Cauchy Sequence of Complex Unitary Space

Yasumasa Suzuki Take, Yokosuka-shi Japan Noboru Endou Gifu National College of Technology

Summary. As an extension of [13], we introduce the Cauchy sequence of complex unitary space and describe its properties.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{CLVECT_3}.$

The terminology and notation used in this paper are introduced in the following papers: [22], [3], [20], [9], [5], [12], [10], [11], [15], [2], [18], [4], [1], [21], [16], [17], [14], [13], [19], [6], [7], and [8].

For simplicity, we follow the rules: X denotes a complex unitary space, s_1 , s_2 , s_3 denote sequences of X, R_1 denotes a sequence of real numbers, C_1 , C_2 , C_3 denote complex sequences, z, z_1 , z_2 denote Complexes, r denotes a real number, and k, n, m denote natural numbers.

The scheme *Rec Func Ex CUS* deals with a complex unitary space \mathcal{A} , a point \mathcal{B} of \mathcal{A} , and a binary functor \mathcal{F} yielding a point of \mathcal{A} , and states that:

There exists a function f from \mathbb{N} into the carrier of \mathcal{A} such that

 $f(0) = \mathcal{B}$ and for every element n of N and for every point x of \mathcal{A}

such that x = f(n) holds $f(n+1) = \mathcal{F}(n, x)$

for all values of the parameters.

Let us consider X, s_1 . The functor $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}$ yields a sequence of X and is defined as follows:

(Def. 1) $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(0) = s_1(0)$ and for every n holds $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(n+1) = (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(n) + s_1(n+1).$

One can prove the following propositions:

(1) $(\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa\in\mathbb{N}} + (\sum_{\alpha=0}^{\kappa} (s_3)(\alpha))_{\kappa\in\mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_2+s_3)(\alpha))_{\kappa\in\mathbb{N}}.$

(2)
$$\left(\sum_{\alpha=0}^{\kappa} (s_2)(\alpha)\right)_{\kappa\in\mathbb{N}} - \left(\sum_{\alpha=0}^{\kappa} (s_3)(\alpha)\right)_{\kappa\in\mathbb{N}} = \left(\sum_{\alpha=0}^{\kappa} (s_2-s_3)(\alpha)\right)_{\kappa\in\mathbb{N}}.$$

(3)
$$(\sum_{\alpha=0}^{\kappa} (z \cdot s_1)(\alpha))_{\kappa \in \mathbb{N}} = z \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}.$$

C 2004 University of Białystok ISSN 1426-2630

- (4) $(\sum_{\alpha=0}^{\kappa} (-s_1)(\alpha))_{\kappa \in \mathbb{N}} = -(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}.$
- (5) $z_1 \cdot (\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa \in \mathbb{N}} + z_2 \cdot (\sum_{\alpha=0}^{\kappa} (s_3)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (z_1 \cdot s_2 + z_2 \cdot (z_1 \cdot s_2))_{\kappa \in \mathbb{N}} + z_2 \cdot (z_1 \cdot s_2)_{\kappa \in \mathbb{N}} + z_2 \cdot ($ $(s_3)(\alpha))_{\kappa \in \mathbb{N}}$
- Let us consider X, s_1 . We say that s_1 is summable if and only if:
- (Def. 2) $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent.
- The functor $\sum s_1$ yields a point of X and is defined as follows:
- (Def. 3) $\sum s_1 = \lim((\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}).$

Next we state several propositions:

