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Summary. As an extension of [13], we introduce the Cauchy sequence of
complex unitary space and describe its properties.

MML Identifier: CLVECT 3.

The terminology and notation used in this paper are introduced in the following

papers: [22], [3], [20], [9], [5], [12], [10], [11], [15], [2], [18], [4], [1], [21], [16], [17],

[14], [13], [19], [6], [7], and [8].

For simplicity, we follow the rules: X denotes a complex unitary space, s1,

s2, s3 denote sequences of X, R1 denotes a sequence of real numbers, C1, C2, C3

denote complex sequences, z, z1, z2 denote Complexes, r denotes a real number,

and k, n, m denote natural numbers.

The scheme Rec Func Ex CUS deals with a complex unitary space A, a point

B of A, and a binary functor F yielding a point of A, and states that:

There exists a function f from N into the carrier of A such that

f(0) = B and for every element n of N and for every point x of A

such that x = f(n) holds f(n + 1) = F(n, x)

for all values of the parameters.

Let us consider X, s1. The functor (
∑

κ

α=0(s1)(α))κ∈N yields a sequence of

X and is defined as follows:

(Def. 1) (
∑

κ

α=0(s1)(α))κ∈N(0) = s1(0) and for every n holds (
∑

κ

α=0(s1)(α))κ∈N(n+

1) = (
∑

κ

α=0(s1)(α))κ∈N(n) + s1(n + 1).

One can prove the following propositions:

(1) (
∑

κ

α=0(s2)(α))κ∈N + (
∑

κ

α=0(s3)(α))κ∈N = (
∑

κ

α=0(s2 + s3)(α))κ∈N.

(2) (
∑

κ

α=0(s2)(α))κ∈N − (
∑

κ

α=0(s3)(α))κ∈N = (
∑

κ

α=0(s2 − s3)(α))κ∈N.

(3) (
∑

κ

α=0(z · s1)(α))κ∈N = z · (
∑

κ

α=0(s1)(α))κ∈N.
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(4) (
∑

κ

α=0(−s1)(α))κ∈N = −(
∑

κ

α=0(s1)(α))κ∈N.

(5) z1 · (
∑

κ

α=0(s2)(α))κ∈N + z2 · (
∑

κ

α=0(s3)(α))κ∈N = (
∑

κ

α=0(z1 · s2 + z2 ·

s3)(α))κ∈N.

Let us consider X, s1. We say that s1 is summable if and only if:

(Def. 2) (
∑

κ

α=0(s1)(α))κ∈N is convergent.

The functor
∑

s1 yields a point of X and is defined as follows:

(Def. 3)
∑

s1 = lim((
∑

κ

α=0(s1)(α))κ∈N).

Next we state several propositions:

(6) If s2 is summable and s3 is summable, then s2 + s3 is summable and
∑

(s2 + s3) =
∑

s2 +
∑

s3.

(7) If s2 is summable and s3 is summable, then s2 − s3 is summable and
∑

(s2 − s3) =
∑

s2 −
∑

s3.

(8) If s1 is summable, then z · s1 is summable and
∑

(z · s1) = z ·
∑

s1.

(9) If s1 is summable, then s1 is convergent and lim s1 = 0X .

(10) Suppose X is Hilbert. Then s1 is summable if and only if for every r

such that r > 0 there exists k such that for all n, m such that n ­ k and

m ­ k holds ‖(
∑

κ

α=0(s1)(α))κ∈N(n)− (
∑

κ

α=0(s1)(α))κ∈N(m)‖ < r.

(11) If s1 is summable, then (
∑

κ

α=0(s1)(α))κ∈N is bounded.

(12) If for every n holds s2(n) = s1(0), then (
∑

κ

α=0(s1 ↑ 1)(α))κ∈N =

(
∑

κ

α=0(s1)(α))κ∈N ↑ 1− s2.

(13) If s1 is summable, then for every k holds s1 ↑ k is summable.

