1^{\operatorname{st}}\operatorname{RP}) = P + Q$.
- (59) Let P be a path from a to b and Q be a constant path from a to a. If a, b are connected, then $\operatorname{RePar}(P, 2^{\operatorname{nd}}\operatorname{RP}) = Q + P$.
- (60) Let P be a path from a to b, Q be a path from b to c, and R be a path from c to d. Suppose a, b are connected and b, c are connected and c, dare connected. Then $\operatorname{RePar}(P + Q + R, 3^{\operatorname{rd}} \operatorname{RP}) = P + (Q + R).$

10. Decomposition of the Unit Square

The subset LowerLeftUnitTriangle of [I, I] is defined as follows:

- (Def. 10) For every set x holds $x \in \text{LowerLeftUnitTriangle iff there exist points } a$. b of \mathbb{I} such that $x = \langle a, b \rangle$ and $b \leq 1 - 2 \cdot a$.
 - We introduce IAA as a synonym of LowerLeftUnitTriangle. The subset UpperUnitTriangle of [I, I] is defined by:
- (Def. 11) For every set x holds $x \in UpperUnitTriangle iff there exist points a, b$ of I such that $x = \langle a, b \rangle$ and $b \ge 1 - 2 \cdot a$ and $b \ge 2 \cdot a - 1$.
 - We introduce IBB as a synonym of UpperUnitTriangle. The subset LowerRightUnitTriangle of [I, I] is defined as follows:
- (Def. 12) For every set x holds $x \in \text{LowerRightUnitTriangle iff there exist points}$ a, b of \mathbb{I} such that $x = \langle a, b \rangle$ and $b \leq 2 \cdot a - 1$.

We introduce ICC as a synonym of LowerRightUnitTriangle. The following propositions are true:

- (61) IAA = { $p; p \text{ ranges over points of } [\mathbb{I}, \mathbb{I}]: p_2 \leq 1 2 \cdot p_1$ }.
- (62) IBB = { $p; p \text{ ranges over points of } [:\mathbb{I}, \mathbb{I}]: p_2 \ge 1 2 \cdot p_1 \land p_2 \ge 2 \cdot p_1 1$ }.
- (63) ICC = { $p; p \text{ ranges over points of } [\mathbb{I}, \mathbb{I}]: p_2 \leq 2 \cdot p_1 1$ }.

One can check the following observations:

* IAA is closed and non empty,

- * IBB is closed and non empty, and
- * ICC is closed and non empty.

Next we state a number of propositions:

- (64) $IAA \cup IBB \cup ICC = [[0, 1], [0, 1]]].$
- (65) IAA \cap IBB = {p; p ranges over points of [\mathbb{I}, \mathbb{I}]: $p_2 = 1 2 \cdot p_1$ }.
- (66) ICC \cap IBB = {p; p ranges over points of [$: \mathbb{I}, \mathbb{I}$]: $p_2 = 2 \cdot p_1 1$ }.
- (67) For every point x of $[\mathbb{I}, \mathbb{I}]$ such that $x \in \text{IAA}$ holds $x_1 \leq \frac{1}{2}$.
- (68) For every point x of $[\mathbb{I}, \mathbb{I}]$ such that $x \in \text{ICC}$ holds $x_1 \ge \frac{1}{2}$.
- (69) For every point x of I holds $(0, x) \in IAA$.
- (70) For every set s such that $(0, s) \in \text{IBB}$ holds s = 1.
- (71) For every set s such that $(s, 1) \in \text{ICC}$ holds s = 1.
- (72) $\langle 0, 1 \rangle \in \text{IBB}$.
- (73) For every point x of \mathbb{I} holds $\langle x, 1 \rangle \in \text{IBB}$.
- (74) $\langle \frac{1}{2}, 0 \rangle \in \text{ICC} \text{ and } \langle 1, 1 \rangle \in \text{ICC}.$
- (75) $\langle \frac{1}{2}, 0 \rangle \in \text{IBB}.$
- (76) For every point x of \mathbb{I} holds $\langle 1, x \rangle \in \text{ICC}$.
- (77) For every point x of I such that $x \ge \frac{1}{2}$ holds $\langle x, 0 \rangle \in \text{ICC}$.
- (78) For every point x of I such that $x \leq \frac{1}{2}$ holds $\langle x, 0 \rangle \in IAA$.
- (79) For every point x of I such that $x < \frac{1}{2}$ holds $\langle x, 0 \rangle \notin$ IBB and $\langle x, 0 \rangle \notin$ ICC.
- (80) IAA \cap ICC = { $\langle \frac{1}{2}, 0 \rangle$ }.