- (6) If s_2 is summable and s_3 is summable, then $s_2 + s_3$ is summable and $\sum (s_2 + s_3) = \sum s_2 + \sum s_3.$
- (7) If s_2 is summable and s_3 is summable, then $s_2 s_3$ is summable and $\sum (s_2 - s_3) = \sum s_2 - \sum s_3.$
- (8) If s_1 is summable, then $z \cdot s_1$ is summable and $\sum (z \cdot s_1) = z \cdot \sum s_1$.
- (9) If s_1 is summable, then s_1 is convergent and $\lim s_1 = 0_X$.
- (10) Suppose X is Hilbert. Then s_1 is summable if and only if for every r such that r > 0 there exists k such that for all n, m such that $n \ge k$ and $m \ge k$ holds $\|(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n) - (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(m)\| < r.$
- (11) If s_1 is summable, then $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}$ is bounded.
- (12) If for every n holds $s_2(n) = s_1(0)$, then $(\sum_{\alpha=0}^{\kappa} (s_1 \uparrow 1)(\alpha))_{\kappa \in \mathbb{N}} =$ $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}} \uparrow 1 - s_2.$
- (13) If s_1 is summable, then for every k holds $s_1 \uparrow k$ is summable.
- (14) If there exists k such that $s_1 \uparrow k$ is summable, then s_1 is summable.

Let us consider X, s_1 , n. The functor $\sum_{\kappa=0}^n s_1(\kappa)$ yielding a point of X is defined by:

(Def. 4)
$$\sum_{\kappa=0}^{n} s_1(\kappa) = (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n).$$

One can prove the following propositions:

- (15) $\sum_{\kappa=0}^{0} s_1(\kappa) = s_1(0).$ (16) $\sum_{\kappa=0}^{1} s_1(\kappa) = \sum_{\kappa=0}^{0} s_1(\kappa) + s_1(1).$ (17) $\sum_{\kappa=0}^{1} s_1(\kappa) = s_1(0) + s_1(1).$ (18) $\sum_{\kappa=0}^{n+1} s_1(\kappa) = \sum_{\kappa=0}^{n} s_1(\kappa) + s_1(n+1).$ (19) $s_1(n+1) = \sum_{\kappa=0}^{n+1} s_1(\kappa) \sum_{\kappa=0}^{n} s_1(\kappa).$ (20) $s_1(1) = \sum_{\kappa=0}^{1} s_1(\kappa) \sum_{\kappa=0}^{0} s_1(\kappa).$

Let us consider X, s_1 , n, m. The functor $\sum_{\kappa=n+1}^m s_1(\kappa)$ yielding a point of X is defined by:

(Def. 5) $\sum_{\kappa=n+1}^{m} s_1(\kappa) = \sum_{\kappa=0}^{n} s_1(\kappa) - \sum_{\kappa=0}^{m} s_1(\kappa).$

One can prove the following four propositions:

- (21) $\sum_{\kappa=1+1}^{0} s_1(\kappa) = s_1(1).$
- (22) $\sum_{\kappa=n+1+1}^{n} s_1(\kappa) = s_1(n+1).$

226

- (23) Suppose X is Hilbert. Then s_1 is summable if and only if for every r such that r > 0 there exists k such that for all n, m such that $n \ge k$ and $m \ge k$ holds $\|\sum_{\kappa=0}^{n} s_1(\kappa) \sum_{\kappa=0}^{m} s_1(\kappa)\| < r$.
- (24) Suppose X is Hilbert. Then s_1 is summable if and only if for every r such that r > 0 there exists k such that for all n, m such that $n \ge k$ and $m \ge k$ holds $\|\sum_{\kappa=n+1}^{m} s_1(\kappa)\| < r$.

Let us consider C_1 , *n*. The functor $\sum_{\kappa=0}^{n} C_1(\kappa)$ yielding a Complex is defined as follows:

(Def. 6) $\sum_{\kappa=0}^{n} C_1(\kappa) = (\sum_{\alpha=0}^{\kappa} (C_1)(\alpha))_{\kappa \in \mathbb{N}}(n).$

Let us consider C_1 , n, m. The functor $\sum_{\kappa=n+1}^{m} C_1(\kappa)$ yielding a Complex is defined by:

- (Def. 7) $\sum_{\kappa=n+1}^{m} C_1(\kappa) = \sum_{\kappa=0}^{n} C_1(\kappa) \sum_{\kappa=0}^{m} C_1(\kappa).$
 - Let us consider X, s_1 . We say that s_1 is absolutely summable if and only if:
- (Def. 8) $||s_1||$ is summable.

