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Summary. In this article, we introduce the notion of complex linear space
and complex normed space.
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The articles [16], [7], [18], [1], [14], [13], [15], [8], [19], [4], [5], [2], [11], [17], [6],

[10], [9], [3], and [12] provide the terminology and notation for this paper.

1. Complex Linear Space

We consider CLS structures as extensions of loop structure as systems

〈 a carrier, a zero, an addition, an external multiplication 〉,

where the carrier is a set, the zero is an element of the carrier, the addition is

a binary operation on the carrier, and the external multiplication is a function

from [: C, the carrier :] into the carrier.

Let us observe that there exists a CLS structure which is non empty.

Let V be a CLS structure. A vector of V is an element of V .

Let V be a non empty CLS structure, let v be a vector of V , and let z be a

Complex. The functor z · v yielding an element of V is defined as follows:

(Def. 1) z · v = (the external multiplication of V )(〈〈z, v〉〉).

Let Z1 be a non empty set, let O be an element of Z1, let F be a binary

operation on Z1, and let G be a function from [: C, Z1 :] into Z1. One can verify

that 〈Z1, O, F, G〉 is non empty.

Let I1 be a non empty CLS structure. We say that I1 is complex linear

space-like if and only if the conditions (Def. 2) are satisfied.
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(Def. 2)(i) For every Complex z and for all vectors v, w of I1 holds z · (v + w) =

z · v + z · w,

(ii) for all Complexes z1, z2 and for every vector v of I1 holds (z1 +z2) ·v =

z1 · v + z2 · v,

(iii) for all Complexes z1, z2 and for every vector v of I1 holds (z1 · z2) · v =

z1 · (z2 · v), and

(iv) for every vector v of I1 holds 1C · v = v.

Let us observe that there exists a non empty CLS structure which is non

empty, strict, Abelian, add-associative, right zeroed, right complementable, and

complex linear space-like.

A complex linear space is an Abelian add-associative right zeroed right com-

plementable complex linear space-like non empty CLS structure.

One can prove the following proposition

(1) Let V be a non empty CLS structure. Suppose that for all vectors v,

w of V holds v + w = w + v and for all vectors u, v, w of V holds

(u+v)+w = u+(v +w) and for every vector v of V holds v +0V = v and

for every vector v of V there exists a vector w of V such that v + w = 0V

and for every Complex z and for all vectors v, w of V holds z · (v + w) =

z · v + z ·w and for all Complexes z1, z2 and for every vector v of V holds

(z1 + z2) · v = z1 · v + z2 · v and for all Complexes z1, z2 and for every

vector v of V holds (z1 · z2) · v = z1 · (z2 · v) and for every vector v of V

holds 1C · v = v. Then V is a complex linear space.

We adopt the following convention: V , X, Y are complex linear spaces, u,

v, v1, v2 are vectors of V , and z, z1, z2 are Complexes.

The following propositions are true:

(2) If z = 0C or v = 0V , then z · v = 0V .

(3) If z · v = 0V , then z = 0C or v = 0V .

(4) −v = (−1C) · v.

(5) If v = −v, then v = 0V .

(6) If v + v = 0V , then v = 0V .

(7) z · −v = (−z) · v.

(8) z · −v = −z · v.

(9) (−z) · −v = z · v.

(10) z · (v − u) = z · v − z · u.

(11) (z1 − z2) · v = z1 · v − z2 · v.

(12) If z 6= 0 and z · v = z · u, then v = u.

(13) If v 6= 0V and z1 · v = z2 · v, then z1 = z2.

(14) Let F , G be finite sequences of elements of the carrier of V . Suppose

lenF = lenG and for every natural number k and for every vector v of V
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such that k ∈ domF and v = G(k) holds F (k) = z·v. Then
∑

F = z·
∑

G.

(15) z ·
∑

(ε(the carrier of V )) = 0V .

(16) z ·
∑
〈v, u〉 = z · v + z · u.

(17) z ·
∑
〈u, v1, v2〉 = z · u + z · v1 + z · v2.

(18)
∑
〈v, v〉 = (2 + 0i) · v.

(19)
∑
〈−v,−v〉 = (−2 + 0i) · v.

(20)
∑
〈v, v, v〉 = (3 + 0i) · v.

2. Subspace and Cosets of Subspaces in Complex Linear Space

In the sequel V1, V2, V3 are subsets of V .

Let us consider V , V1. We say that V1 is linearly closed if and only if the

conditions (Def. 3) are satisfied.

