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Summary. This paper contains some facts and theorems relating to the
following operations on graphs: union, sum, complement and “embeds”. We also

introduce connected graphs to prove that a finite irreflexive symmetric N-free

graph is a finite series-parallel graph. This article continues the formalization of

[22].

MML Identifier: NECKLA 3.

The papers [25], [24], [28], [12], [29], [31], [30], [2], [13], [1], [27], [18], [17], [8],

[14], [16], [20], [23], [7], [10], [26], [11], [4], [6], [19], [15], [5], [21], [3], and [9]

provide the notation and terminology for this paper.

1. Preliminaries

In this paper A, B, a, b, c, d, e, f , g, h denote sets.

One can prove the following three propositions:

(1) idA↾B = idA ∩ [:B, B :].

(2) id{a,b,c,d} = {〈〈a, a〉〉, 〈〈b, b〉〉, 〈〈c, c〉〉, 〈〈d, d〉〉}.

(3) [: {a, b, c, d}, {e, f, g, h} :] = {〈〈a, e〉〉, 〈〈a, f〉〉, 〈〈b, e〉〉, 〈〈b, f〉〉, 〈〈a, g〉〉, 〈〈a, h〉〉, 〈〈b,

g〉〉, 〈〈b, h〉〉} ∪ {〈〈c, e〉〉, 〈〈c, f〉〉, 〈〈d, e〉〉, 〈〈d, f〉〉, 〈〈c, g〉〉, 〈〈c, h〉〉, 〈〈d, g〉〉, 〈〈d, h〉〉}.

Let X, Y be trivial sets. Observe that every relation between X and Y is

trivial.

We now state the proposition

(4) For every trivial set X and for every binary relation R on X such that

R is non empty there exists a set x such that R = {〈〈x, x〉〉}.
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Let X be a trivial set. Observe that every binary relation on X is trivial,

reflexive, symmetric, transitive, and strongly connected.

We now state the proposition

(5) For every non empty trivial set X holds every binary relation on X is

symmetric in X.

One can verify that there exists a relational structure which is non empty,

strict, finite, irreflexive, and symmetric.

Let L be an irreflexive relational structure. Observe that every full relational

substructure of L is irreflexive.

Let L be a symmetric relational structure. Note that every full relational

substructure of L is symmetric.

One can prove the following proposition

(6) Let R be an irreflexive symmetric relational structure. Suppose

the carrier of R = 2. Then there exist sets a, b such that the carrier of

R = {a, b} but the internal relation of R = {〈〈a, b〉〉, 〈〈b, a〉〉} or the internal

relation of R = ∅.

2. Some Facts about Operations “UnionOf” and “SumOf”

Let R be a non empty relational structure and let S be a relational structure.

Note that UnionOf(R,S) is non empty and SumOf(R, S) is non empty.

Let R be a relational structure and let S be a non empty relational structure.

Observe that UnionOf(R,S) is non empty and SumOf(R,S) is non empty.

Let R, S be finite relational structures. One can check that UnionOf(R, S)

is finite and SumOf(R, S) is finite.

Let R, S be symmetric relational structures. One can check that

UnionOf(R, S) is symmetric and SumOf(R, S) is symmetric.

Let R, S be irreflexive relational structures. Observe that UnionOf(R, S) is

irreflexive.

The following four propositions are true:

(7) Let R, S be irreflexive relational structures. Suppose the carrier of R

misses the carrier of S. Then SumOf(R,S) is irreflexive.

(8) For all relational structures R1, R2 holds UnionOf(R1, R2) =

UnionOf(R2, R1) and SumOf(R1, R2) = SumOf(R2, R1).

(9) Let G be an irreflexive relational structure and G1, G2 be relational

structures. If G = UnionOf(G1, G2) or G = SumOf(G1, G2), then G1 is

irreflexive and G2 is irreflexive.

(10) Let G be a non empty relational structure and H1, H2 be relational

structures. Suppose that

(i) the carrier of H1 misses the carrier of H2, and
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(ii) the relational structure ofG = UnionOf(H1,H2) or the relational struc-

ture of G = SumOf(H1,H2).

Then H1 is a full relational substructure of G and H2 is a full relational

substructure of G.