The following propositions are true:

- (25) If s_2 is absolutely summable and s_3 is absolutely summable, then $s_2 + s_3$ is absolutely summable.
- (26) If s_1 is absolutely summable, then $z \cdot s_1$ is absolutely summable.
- (27) If for every n holds $||s_1||(n) \leq R_1(n)$ and R_1 is summable, then s_1 is absolutely summable.
- (28) If for every *n* holds $s_1(n) \neq 0_X$ and $R_1(n) = \frac{\|s_1(n+1)\|}{\|s_1(n)\|}$ and R_1 is convergent and $\lim R_1 < 1$, then s_1 is absolutely summable.
- (29) If r > 0 and there exists m such that for every n such that $n \ge m$ holds $||s_1(n)|| \ge r$, then s_1 is not convergent or $\lim s_1 \ne 0_X$.
- (30) If for every *n* holds $s_1(n) \neq 0_X$ and there exists *m* such that for every *n* such that $n \ge m$ holds $\frac{\|s_1(n+1)\|}{\|s_1(n)\|} \ge 1$, then s_1 is not summable.
- (31) If for every *n* holds $s_1(n) \neq 0_X$ and for every *n* holds $R_1(n) = \frac{\|s_1(n+1)\|}{\|s_1(n)\|}$ and R_1 is convergent and $\lim R_1 > 1$, then s_1 is not summable.
- (32) If for every *n* holds $R_1(n) = \sqrt[n]{\|s_1(n)\|}$ and R_1 is convergent and $\lim R_1 < 1$, then s_1 is absolutely summable.
- (33) If for every *n* holds $R_1(n) = \sqrt[n]{\|s_1\|(n)}$ and there exists *m* such that for every *n* such that $n \ge m$ holds $R_1(n) \ge 1$, then s_1 is not summable.
- (34) If for every *n* holds $R_1(n) = \sqrt[n]{\|s_1\|(n)}$ and R_1 is convergent and $\lim R_1 > 1$, then s_1 is not summable.
- (35) $(\sum_{\alpha=0}^{\kappa} \|s_1\|(\alpha))_{\kappa \in \mathbb{N}}$ is non-decreasing.
- (36) For every *n* holds $(\sum_{\alpha=0}^{\kappa} ||s_1||(\alpha))_{\kappa \in \mathbb{N}}(n) \ge 0.$
- (37) For every *n* holds $\|(\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}}(n)\| \leq (\sum_{\alpha=0}^{\kappa}\|s_1\|(\alpha))_{\kappa\in\mathbb{N}}(n).$
- (38) For every *n* holds $\|\sum_{\kappa=0}^n s_1(\kappa)\| \leq \sum_{\kappa=0}^n \|s_1\|(\kappa)$.

- (39) For all n, m holds $\|(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(n)\| \leq 1$ $\begin{array}{l} (00) \quad \text{for all } n, m \text{ holds } \|(\sum_{\alpha=0}^{\kappa} \|s_1\|(\alpha))_{\kappa\in\mathbb{N}}(n) - (\sum_{\alpha=0}^{\kappa} \|s_1\|(\alpha))_{\kappa\in\mathbb{N}}(n)\|. \\ (40) \quad \text{For all } n, m \text{ holds } \|\sum_{\kappa=0}^{m} s_1(\kappa) - \sum_{\kappa=0}^{n} s_1(\kappa)\| \leqslant \|\sum_{\kappa=0}^{m} \|s_1\|(\kappa) - \sum_{\kappa=0}^{n} \|s_1\|(\kappa)\| \\ \end{array}$
- $\sum_{\kappa=0}^{n} \|s_1\|(\kappa)|.$
- (41) For all *n*, *m* holds $\|\sum_{\kappa=m+1}^{n} s_1(\kappa)\| \leq \|\sum_{\kappa=m+1}^{n} \|s_1\|(\kappa)\|.$

(42) If X is Hilbert, then if s_1 is absolutely summable, then s_1 is summable. Let us consider X, s_1 , C_1 . The functor $C_1 \cdot s_1$ yields a sequence of X and is defined by:

(Def. 9) For every n holds $(C_1 \cdot s_1)(n) = C_1(n) \cdot s_1(n)$.

