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Summary. As an extension of [13], we introduce the Cauchy sequence of
complex unitary space and describe its properties.

MML Identifier: CLVECT_3.

The terminology and notation used in this paper are introduced in the following
papers: [22], [3], [20], [9], [5], [12], [10], [11], [15], [2], [18], [4], [1], [21], [16], [17],
[14], [13], [19], [6], [7], and [8].
For simplicity, we follow the rules: X denotes a complex unitary space, s1,
s2, s3 denote sequences of X, Ry denotes a sequence of real numbers, C', Co, C3
denote complex sequences, z, 21, 2o denote Complexes, r denotes a real number,
and k, n, m denote natural numbers.
The scheme Rec Func Ex CUS deals with a complex unitary space A, a point
B of A, and a binary functor F yielding a point of A, and states that:
There exists a function f from N into the carrier of A such that
f(0) = B and for every element n of N and for every point z of A
such that z = f(n) holds f(n+ 1) = F(n,z)

for all values of the parameters.

Let us consider X, s;. The functor (3 ,_,(s1)())ken yields a sequence of
X and is defined as follows:

(Def. 1) (30 _o(s1)(@))wen(0) = s1(0) and for every n holds (35 _(s1)(@))wen(n+
1) = (X azo(s1)(@))ren(n) + s1(n+1).
One can prove the following propositions:
(1) (Ca=o(s2)(a))ren + (2og=0(s3)(a))xen = (Roq—o(s2 + s3)(a))xen-
(2) (Xazo(s2)(@))wen — (Xoa—o(83)(@))ren = (3a—o(s2 — s3)(at))wen-
(3) (a=o(z - s1)(a))wen = 2 - (3oa—o(51)(a))wen-
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(4) (Cn_o(=s1)(@)xen = —(Xno(51)(@))ren-
(5) 21+ (Xnzo(s2)(@))en + 22 - (Fon—o(s3)(a))sen = (Doa—o(z1 - 52 + 22 -
53)(@))nen-

Let us consider X, s1. We say that s; is summable if and only if:

(Def. 2) (30 _o(s1)())ken is convergent.

The functor ) s; yields a point of X and is defined as follows:

(Def. 8) Y2 s1 = Hn((S5_o(s1)(@))nen)-

Next we state several propositions:

(6) If sy is summable and s3 is summable, then sy + s3 is summable and
S(sa+s3)=> 852+ 83.

(7) If sp is summable and s3 is summable, then so — s3 is summable and
Z(SQ — 83) = 282 — 283.

(8) If s; is summable, then z - s1 is summable and Y (z-s1) =2 ) s1.

(9) If 1 is summable, then s; is convergent and lim s; = Ox.

1

(10) Suppose X is Hilbert. Then s; is summable if and only if for every r
such that r > 0 there exists k such that for all n, m such that n > k and

> k holds [|(2-6=o(s1)())en(n) — (a=o(s51)(@))ren(m)|| < 7.
(11) If 51 is summable, then (3~ _,(s1)(a))xen is bounded.
(12) If for every n holds sa(n) = s1(0), then (3o _o(s1 T 1)(@))ken =
(X a=o(s1)(@))ren T1 — s2.
(13) If s; is summable, then for every k£ holds s; T k is summable.
(14) If there exists k such that s; T k is summable, then s; is summable.

Let us consider X, s1, n. The functor > "_ s1(k) yielding a point of X is
defined by:

(Def. 4) 320 gs1(r) = (Ca=o(s1)(a))ren(n).

One can prove the following propositions:

15) 3o s1(k) = 51(0).
)

16) Yp_gs1(k) = Yp_gs1(k) + s1(1).
17) Yhgsi(k) =s ( )+ s1(1).
(k s1(k) +s1(n+1).

si(n+1) = ZT& 31( ) = 2 =0 51(K)-
s1(1) = Yprg s1(k) = Yp_g 51(k).

Let us consider X, s1, n, m. The functor Y7, s1(x) yielding a point of
X is defined by:

(Def. 5) Y,y s1(k) = S0 s1(8) = X s (k).
One can prove the following four propositions:

(21) Yh_iisi(k) = si(1).

(22) Yienii1si(k) = si(n+1).

