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The notation and terminology used here are introduced in the following papers:

[17], [19], [20], [3], [4], [2], [16], [5], [1], [18], [9], [11], [12], [8], [6], [7], [13], [10],

[21], [14], and [15].

For simplicity, we use the following convention: X denotes a Banach algebra,

p denotes a real number, w, z, z1, z2 denote elements of X, k, l, m, n denote

natural numbers, s1, s2, s3, s, s′ denote sequences of X, and r1 denotes a

sequence of real numbers.

Let X be a non empty normed algebra structure and let x, y be elements of

X. We say that x, y are commutative if and only if:

(Def. 1) x · y = y · x.

Let us note that the predicate x, y are commutative is symmetric.

Next we state a number of propositions:

(1) If s2 is convergent and s3 is convergent and lim(s2 − s3) = 0X , then

lim s2 = lim s3.

(2) For every z such that for every natural number n holds s(n) = z holds

lim s = z.

(3) If s is convergent and s′ is convergent, then s · s′ is convergent.

(4) If s is convergent, then z · s is convergent.

(5) If s is convergent, then s · z is convergent.
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(6) If s is convergent, then lim(z · s) = z · lim s.

(7) If s is convergent, then lim(s · z) = lim s · z.

(8) If s is convergent and s′ is convergent, then lim(s · s′) = lim s · lim s′.

(9) (
∑

κ

α=0(z ·s1)(α))κ∈N = z ·(
∑

κ

α=0(s1)(α))κ∈N and (
∑

κ

α=0(s1 ·z)(α))κ∈N =

(
∑

κ

α=0(s1)(α))κ∈N · z.

(10) ‖(
∑

κ

α=0(s1)(α))κ∈N(k)‖ ¬ (
∑

κ

α=0‖s1‖(α))κ∈N(k).

(11) If for every n such that n ¬ m holds s2(n) = s3(n), then

(
∑

κ

α=0(s2)(α))κ∈N(m) = (
∑

κ

α=0(s3)(α))κ∈N(m).

(12) If for every n holds ‖s1(n)‖ ¬ r1(n) and r1 is convergent and lim r1 = 0,

then s1 is convergent and lim s1 = 0X .

Let us consider X and let z be an element of X. The functor z ExpSeq

yielding a sequence of X is defined as follows:

(Def. 2) For every n holds z ExpSeq(n) = 1
n! · z

n

N
.

The scheme ExNormSpace CASE deals with a non empty Banach algebra A

and a binary functor F yielding a point of A, and states that:

For every k there exists a sequence s1 of A such that for every n

holds if n ¬ k, then s1(n) = F(k, n) and if n > k, then s1(n) = 0A
for all values of the parameters.

Next we state the proposition

(13) For every k such that 0 < k holds (k−′ 1)! · k = k! and for all m, k such

that k ¬ m holds (m−′ k)! · ((m + 1)− k) = ((m + 1)−′ k)!.

Let n be a natural number. The functor Coef n yields a sequence of real

numbers and is defined by:

(Def. 3) For every natural number k holds if k ¬ n, then (Coef n)(k) = n!
k!·(n−′k)!

and if k > n, then (Coef n)(k) = 0.

Let n be a natural number. The functor Coef en yielding a sequence of real

numbers is defined by:

(Def. 4) For every natural number k holds if k ¬ n, then (Coef en)(k) = 1
k!·(n−′k)!

and if k > n, then (Coef en)(k) = 0.

Let us considerX, s1. The functor Shift s1 yielding a sequence ofX is defined

as follows:

(Def. 5) (Shift s1)(0) = 0X and for every natural number k holds (Shift s1)(k +

1) = s1(k).

Let us consider n, let us consider X, and let z, w be elements of X. The

functor Expan(n, z, w) yields a sequence of X and is defined by:

(Def. 6) For every natural number k holds if k ¬ n, then (Expan(n, z, w))(k) =

(Coef n)(k) · zk

N
· wn−′k

N
and if n < k, then (Expan(n, z, w))(k) = 0X .

Let us consider n, let us consider X, and let z, w be elements of X. The

functor Expan e(n, z, w) yields a sequence of X and is defined as follows:
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(Def. 7) For every natural number k holds if k ¬ n, then (Expan e(n, z, w))(k) =

(Coef en)(k) · zk

N
· wn−′k

N
and if n < k, then (Expan e(n, z, w))(k) = 0X .

Let us consider n, let us consider X, and let z, w be elements of X. The

functor Alfa(n, z, w) yields a sequence of X and is defined as follows:

(Def. 8) For every natural number k holds if k ¬ n, then (Alfa(n, z, w))(k) =

z ExpSeq(k) · (
∑

κ

α=0 wExpSeq(α))κ∈N(n −′ k) and if n < k, then

(Alfa(n, z, w))(k) = 0X .

Let us consider X, let z, w be elements of X, and let n be a natural number.

The functor Conj(n, z, w) yields a sequence of X and is defined by:

(Def. 9) For every natural number k holds if k ¬ n, then (Conj(n, z, w))(k) =

z ExpSeq(k) ·((
∑

κ

α=0 wExpSeq(α))κ∈N(n)−(
∑

κ

α=0 wExpSeq(α))κ∈N(n−′

k)) and if n < k, then (Conj(n, z, w))(k) = 0X .

One can prove the following propositions:

(14) z ExpSeq(n + 1) = 1
n+1 · z · z ExpSeq(n) and z ExpSeq(0) = 1X and

‖z ExpSeq(n)‖ ¬ ‖z‖ExpSeq(n).

