Cauchy Sequence of Complex Unitary Space

Yasumasa Suzuki
Take, Yokosuka-shi

Japan

Noboru Endou
Gifu National College of Technology

Abstract

Summary. As an extension of [13], we introduce the Cauchy sequence of complex unitary space and describe its properties.

MML Identifier: CLVECT_3.

The terminology and notation used in this paper are introduced in the following papers: [22], [3], [20], [9], [5], [12], [10], [11], [15], [2], [18], [4], [1], [21], [16], [17], [14], [13], [19], [6], [7], and [8].

For simplicity, we follow the rules: X denotes a complex unitary space, s_{1}, s_{2}, s_{3} denote sequences of X, R_{1} denotes a sequence of real numbers, C_{1}, C_{2}, C_{3} denote complex sequences, z, z_{1}, z_{2} denote Complexes, r denotes a real number, and k, n, m denote natural numbers.

The scheme Rec Func Ex CUS deals with a complex unitary space \mathcal{A}, a point \mathcal{B} of \mathcal{A}, and a binary functor \mathcal{F} yielding a point of \mathcal{A}, and states that:

There exists a function f from \mathbb{N} into the carrier of \mathcal{A} such that $f(0)=\mathcal{B}$ and for every element n of \mathbb{N} and for every point x of \mathcal{A} such that $x=f(n)$ holds $f(n+1)=\mathcal{F}(n, x)$
for all values of the parameters.
Let us consider X, s_{1}. The functor $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ yields a sequence of X and is defined as follows:
(Def. 1) $\quad\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(0)=s_{1}(0)$ and for every n holds $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n+$ $1)=\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)+s_{1}(n+1)$.
One can prove the following propositions:
(1) $\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}+\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}+s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$.
(2) $\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}-\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}-s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$.
(3) $\left(\sum_{\alpha=0}^{\kappa}\left(z \cdot s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=z \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$.
(4) $\left(\sum_{\alpha=0}^{\kappa}\left(-s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=-\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$.
(5) $z_{1} \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}+z_{2} \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa}\left(z_{1} \cdot s_{2}+z_{2}\right.\right.$. $\left.\left.s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$.
Let us consider X, s_{1}. We say that s_{1} is summable if and only if:
(Def. 2) $\quad\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent.
The functor $\sum s_{1}$ yields a point of X and is defined as follows:
(Def. 3) $\quad \sum s_{1}=\lim \left(\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\right)$.
Next we state several propositions:
(6) If s_{2} is summable and s_{3} is summable, then $s_{2}+s_{3}$ is summable and $\sum\left(s_{2}+s_{3}\right)=\sum s_{2}+\sum s_{3}$.
(7) If s_{2} is summable and s_{3} is summable, then $s_{2}-s_{3}$ is summable and $\sum\left(s_{2}-s_{3}\right)=\sum s_{2}-\sum s_{3}$.
(8) If s_{1} is summable, then $z \cdot s_{1}$ is summable and $\sum\left(z \cdot s_{1}\right)=z \cdot \sum s_{1}$.
(9) If s_{1} is summable, then s_{1} is convergent and $\lim s_{1}=0_{X}$.
(10) Suppose X is Hilbert. Then s_{1} is summable if and only if for every r such that $r>0$ there exists k such that for all n, m such that $n \geqslant k$ and $m \geqslant k$ holds $\left\|\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)-\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m)\right\|<r$.
(11) If s_{1} is summable, then $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is bounded.
(12) If for every n holds $s_{2}(n)=s_{1}(0)$, then $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1} \uparrow 1\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=$ $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}} \uparrow 1-s_{2}$.
(13) If s_{1} is summable, then for every k holds $s_{1} \uparrow k$ is summable.
(14) If there exists k such that $s_{1} \uparrow k$ is summable, then s_{1} is summable.

Let us consider X, s_{1}, n. The functor $\sum_{\kappa=0}^{n} s_{1}(\kappa)$ yielding a point of X is defined by:
(Def. 4) $\quad \sum_{\kappa=0}^{n} s_{1}(\kappa)=\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
One can prove the following propositions:
(15) $\quad \sum_{\kappa=0}^{0} s_{1}(\kappa)=s_{1}(0)$.
(16) $\quad \sum_{\kappa=0}^{1} s_{1}(\kappa)=\sum_{\kappa=0}^{0} s_{1}(\kappa)+s_{1}(1)$.
(17) $\quad \sum_{\kappa=0}^{1} s_{1}(\kappa)=s_{1}(0)+s_{1}(1)$.
(18) $\quad \sum_{\kappa=0}^{n+1} s_{1}(\kappa)=\sum_{\kappa=0}^{n} s_{1}(\kappa)+s_{1}(n+1)$.
(19) $s_{1}(n+1)=\sum_{\kappa=0}^{n+1} s_{1}(\kappa)-\sum_{\kappa=0}^{n} s_{1}(\kappa)$.
(20) $s_{1}(1)=\sum_{\kappa=0}^{1} s_{1}(\kappa)-\sum_{\kappa=0}^{0} s_{1}(\kappa)$.