(
(16)
(17)
(18) Yty s
(19)
(20)
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(23) Suppose X is Hilbert. Then s; is summable if and only if for every r
such that r > 0 there exists k such that for all n, m such that n > k and
m > k holds |0y s1(5) — Sg s1(R)]| < 1.
(24) Suppose X is Hilbert. Then s; is summable if and only if for every r
such that r > 0 there exists k such that for all n, m such that n > k and
m >k holds ||[3-70  si(k)|| <7
Let us consider C1, n. The functor Y ., C1 (k) yielding a Complex is defined
as follows:

(Def. 6) 30— C1(r) = (Xaz0(C1)(@))ren(n).
Let us consider C1, n, m. The functor Y7 .| C1(k) yielding a Complex is
defined by:

(DeL. 7) Sy 1) = o Ci () — Sy Ca ().
Let us consider X, s1. We say that s; is absolutely summable if and only if:
(Def. 8) ||s1]| is summable.
The following propositions are true:
(25) If sy is absolutely summable and s3 is absolutely summable, then sg + s3
is absolutely summable.
(26) 1If s is absolutely summable, then z - s; is absolutely summable.
(27) 1If for every n holds ||si||(n) < Ri(n) and R; is summable, then s; is
absolutely summable.
(28) If for every n holds s1(n) # Ox and Ri(n) = W and R; is conver-
gent and lim R; < 1, then s; is absolutely summable.
(29) If r > 0 and there exists m such that for every n such that n > m holds
|Is1(n)|| > r, then s1 is not convergent or lims; # Ox.
(30) If for every n holds s1(n) # 0x and there exists m such that for every n

such that n > m holds W > 1, then s; is not summable.

(31) If for every n holds s1(n) # Ox and for every n holds R;i(n) = W

and R; is convergent and lim R > 1, then s; is not summable.

(32) If for every n holds Ri(n) = %/||si(n)| and R; is convergent and
lim Ry < 1, then s; is absolutely summable.

(33) If for every n holds Ry(n) = {/||s1]|(n) and there exists m such that for
every n such that n > m holds Ry(n) > 1, then s; is not summable.

(34) 1If for every n holds Ri(n) = i/||s1]|(n) and R; is convergent and
lim R; > 1, then s; is not summable.

(35)  (>on_ollsill(@))ken is non-decreasing.

(36) For every n holds (3 n_olls1/(e))ken(n) > 0.

(37)  For every n holds [|(325—o(s1)(a))sen(n)]| < (XCa=olls1ll(@))xen(n)-
(38)  For every n holds |3 %_q s1(r)]| < 25_ollsill(%)-
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(39) For all n, m holds [|(325_o(s1)(c))wen(m) — (3a—o(s1)(@))ren(n)]| <
| a=ollstll(@)ren(m) — (g=olls1ll(@))ren(n)]-

(40) For all n, m holds [>2Zgs1(r) — 2 h_os1(R)ll < [DZollsill(%) —
> k=olls1ll(£)]-

(41)  For all n, m holds (1325, 1 s1(R)| < [z sl (m)]-

(42) If X is Hilbert, then if s; is absolutely summable, then s; is summable.

Let us consider X, s1, C7. The functor C] - s1 yields a sequence of X and is
defined by:

(Def. 9) For every n holds (C; - s1)(n) = Cy(n) - s1(n).
Next we state several propositions:
01~(82+83) =C1-59+C1-s3
(C2+Cg)'81 =Cy-51+C3- 5.
(CQ 03) + 81 = CQ . (Cg . 81).
(2C1)-s1=2-(Cy-s1).
Cl =81 = (—Cl) + 51
If C is convergent and s; is convergent, then C] - s1 is convergent.
If C; is bounded and s; is bounded, then C; - s1 is bounded.

If Cy is convergent and sy is convergent, then Cy - sy is convergent and
lm(C - s1) = lim C - lim s7.
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Let us consider C. We say that C] is Cauchy if and only if:

(Def. 10) For every r such that r > 0 there exists k such that for all n, m such
that n > k and m > k holds |C1(n) — C1(m)| < r.
We introduce C is a Cauchy sequence as a synonym of C7 is Cauchy.
Next we state four propositions:
(51) If X is Hilbert, then if s; is Cauchy and C; is Cauchy, then C - s; is
Cauchy.

(52)  For every n holds (325 _o((C1 —C1T1)- (325-0(51)(@))ren)(@))ren(n) =
(>a=0(C1 - s1)(@))wen(n + 1) — (Cr - (325—o(s1)(@))ren) (n + 1).

(53) For every n holds (D n_o(Ci - s1)(@))sen(n + 1) = (C1 -
(>a=0(s1)(@))ren) (n+1) = (3200 ((C1T1=C1)- (325 =0 (51) (@) ken) (@) ) wen (n).

(54) For every n holds Z”+1(C’1 s1)(k) = (C1- Oa_o(s1)(@))ken)(n+1) —
D ormo((C1 11 =C1) - (3oa—o(51)())ren) (K).
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