(15) If 0 < k, then (Shift s1)(k) = s1(k −
′ 1).

(16) (
∑

κ

α=0(s1)(α))κ∈N(k) = (
∑

κ

α=0(Shift s1)(α))κ∈N(k) + s1(k).

(17) For all z, w such that z, w are commutative holds (z + w)n

N
=

(
∑

κ

α=0(Expan(n, z, w))(α))κ∈N(n).

(18) Expan e(n, z, w) = 1
n! · Expan(n, z, w).

(19) For all z, w such that z, w are commutative holds 1
n! · (z + w)n

N
=

(
∑

κ

α=0(Expan e(n, z, w))(α))κ∈N(n).

(20) 0X ExpSeq is norm-summable and
∑

(0X ExpSeq) = 1X .

Let us consider X and let z be an element of X. Observe that z ExpSeq is

norm-summable.

Next we state a number of propositions:

(21) z ExpSeq(0) = 1X and (Expan(0, z, w))(0) = 1X .

(22) If l ¬ k, then (Alfa(k + 1, z, w))(l) = (Alfa(k, z, w))(l) + (Expan e(k +

1, z, w))(l).

(23) (
∑

κ

α=0(Alfa(k +1, z, w))(α))κ∈N(k) = (
∑

κ

α=0(Alfa(k, z, w))(α))κ∈N(k)+

(
∑

κ

α=0(Expan e(k + 1, z, w))(α))κ∈N(k).

(24) z ExpSeq(k) = (Expan e(k, z, w))(k).

(25) For all z, w such that z, w are commutative holds (
∑

κ

α=0 z +

wExpSeq(α))κ∈N(n) = (
∑

κ

α=0(Alfa(n, z, w))(α))κ∈N(n).

(26) For all z, w such that z, w are commutative holds

(
∑

κ

α=0 z ExpSeq(α))κ∈N(k) · (
∑

κ

α=0 wExpSeq(α))κ∈N(k) − (
∑

κ

α=0 z +

wExpSeq(α))κ∈N(k) = (
∑

κ

α=0(Conj(k, z, w))(α))κ∈N(k).

(27) 0 ¬ ‖z‖ExpSeq(n).
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(28) ‖(
∑

κ

α=0 z ExpSeq(α))κ∈N(k)‖ ¬ (
∑

κ

α=0‖z‖ExpSeq(α))κ∈N(k) and

(
∑

κ

α=0‖z‖ExpSeq(α))κ∈N(k) ¬
∑

(‖z‖ExpSeq) and

‖(
∑

κ

α=0 z ExpSeq(α))κ∈N(k)‖ ¬
∑

(‖z‖ExpSeq).

(29) 1 ¬
∑

(‖z‖ExpSeq).

(30) |(
∑

κ

α=0‖z‖ExpSeq(α))κ∈N(n)| = (
∑

κ

α=0‖z‖ExpSeq(α))κ∈N(n) and if

n ¬ m, then |(
∑

κ

α=0‖z‖ExpSeq(α))κ∈N(m)−(
∑

κ

α=0‖z‖ExpSeq(α))κ∈N(n)|

= (
∑

κ

α=0‖z‖ExpSeq(α))κ∈N(m)− (
∑

κ

α=0‖z‖ExpSeq(α))κ∈N(n).

(31) |(
∑

κ

α=0‖Conj(k, z, w)‖(α))κ∈N(n)| = (
∑

κ

α=0‖Conj(k, z, w)‖(α))κ∈N(n).

(32) For every real number p such that p > 0 there exists n such that for

every k such that n ¬ k holds |(
∑

κ

α=0‖Conj(k, z, w)‖(α))κ∈N(k)| < p.

(33) For every s1 such that for every k holds s1(k) =

(
∑

κ

α=0(Conj(k, z, w))(α))κ∈N(k) holds s1 is convergent and lim s1 = 0X .

Let X be a Banach algebra. The functor expX yielding a function from the

carrier of X into the carrier of X is defined by:

(Def. 10) For every element z of the carrier of X holds (expX)(z) =
∑

(z ExpSeq).

Let us consider X, z. The functor exp z yields an element of X and is defined

by:

(Def. 11) exp z = (expX)(z).

One can prove the following propositions:

(34) For every z holds exp z =
∑

(z ExpSeq).

(35) Let given z1, z2. Suppose z1, z2 are commutative. Then exp(z1 + z2) =

exp z1 ·exp z2 and exp(z2+z1) = exp z2 ·exp z1 and exp(z1+z2) = exp(z2+

z1) and exp z1, exp z2 are commutative.

(36) For all z1, z2 such that z1, z2 are commutative holds z1·exp z2 = exp z2·z1.

(37) exp(0X) = 1X .

(38) exp z · exp(−z) = 1X and exp(−z) · exp z = 1X .

(39) exp z is invertible and (exp z)−1 = exp(−z) and exp(−z) is invertible

and (exp(−z))−1 = exp z.

(40) For every z and for all real numbers s, t holds s ·z, t ·z are commutative.

(41) Let given z and s, t be real numbers. Then exp(s · z) · exp(t · z) =

exp((s+t) ·z) and exp(t ·z) ·exp(s ·z) = exp((t+s) ·z) and exp((s+t) ·z) =

exp((t + s) · z) and exp(s · z), exp(t · z) are commutative.
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