Let us consider X, s_{1}, n, m. The functor $\sum_{\kappa=n+1}^{m} s_{1}(\kappa)$ yielding a point of X is defined by:
(Def. 5) $\quad \sum_{\kappa=n+1}^{m} s_{1}(\kappa)=\sum_{\kappa=0}^{n} s_{1}(\kappa)-\sum_{\kappa=0}^{m} s_{1}(\kappa)$.
One can prove the following four propositions:
(21) $\quad \sum_{\kappa=1+1}^{0} s_{1}(\kappa)=s_{1}(1)$.
(22) $\quad \sum_{\kappa=n+1+1}^{n} s_{1}(\kappa)=s_{1}(n+1)$.
(23) Suppose X is Hilbert. Then s_{1} is summable if and only if for every r such that $r>0$ there exists k such that for all n, m such that $n \geqslant k$ and $m \geqslant k$ holds $\left\|\sum_{\kappa=0}^{n} s_{1}(\kappa)-\sum_{\kappa=0}^{m} s_{1}(\kappa)\right\|<r$.
(24) Suppose X is Hilbert. Then s_{1} is summable if and only if for every r such that $r>0$ there exists k such that for all n, m such that $n \geqslant k$ and $m \geqslant k$ holds $\left\|\sum_{\kappa=n+1}^{m} s_{1}(k)\right\|<r$.
Let us consider C_{1}, n. The functor $\sum_{\kappa=0}^{n} C_{1}(\kappa)$ yielding a Complex is defined as follows:
(Def. 6) $\quad \sum_{\kappa=0}^{n} C_{1}(\kappa)=\left(\sum_{\alpha=0}^{\kappa}\left(C_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
Let us consider C_{1}, n, m. The functor $\sum_{\kappa=n+1}^{m} C_{1}(\kappa)$ yielding a Complex is defined by:
(Def. 7) $\quad \sum_{\kappa=n+1}^{m} C_{1}(\kappa)=\sum_{\kappa=0}^{n} C_{1}(\kappa)-\sum_{\kappa=0}^{m} C_{1}(\kappa)$.
Let us consider X, s_{1}. We say that s_{1} is absolutely summable if and only if:
(Def. 8) $\left\|s_{1}\right\|$ is summable.
The following propositions are true:
(25) If s_{2} is absolutely summable and s_{3} is absolutely summable, then $s_{2}+s_{3}$ is absolutely summable.
(26) If s_{1} is absolutely summable, then $z \cdot s_{1}$ is absolutely summable.
(27) If for every n holds $\left\|s_{1}\right\|(n) \leqslant R_{1}(n)$ and R_{1} is summable, then s_{1} is absolutely summable.
(28) If for every n holds $s_{1}(n) \neq 0_{X}$ and $R_{1}(n)=\frac{\left\|s_{1}(n+1)\right\|}{\left\|s_{1}(n)\right\|}$ and R_{1} is convergent and $\lim R_{1}<1$, then s_{1} is absolutely summable.
(29) If $r>0$ and there exists m such that for every n such that $n \geqslant m$ holds $\left\|s_{1}(n)\right\| \geqslant r$, then s_{1} is not convergent or $\lim s_{1} \neq 0_{X}$.
(30) If for every n holds $s_{1}(n) \neq 0_{X}$ and there exists m such that for every n such that $n \geqslant m$ holds $\frac{\left\|s_{1}(n+1)\right\|}{\left\|s_{1}(n)\right\|} \geqslant 1$, then s_{1} is not summable.
(31) If for every n holds $s_{1}(n) \neq 0_{X}$ and for every n holds $R_{1}(n)=\frac{\left\|s_{1}(n+1)\right\|}{\left\|s_{1}(n)\right\|}$ and R_{1} is convergent and $\lim R_{1}>1$, then s_{1} is not summable.
(32) If for every n holds $R_{1}(n)=\sqrt[n]{\left\|s_{1}(n)\right\|}$ and R_{1} is convergent and $\lim R_{1}<1$, then s_{1} is absolutely summable.
(33) If for every n holds $R_{1}(n)=\sqrt[n]{\left\|s_{1}\right\|(n)}$ and there exists m such that for every n such that $n \geqslant m$ holds $R_{1}(n) \geqslant 1$, then s_{1} is not summable.
(34) If for every n holds $R_{1}(n)=\sqrt[n]{\left\|s_{1}\right\|(n)}$ and R_{1} is convergent and $\lim R_{1}>1$, then s_{1} is not summable.
(35) $\quad\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}$ is non-decreasing.
(36) For every n holds $\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \geqslant 0$.
(37) For every n holds $\left\|\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right\| \leqslant\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(38) For every n holds $\left\|\sum_{\kappa=0}^{n} s_{1}(\kappa)\right\| \leqslant \sum_{\kappa=0}^{n}\left\|s_{1}\right\|(\kappa)$.
(39) For all n, m holds $\left\|\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right\| \leqslant$ $\left|\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|$.
(40) For all n, m holds $\left\|\sum_{\kappa=0}^{m} s_{1}(\kappa)-\sum_{\kappa=0}^{n} s_{1}(\kappa)\right\| \leqslant \mid \sum_{\kappa=0}^{m}\left\|s_{1}\right\|(\kappa)-$ $\sum_{\kappa=0}^{n}\left\|s_{1}\right\|(\kappa) \mid$.
(41) For all n, m holds $\left\|\sum_{\kappa=m+1}^{n} s_{1}(\kappa)\right\| \leqslant\left|\sum_{\kappa=m+1}^{n}\left\|s_{1}\right\|(\kappa)\right|$.
(42) If X is Hilbert, then if s_{1} is absolutely summable, then s_{1} is summable.