3. Theorems Relating to the Complement of Relational

Structure

One can prove the following proposition

(11) The internal relation of ComplRelStrNecklace 4 = {〈〈0, 2〉〉, 〈〈2, 0〉〉, 〈〈0,

3〉〉, 〈〈3, 0〉〉, 〈〈1, 3〉〉, 〈〈3, 1〉〉}.

Let R be a relational structure. Note that ComplRelStrR is irreflexive.

Let R be a symmetric relational structure. Note that ComplRelStrR is sym-

metric.

Next we state several propositions:

(12) For every relational structure R holds the internal relation of R misses

the internal relation of ComplRelStrR.

(13) For every relational structure R holds idthe carrier of R misses the internal

relation of ComplRelStrR.

(14) Let G be a relational structure. Then [: the carrier of G, the carrier of

G :] = idthe carrier of G ∪ the internal relation of G∪ the internal relation of

ComplRelStrG.

(15) For every strict irreflexive relational structure G such that G is trivial

holds ComplRelStrG = G.

(16) For every strict irreflexive relational structure G holds

ComplRelStrComplRelStrG = G.

(17) For all relational structures G1, G2 such that the carrier of

G1 misses the carrier of G2 holds ComplRelStrUnionOf(G1, G2) =

SumOf(ComplRelStrG1,ComplRelStrG2).

(18) For all relational structures G1, G2 such that the carrier of

G1 misses the carrier of G2 holds ComplRelStr SumOf(G1, G2) =

UnionOf(ComplRelStrG1,ComplRelStrG2).

(19) Let G be a relational structure and H be a full relational substructure of

G. Then the internal relation of ComplRelStrH = (the internal relation

of ComplRelStrG) |2 (the carrier of ComplRelStrH).

(20) Let G be a non empty irreflexive relational structure, x be an element

of the carrier of G, and x′ be an element of the carrier of ComplRelStrG.

If x = x′, then ComplRelStr sub(ΩG \ {x}) = sub(ΩComplRelStrG \ {x
′}).
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4. Another Facts Relating to Operation “embeds”

Let us observe that every non empty relational structure which is trivial and

strict is also N-free.

The following propositions are true:

(21) Let R be a reflexive antisymmetric relational structure and S be a rela-

tional structure. Then there exists a map f from R into S such that for

all elements x, y of the carrier of R holds 〈〈x, y〉〉 ∈ the internal relation of

R iff 〈〈f(x), f(y)〉〉 ∈ the internal relation of S if and only if S embeds R.

(22) Let G be a non empty relational structure and H be a non empty full

relational substructure of G. Then G embeds H.

(23) Let G be a non empty relational structure and H be a non empty full

relational substructure of G. If G is N-free, then H is N-free.

(24) For every non empty irreflexive relational structure G holds G embeds

Necklace 4 iff ComplRelStrG embeds Necklace 4.

(25) For every non empty irreflexive relational structure G holds G is N-free

iff ComplRelStrG is N-free.

5. Connected Graphs

Let R be a relational structure. A path of R is a reduction sequence w.r.t.

the internal relation of R.

Let R be a relational structure. We say that R is path-connected if and only

if the condition (Def. 1) is satisfied.

(Def. 1) Let x, y be sets. Suppose x ∈ the carrier of R and y ∈ the carrier of R

and x 6= y. Then the internal relation of R reduces x to y or the internal

relation of R reduces y to x.

One can check that every relational structure which is empty is also path-

connected.

One can check that every non empty relational structure which is connected

is also path-connected.

We now state the proposition

(26) Let R be a non empty transitive reflexive relational structure and x, y

be elements of R. Suppose the internal relation of R reduces x to y. Then

〈〈x, y〉〉 ∈ the internal relation of R.

One can check that every non empty transitive reflexive relational structure

which is path-connected is also connected.

Next we state the proposition
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(27) Let R be a symmetric relational structure and x, y be sets. Suppose

x ∈ the carrier of R and y ∈ the carrier of R. Suppose the internal relation

of R reduces x to y. Then the internal relation of R reduces y to x.

