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Summary. First we give a definition of “inflation” of a set in finite to-
pological spaces. Then a concept of “deflation” of a set is also defined. In the

remaining part, we give a concept of the “set series” for a subset of a finite topo-

logical space. Using this, we can define a series of neighbourhoods for each point

in the space. The work is done according to [7].

MML Identifier: FINTOPO3.

The articles [9], [5], [10], [2], [8], [1], [12], [11], [3], [4], and [6] provide the notation

and terminology for this paper.

We adopt the following rules: T denotes a non empty finite topology space,

A, B denote subsets of T , and x, y denote elements of T .

Let us consider T and let A be a subset of T . The functor Ad yields a subset

of T and is defined by:

(Def. 1) Ad = {x; x ranges over elements of T :
∧

y : element of T (y ∈ Ac ⇒ x /∈

U(y))}.

We now state a number of propositions:

(1) If T is filled, then A ⊆ Af .

(2) x ∈ Ad iff for every y such that y ∈ Ac holds x /∈ U(y).

(3) If T is filled, then Ad ⊆ A.

(4) Ad = ((Ac)f )c.

(5) If A ⊆ B, then Af ⊆ Bf .
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(6) If A ⊆ B, then Ad ⊆ Bd.

(7) (A ∩B)b ⊆ Ab ∩Bb.

(8) (A ∪B)b = Ab ∪Bb.

(9) Ai ∪Bi ⊆ (A ∪B)i.

(10) Ai ∩Bi = (A ∩B)i.

(11) Af ∪Bf = (A ∪B)f .

(12) Ad ∩Bd = A ∩Bd.

Let T be a non empty finite topology space and let A be a subset of T . The

functor Fcl(A) yields a function from N into 2the carrier of T and is defined as

follows:

(Def. 2) For every natural number n and for every subset B of T such that

B = (Fcl(A))(n) holds (Fcl(A))(n + 1) = Bb and (Fcl(A))(0) = A.

Let T be a non empty finite topology space, let A be a subset of T , and let n

be a natural number. The functor Fcl(A,n) yields a subset of T and is defined

by:

(Def. 3) Fcl(A,n) = (Fcl(A))(n).

Let T be a non empty finite topology space and let A be a subset of T . The

functor Fint(A) yields a function from N into 2the carrier of T and is defined by:

(Def. 4) For every natural number n and for every subset B of T such that

B = (Fint(A))(n) holds (Fint(A))(n + 1) = Bi and (Fint(A))(0) = A.

Let T be a non empty finite topology space, let A be a subset of T , and let n

be a natural number. The functor Fint(A,n) yields a subset of T and is defined

as follows:

(Def. 5) Fint(A,n) = (Fint(A))(n).

The following propositions are true:

(13) For every natural number n holds Fcl(A,n + 1) = (Fcl(A,n))b.

(14) Fcl(A, 0) = A.

(15) Fcl(A, 1) = Ab.

(16) Fcl(A, 2) = (Ab)b.

(17) For every natural number n holds Fcl(A∪B, n) = Fcl(A,n)∪Fcl(B, n).

(18) For every natural number n holds Fint(A,n + 1) = (Fint(A,n))i.

(19) Fint(A, 0) = A.

(20) Fint(A, 1) = Ai.

(21) Fint(A, 2) = (Ai)i.

(22) For every natural number n holds Fint(A ∩ B,n) = Fint(A,n) ∩

Fint(B, n).

(23) If T is filled, then for every natural number n holds A ⊆ Fcl(A,n).

(24) If T is filled, then for every natural number n holds Fint(A,n) ⊆ A.
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(25) If T is filled, then for every natural number n holds Fcl(A, n) ⊆

Fcl(A, n + 1).

(26) If T is filled, then for every natural number n holds Fint(A,n + 1) ⊆

Fint(A, n).

(27) For every natural number n holds (Fint(Ac, n))c = Fcl(A,n).

(28) For every natural number n holds (Fcl(Ac, n))c = Fint(A,n).

(29) For every natural number n holds Fcl(A,n) ∪ Fcl(B, n) = (Fint((A ∪

B)c, n))c.

(30) For every natural number n holds Fint(A,n) ∩ Fint(B, n) = (Fcl((A ∩

B)c, n))c.

Let T be a non empty finite topology space and let A be a subset of T . The

functor Finf(A) yielding a function from N into 2the carrier of T is defined by:

(Def. 6) For every natural number n and for every subset B of T such that

B = (Finf(A))(n) holds (Finf(A))(n + 1) = Bf and (Finf(A))(0) = A.

Let T be a non empty finite topology space, let A be a subset of T , and let

n be a natural number. The functor Finf(A,n) yielding a subset of T is defined

as follows:

(Def. 7) Finf(A, n) = (Finf(A))(n).

Let T be a non empty finite topology space and let A be a subset of T . The

functor Fdfl(A) yields a function from N into 2the carrier of T and is defined as

follows:

(Def. 8) For every natural number n and for every subset B of T such that

B = (Fdfl(A))(n) holds (Fdfl(A))(n + 1) = Bd and (Fdfl(A))(0) = A.

Let T be a non empty finite topology space, let A be a subset of T , and let n

be a natural number. The functor Fdfl(A,n) yields a subset of T and is defined

as follows:

(Def. 9) Fdfl(A,n) = (Fdfl(A))(n).

Next we state a number of propositions:

(31) For every natural number n holds Finf(A,n + 1) = (Finf(A,n))f .

(32) Finf(A, 0) = A.

(33) Finf(A, 1) = Af .

(34) Finf(A, 2) = (Af )f .

(35) For every natural number n holds Finf(A ∪ B, n) = Finf(A,n) ∪

Finf(B, n).

(36) If T is filled, then for every natural number n holds A ⊆ Finf(A,n).

(37) If T is filled, then for every natural number n holds Finf(A,n) ⊆

Finf(A,n + 1).

(38) For every natural number n holds Fdfl(A,n + 1) = Fdfl(A,n)d.
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(39) Fdfl(A, 0) = A.

(40) Fdfl(A, 1) = Ad.

(41) Fdfl(A, 2) = (Ad)d.

(42) For every natural number n holds Fdfl(A ∩ B, n) = Fdfl(A,n) ∩

Fdfl(B, n).

(43) If T is filled, then for every natural number n holds Fdfl(A,n) ⊆ A.

(44) If T is filled, then for every natural number n holds Fdfl(A,n + 1) ⊆

Fdfl(A,n).

(45) For every natural number n holds Fdfl(A,n) = (Finf(Ac, n))c.

(46) For every natural number n holds Fdfl(A,n) ∩ Fdfl(B, n) = (Finf((A ∩

B)c, n))c.

Let T be a non empty finite topology space, let n be a natural number, and

let x be an element of T . The functor U(x, n) yields a subset of T and is defined

as follows:

(Def. 10) U(x, n) = Finf(U(x), n).

Next we state two propositions:

(47) U(x, 0) = U(x).

(48) For every natural number n holds U(x, n + 1) = (U(x, n))f .

Let S, T be non empty finite topology spaces. We say that S, T are mutually

symmetric if and only if the conditions (Def. 11) are satisfied.

(Def. 11)(i) The carrier of S = the carrier of T , and

(ii) for all sets x, y such that x ∈ the carrier of S and y ∈ the carrier of

T holds y ∈ (the neighbour-map of S)(x) iff x ∈ (the neighbour-map of

T )(y).

Let us note that the predicate S, T are mutually symmetric is symmetric.
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