(14) If there exists k such that s1 ↑ k is summable, then s1 is summable.

Let us consider X, s1, n. The functor
∑

n

κ=0 s1(κ) yielding a point of X is

defined by:

(Def. 4)
∑

n

κ=0 s1(κ) = (
∑

κ

α=0(s1)(α))κ∈N(n).

One can prove the following propositions:

(15)
∑0

κ=0 s1(κ) = s1(0).

(16)
∑1

κ=0 s1(κ) =
∑0

κ=0 s1(κ) + s1(1).

(17)
∑1

κ=0 s1(κ) = s1(0) + s1(1).

(18)
∑

n+1
κ=0 s1(κ) =

∑

n

κ=0 s1(κ) + s1(n + 1).

(19) s1(n + 1) =
∑

n+1
κ=0 s1(κ)−

∑

n

κ=0 s1(κ).

(20) s1(1) =
∑1

κ=0 s1(κ)−
∑0

κ=0 s1(κ).

Let us consider X, s1, n, m. The functor
∑

m

κ=n+1 s1(κ) yielding a point of

X is defined by:

(Def. 5)
∑

m

κ=n+1 s1(κ) =
∑

n

κ=0 s1(κ)−
∑

m

κ=0 s1(κ).

One can prove the following four propositions:

(21)
∑0

κ=1+1 s1(κ) = s1(1).

(22)
∑

n

κ=n+1+1 s1(κ) = s1(n + 1).
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(23) Suppose X is Hilbert. Then s1 is summable if and only if for every r

such that r > 0 there exists k such that for all n, m such that n ­ k and

m ­ k holds ‖
∑

n

κ=0 s1(κ)−
∑

m

κ=0 s1(κ)‖ < r.

(24) Suppose X is Hilbert. Then s1 is summable if and only if for every r

such that r > 0 there exists k such that for all n, m such that n ­ k and

m ­ k holds ‖
∑

m

κ=n+1 s1(κ)‖ < r.

Let us consider C1, n. The functor
∑

n

κ=0 C1(κ) yielding a Complex is defined

as follows:

(Def. 6)
∑

n

κ=0 C1(κ) = (
∑

κ

α=0(C1)(α))κ∈N(n).

Let us consider C1, n, m. The functor
∑

m

κ=n+1 C1(κ) yielding a Complex is

defined by:

(Def. 7)
∑

m

κ=n+1 C1(κ) =
∑

n

κ=0 C1(κ)−
∑

m

κ=0 C1(κ).

Let us consider X, s1. We say that s1 is absolutely summable if and only if:

(Def. 8) ‖s1‖ is summable.

The following propositions are true:

(25) If s2 is absolutely summable and s3 is absolutely summable, then s2 +s3

is absolutely summable.

(26) If s1 is absolutely summable, then z · s1 is absolutely summable.

(27) If for every n holds ‖s1‖(n) ¬ R1(n) and R1 is summable, then s1 is

absolutely summable.

(28) If for every n holds s1(n) 6= 0X and R1(n) = ‖s1(n+1)‖
‖s1(n)‖ and R1 is conver-

gent and limR1 < 1, then s1 is absolutely summable.

(29) If r > 0 and there exists m such that for every n such that n ­ m holds

‖s1(n)‖ ­ r, then s1 is not convergent or lim s1 6= 0X .

(30) If for every n holds s1(n) 6= 0X and there exists m such that for every n

such that n ­ m holds ‖s1(n+1)‖
‖s1(n)‖ ­ 1, then s1 is not summable.

(31) If for every n holds s1(n) 6= 0X and for every n holds R1(n) = ‖s1(n+1)‖
‖s1(n)‖

and R1 is convergent and limR1 > 1, then s1 is not summable.

(32) If for every n holds R1(n) = n

√

‖s1(n)‖ and R1 is convergent and

limR1 < 1, then s1 is absolutely summable.