Next we state several propositions:

- (43) $C_1 \cdot (s_2 + s_3) = C_1 \cdot s_2 + C_1 \cdot s_3.$
- (44) $(C_2 + C_3) \cdot s_1 = C_2 \cdot s_1 + C_3 \cdot s_1.$
- (45) $(C_2 C_3) \cdot s_1 = C_2 \cdot (C_3 \cdot s_1).$
- (46) $(z C_1) \cdot s_1 = z \cdot (C_1 \cdot s_1).$
- (47) $C_1 \cdot -s_1 = (-C_1) \cdot s_1.$
- (48) If C_1 is convergent and s_1 is convergent, then $C_1 \cdot s_1$ is convergent.
- (49) If C_1 is bounded and s_1 is bounded, then $C_1 \cdot s_1$ is bounded.
- (50) If C_1 is convergent and s_1 is convergent, then $C_1 \cdot s_1$ is convergent and $\lim(C_1 \cdot s_1) = \lim C_1 \cdot \lim s_1.$

Let us consider C_1 . We say that C_1 is Cauchy if and only if:

(Def. 10) For every r such that r > 0 there exists k such that for all n, m such that $n \ge k$ and $m \ge k$ holds $|C_1(n) - C_1(m)| < r$.

We introduce C_1 is a Cauchy sequence as a synonym of C_1 is Cauchy. Next we state four propositions:

- (51) If X is Hilbert, then if s_1 is Cauchy and C_1 is Cauchy, then $C_1 \cdot s_1$ is Cauchy.
- (52) For every n holds $(\sum_{\alpha=0}^{\kappa} ((C_1 C_1 \uparrow 1) \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}})(\alpha))_{\kappa \in \mathbb{N}}(n) = (\sum_{\alpha=0}^{\kappa} (C_1 \cdot s_1)(\alpha))_{\kappa \in \mathbb{N}}(n+1) (C_1 \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}})(n+1).$
- (53) For every *n* holds $(\sum_{\alpha=0}^{\kappa} (C_1 \cdot s_1)(\alpha))_{\kappa \in \mathbb{N}} (n+1) = (C_1 \cdot s_1)(\alpha)$ $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}})(n+1) - (\overline{\sum_{\alpha=0}^{\kappa}} ((C_1\uparrow 1 - C_1) \cdot (\overline{\sum_{\alpha=0}^{\kappa}} (s_1)(\alpha))_{\kappa\in\mathbb{N}})(\alpha))_{\kappa\in\mathbb{N}}(n).$
- (54) For every *n* holds $\sum_{\kappa=0}^{n+1} (C_1 \cdot s_1)(\kappa) = (C_1 \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}})(n+1) \sum_{\kappa=0}^{n} ((C_1 \uparrow 1 C_1) \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}})(\kappa).$

References

- [1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121-124, 1993.
- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-|2|*matics*, 1(1):41–46, 1990.
- Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.

228

- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
- [7] Noboru Endou. Complex linear space of complex sequences. Formalized Mathematics, 12(2):109–117, 2004.
- [8] Noboru Endou. Convergent sequences in complex unitary space. Formalized Mathematics, 12(2):159–165, 2004.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [10] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [11] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [13] Elżbieta Kraszewska and Jan Popiołek. Series in Banach and Hilbert Spaces. Formalized Mathematics, 2(5):695–699, 1991.
- [14] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265–268, 1997.
- [15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [17] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [18] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449– 452, 1991.
- [19] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. Formalized Mathematics, 6(3):403–410, 1997.
- [20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received March 18, 2004