Let R be a symmetric relational structure. Let us observe that R is path-

connected if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let x, y be sets. Suppose x ∈ the carrier of R and y ∈ the carrier of R

and x 6= y. Then the internal relation of R reduces x to y.

Let R be a relational structure and let x be an element of R. The functor

component(x) yielding a subset of R is defined as follows:

(Def. 3) component(x) = [x]EqCl(the internal relation of R).

Next we state the proposition

(28) For every non empty relational structure R and for every element x of

R holds x ∈ component(x).

Let R be a non empty relational structure and let x be an element of R.

Note that component(x) is non empty.

Next we state a number of propositions:

(29) Let R be a relational structure, x be an element of R, and y be a set. If

y ∈ component(x), then 〈〈x, y〉〉 ∈ EqCl(the internal relation of R).

(30) Let R be a relational structure, x be an element of R, and A be a set.

Then A = component(x) if and only if for every set y holds y ∈ A iff 〈〈x,

y〉〉 ∈ EqCl(the internal relation of R).

(31) Let R be a non empty irreflexive symmetric relational structure. Suppose

R is not path-connected. Then there exist non empty strict irreflexive

symmetric relational structures G1, G2 such that the carrier of G1 misses

the carrier of G2 and the relational structure of R = UnionOf(G1, G2).

(32) Let R be a non empty irreflexive symmetric relational structure. Sup-

pose ComplRelStrR is not path-connected. Then there exist non empty

strict irreflexive symmetric relational structures G1, G2 such that the

carrier of G1 misses the carrier of G2 and the relational structure of

R = SumOf(G1, G2).

(33) For every irreflexive relational structure G such that G ∈ FinRelStrSp

holds ComplRelStrG ∈ FinRelStrSp .

(34) Let R be an irreflexive symmetric relational structure. Suppose

the carrier of R = 2 and the carrier of R ∈ U0. Then the relational struc-

ture of R ∈ FinRelStrSp .

(35) For every relational structure R such that R ∈ FinRelStrSp holds R is

symmetric.

(36) Let G be a relational structure, H1, H2 be non empty relational struc-

tures, x be an element of the carrier of H1, and y be an element of the
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carrier of H2. Suppose G = UnionOf(H1,H2) and the carrier of H1 misses

the carrier of H2. Then 〈〈x, y〉〉 /∈ the internal relation of G.

(37) Let G be a relational structure, H1, H2 be non empty relational struc-

tures, x be an element of the carrier of H1, and y be an element of the

carrier of H2. If G = SumOf(H1, H2), then 〈〈x, y〉〉 /∈ the internal relation

of ComplRelStrG.

(38) Let G be a non empty symmetric relational structure, x be an element

of the carrier of G, and R1, R2 be non empty relational structures. Sup-

pose the carrier of R1 misses the carrier of R2 and sub(ΩG \ {x}) =

UnionOf(R1, R2) and G is path-connected. Then there exists an element

b of the carrier of R1 such that 〈〈b, x〉〉 ∈ the internal relation of G.

(39) Let G be a non empty symmetric irreflexive relational structure, a, b, c,

d be elements of the carrier of G, and Z be a subset of the carrier of G.

Suppose that Z = {a, b, c, d} and a, b, c, d are mutually different and 〈〈a,

b〉〉 ∈ the internal relation of G and 〈〈b, c〉〉 ∈ the internal relation of G and

〈〈c, d〉〉 ∈ the internal relation of G and 〈〈a, c〉〉 /∈ the internal relation of G

and 〈〈a, d〉〉 /∈ the internal relation of G and 〈〈b, d〉〉 /∈ the internal relation

of G. Then sub(Z) embeds Necklace 4.

(40) Let G be a non empty irreflexive symmetric relational structure, x be an

element of the carrier of G, and R1, R2 be non empty relational structures.

Suppose that

(i) the carrier of R1 misses the carrier of R2,

(ii) sub(ΩG \ {x}) = UnionOf(R1, R2),

(iii) G is non trivial and path-connected, and

(iv) ComplRelStrG is path-connected.

Then G embeds Necklace 4.

(41) Let G be a non empty strict finite irreflexive symmetric relational struc-

ture. Suppose G is N-free and the carrier of G ∈ U0. Then the relational

structure of G ∈ FinRelStrSp .
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