(33) If for every n holds R1(n) = n

√

‖s1‖(n) and there exists m such that for

every n such that n ­ m holds R1(n) ­ 1, then s1 is not summable.

(34) If for every n holds R1(n) = n

√

‖s1‖(n) and R1 is convergent and

limR1 > 1, then s1 is not summable.

(35) (
∑

κ

α=0‖s1‖(α))κ∈N is non-decreasing.

(36) For every n holds (
∑

κ

α=0‖s1‖(α))κ∈N(n) ­ 0.

(37) For every n holds ‖(
∑

κ

α=0(s1)(α))κ∈N(n)‖ ¬ (
∑

κ

α=0‖s1‖(α))κ∈N(n).

(38) For every n holds ‖
∑

n

κ=0 s1(κ)‖ ¬
∑

n

κ=0‖s1‖(κ).
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(39) For all n, m holds ‖(
∑

κ

α=0(s1)(α))κ∈N(m) − (
∑

κ

α=0(s1)(α))κ∈N(n)‖ ¬

|(
∑

κ

α=0‖s1‖(α))κ∈N(m)− (
∑

κ

α=0‖s1‖(α))κ∈N(n)|.

(40) For all n, m holds ‖
∑

m

κ=0 s1(κ) −
∑

n

κ=0 s1(κ)‖ ¬ |
∑

m

κ=0‖s1‖(κ) −
∑

n

κ=0‖s1‖(κ)|.

(41) For all n, m holds ‖
∑

n

κ=m+1 s1(κ)‖ ¬ |
∑

n

κ=m+1‖s1‖(κ)|.

(42) If X is Hilbert, then if s1 is absolutely summable, then s1 is summable.

Let us consider X, s1, C1. The functor C1 · s1 yields a sequence of X and is

defined by:

(Def. 9) For every n holds (C1 · s1)(n) = C1(n) · s1(n).

Next we state several propositions:

(43) C1 · (s2 + s3) = C1 · s2 + C1 · s3.

(44) (C2 + C3) · s1 = C2 · s1 + C3 · s1.

(45) (C2 C3) · s1 = C2 · (C3 · s1).

(46) (z C1) · s1 = z · (C1 · s1).

(47) C1 · −s1 = (−C1) · s1.

(48) If C1 is convergent and s1 is convergent, then C1 · s1 is convergent.

(49) If C1 is bounded and s1 is bounded, then C1 · s1 is bounded.

(50) If C1 is convergent and s1 is convergent, then C1 · s1 is convergent and

lim(C1 · s1) = limC1 · lim s1.

Let us consider C1. We say that C1 is Cauchy if and only if:

(Def. 10) For every r such that r > 0 there exists k such that for all n, m such

that n ­ k and m ­ k holds |C1(n)− C1(m)| < r.

We introduce C1 is a Cauchy sequence as a synonym of C1 is Cauchy.

Next we state four propositions:

(51) If X is Hilbert, then if s1 is Cauchy and C1 is Cauchy, then C1 · s1 is

Cauchy.

(52) For every n holds (
∑

κ

α=0((C1−C1 ↑1) · (
∑

κ

α=0(s1)(α))κ∈N)(α))κ∈N(n) =

(
∑

κ

α=0(C1 · s1)(α))κ∈N(n + 1)− (C1 · (
∑

κ

α=0(s1)(α))κ∈N)(n + 1).

(53) For every n holds (
∑

κ

α=0(C1 · s1)(α))κ∈N(n + 1) = (C1 ·

(
∑

κ

α=0(s1)(α))κ∈N)(n+1)−(
∑

κ

α=0((C1↑1−C1)·(
∑

κ

α=0(s1)(α))κ∈N)(α))κ∈N(n).

(54) For every n holds
∑

n+1
κ=0(C1 · s1)(κ) = (C1 · (

∑

κ

α=0(s1)(α))κ∈N)(n + 1)−
∑

n

κ=0((C1 ↑ 1− C1) · (
∑

κ

α=0(s1)(α))κ∈N)(κ).
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