11. PROPERTIES OF A HOMOTOPY

We use the following convention: X denotes a non empty arcwise connected topological space and a_1 , b_1 , c_1 , d_1 denote points of X.

One can prove the following propositions:

- (81) Let P be a path from a to b, Q be a path from b to c, and R be a path from c to d. Suppose a, b are connected and b, c are connected and c, d are connected. Then (P+Q) + R, P + (Q+R) are homotopic.
- (82) Let P be a path from a_1 to b_1 , Q be a path from b_1 to c_1 , and R be a path from c_1 to d_1 . Then (P+Q)+R, P+(Q+R) are homotopic.
- (83) Let P_1 , P_2 be paths from a to b and Q_1 , Q_2 be paths from b to c. Suppose a, b are connected and b, c are connected and P_1 , P_2 are homotopic and Q_1, Q_2 are homotopic. Then $P_1 + Q_1, P_2 + Q_2$ are homotopic.
- (84) Let P_1 , P_2 be paths from a_1 to b_1 and Q_1 , Q_2 be paths from b_1 to c_1 . Suppose P_1 , P_2 are homotopic and Q_1 , Q_2 are homotopic. Then $P_1 + Q_1$, $P_2 + Q_2$ are homotopic.

- (85) Let P, Q be paths from a to b. Suppose a, b are connected and P, Q are homotopic. Then -P, -Q are homotopic.
- (86) For all paths P, Q from a_1 to b_1 such that P, Q are homotopic holds -P, -Q are homotopic.
- (87) Let P, Q, R be paths from a to b. Suppose P, Q are homotopic and Q, R are homotopic. Then P, R are homotopic.
- (88) Let P be a path from a to b and Q be a constant path from b to b. If a, b are connected, then P + Q, P are homotopic.
- (89) For every path P from a_1 to b_1 and for every constant path Q from b_1 to b_1 holds P + Q, P are homotopic.
- (90) Let P be a path from a to b and Q be a constant path from a to a. If a, b are connected, then Q + P, P are homotopic.
- (91) For every path P from a_1 to b_1 and for every constant path Q from a_1 to a_1 holds Q + P, P are homotopic.
- (92) Let P be a path from a to b and Q be a constant path from a to a. If a, b are connected, then P + -P, Q are homotopic.
- (93) For every path P from a_1 to b_1 and for every constant path Q from a_1 to a_1 holds P + -P, Q are homotopic.
- (94) Let P be a path from b to a and Q be a constant path from a to a. If b, a are connected, then -P + P, Q are homotopic.
- (95) For every path P from b_1 to a_1 and for every constant path Q from a_1 to a_1 holds -P + P, Q are homotopic.
- (96) For all constant paths P, Q from a to a holds P, Q are homotopic.

Let T be a non empty topological space, let a, b be points of T, and let P, Q be paths from a to b. Let us assume that P, Q are homotopic. A map from [I, I] into T is said to be a homotopy between P and Q if it satisfies the conditions (Def. 13).

- (Def. 13)(i) It is continuous, and
 - (ii) for every point s of I holds it(s, 0) = P(s) and it(s, 1) = Q(s) and for every point t of I holds it(0, t) = a and it(1, t) = b.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.

- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set. Formalized Mathematics, 1(1):153-164, [9] Czesław Byliński. Functions from a set. Formalized Mathematics, 1(1):153-164, [9] Czesław B
- [8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [10] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [12] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
 [12] Adam Carbonalized Later during the the humatement the sume Energy limit. Mathematics, 2(4):605-608, 1991.
- [13] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449–454, 1997.
- [14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [15] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [16] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.
- [17] Yatsuka Nakamura. On Outside Fashoda Meet Theorem. Formalized Mathematics, 9(4):697–704, 2001.
- [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [19] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [20] Andrzej Trybulez. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [23] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [24] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(4):341–347, 2003.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [26] Toshihiko Watanabe. The Brouwer fixed point theorem for intervals. Formalized Mathematics, 3(1):85–88, 1992.
- [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received March 18, 2004