Let us consider X, s_{1}, C_{1}. The functor $C_{1} \cdot s_{1}$ yields a sequence of X and is defined by:
(Def. 9) For every n holds $\left(C_{1} \cdot s_{1}\right)(n)=C_{1}(n) \cdot s_{1}(n)$.
Next we state several propositions:
(43) $C_{1} \cdot\left(s_{2}+s_{3}\right)=C_{1} \cdot s_{2}+C_{1} \cdot s_{3}$.
(44) $\left(C_{2}+C_{3}\right) \cdot s_{1}=C_{2} \cdot s_{1}+C_{3} \cdot s_{1}$.
(45) $\left(C_{2} C_{3}\right) \cdot s_{1}=C_{2} \cdot\left(C_{3} \cdot s_{1}\right)$.
(46) $\left(z C_{1}\right) \cdot s_{1}=z \cdot\left(C_{1} \cdot s_{1}\right)$.
(47) $C_{1} \cdot-s_{1}=\left(-C_{1}\right) \cdot s_{1}$.
(48) If C_{1} is convergent and s_{1} is convergent, then $C_{1} \cdot s_{1}$ is convergent.
(49) If C_{1} is bounded and s_{1} is bounded, then $C_{1} \cdot s_{1}$ is bounded.
(50) If C_{1} is convergent and s_{1} is convergent, then $C_{1} \cdot s_{1}$ is convergent and $\lim \left(C_{1} \cdot s_{1}\right)=\lim C_{1} \cdot \lim s_{1}$.
Let us consider C_{1}. We say that C_{1} is Cauchy if and only if:
(Def. 10) For every r such that $r>0$ there exists k such that for all n, m such that $n \geqslant k$ and $m \geqslant k$ holds $\left|C_{1}(n)-C_{1}(m)\right|<r$.
We introduce C_{1} is a Cauchy sequence as a synonym of C_{1} is Cauchy.
Next we state four propositions:
(51) If X is Hilbert, then if s_{1} is Cauchy and C_{1} is Cauchy, then $C_{1} \cdot s_{1}$ is Cauchy.
(52) For every n holds $\left(\sum_{\alpha=0}^{\kappa}\left(\left(C_{1}-C_{1} \uparrow 1\right) \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=$ $\left(\sum_{\alpha=0}^{\kappa}\left(C_{1} \cdot s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n+1)-\left(C_{1} \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(n+1)$.
(53) For every n holds $\left(\sum_{\alpha=0}^{\kappa}\left(C_{1} \cdot s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n+1)=\left(C_{1}\right.$. $\left.\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(n+1)-\left(\sum_{\alpha=0}^{\kappa}\left(\left(C_{1} \uparrow 1-C_{1}\right) \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(54) For every n holds $\sum_{k=0}^{n+1}\left(C_{1} \cdot s_{1}\right)(\kappa)=\left(C_{1} \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(n+1)-$ $\sum_{\kappa=0}^{n}\left(\left(C_{1} \uparrow 1-C_{1}\right) \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(\kappa)$.

References

[1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121-124, 1993.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[7] Noboru Endou. Complex linear space of complex sequences. Formalized Mathematics, 12(2):109-117, 2004.
[8] Noboru Endou. Convergent sequences in complex unitary space. Formalized Mathematics, 12(2):159-165, 2004.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[11] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[13] Elżbieta Kraszewska and Jan Popiołek. Series in Banach and Hilbert Spaces. Formalized Mathematics, 2(5):695-699, 1991.
[14] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.
[15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[17] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[18] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[19] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. Formalized Mathematics, 6(3):403-410, 1997.
[20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