(Def. 3)(i) For all vectors v, u of V such that v ∈ V1 and u ∈ V1 holds v+u ∈ V1,

and

(ii) for every Complex z and for every vector v of V such that v ∈ V1 holds

z · v ∈ V1.

Next we state several propositions:

(21) If V1 6= ∅ and V1 is linearly closed, then 0V ∈ V1.

(22) If V1 is linearly closed, then for every vector v of V such that v ∈ V1

holds −v ∈ V1.

(23) If V1 is linearly closed, then for all vectors v, u of V such that v ∈ V1

and u ∈ V1 holds v − u ∈ V1.

(24) {0V } is linearly closed.

(25) If the carrier of V = V1, then V1 is linearly closed.

(26) If V1 is linearly closed and V2 is linearly closed and V3 = {v + u : v ∈

V1 ∧ u ∈ V2}, then V3 is linearly closed.

(27) If V1 is linearly closed and V2 is linearly closed, then V1 ∩ V2 is linearly

closed.

Let us consider V . A complex linear space is said to be a subspace of V if it

satisfies the conditions (Def. 4).

(Def. 4)(i) The carrier of it ⊆ the carrier of V ,

(ii) the zero of it = the zero of V ,

(iii) the addition of it = (the addition of V )↾[: the carrier of it, the carrier

of it :], and

(iv) the external multiplication of it = (the external multiplication of

V )↾[: C, the carrier of it :].

We use the following convention: W , W1, W2 denote subspaces of V , x

denotes a set, and w, w1, w2 denote vectors of W .
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We now state a number of propositions:

(28) If x ∈W1 and W1 is a subspace of W2, then x ∈W2.

(29) If x ∈W, then x ∈ V.

(30) w is a vector of V .

(31) 0W = 0V .

(32) 0(W1) = 0(W2).

(33) If w1 = v and w2 = u, then w1 + w2 = v + u.

(34) If w = v, then z · w = z · v.

(35) If w = v, then −v = −w.

(36) If w1 = v and w2 = u, then w1 − w2 = v − u.

(37) 0V ∈W.

(38) 0(W1) ∈W2.

(39) 0W ∈ V.

(40) If u ∈W and v ∈W, then u + v ∈W.

(41) If v ∈W, then z · v ∈W.

(42) If v ∈W, then −v ∈W.

(43) If u ∈W and v ∈W, then u− v ∈W.

In the sequel D denotes a non empty set, d1 denotes an element of D, A

denotes a binary operation on D, and M denotes a function from [: C, D :] into

D.

Next we state several propositions:

(44) Suppose V1 = D and d1 = 0V and A = (the addition of V )↾[:V1, V1 :] and

M = (the external multiplication of V )↾[: C, V1 :]. Then 〈D, d1, A,M〉 is a

subspace of V .

(45) V is a subspace of V .

(46) Let V , X be strict complex linear spaces. If V is a subspace of X and

X is a subspace of V , then V = X.

(47) If V is a subspace of X and X is a subspace of Y , then V is a subspace

of Y .

(48) If the carrier of W1 ⊆ the carrier of W2, then W1 is a subspace of W2.

(49) If for every v such that v ∈ W1 holds v ∈ W2, then W1 is a subspace of

W2.

Let us consider V . Observe that there exists a subspace of V which is strict.

The following propositions are true:

(50) For all strict subspaces W1, W2 of V such that the carrier of W1 = the

carrier of W2 holds W1 = W2.

(51) For all strict subspaces W1, W2 of V such that for every v holds v ∈W1

iff v ∈W2 holds W1 = W2.
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(52) Let V be a strict complex linear space and W be a strict subspace of V .

If the carrier of W = the carrier of V , then W = V.

(53) Let V be a strict complex linear space and W be a strict subspace of V .

If for every vector v of V holds v ∈W iff v ∈ V, then W = V.

(54) If the carrier of W = V1, then V1 is linearly closed.

(55) If V1 6= ∅ and V1 is linearly closed, then there exists a strict subspace W

of V such that V1 = the carrier of W .

Let us consider V . The functor 0V yields a strict subspace of V and is defined

by:

(Def. 5) The carrier of 0V = {0V }.

Let us consider V . The functor ΩV yields a strict subspace of V and is

defined as follows:

(Def. 6) ΩV = the CLS structure of V .

We now state several propositions:

(56) 0W = 0V .

(57) 0(W1) = 0(W2).

(58) 0W is a subspace of V .

(59) 0V is a subspace of W .

(60) 0(W1) is a subspace of W2.

(61) Every strict complex linear space V is a subspace of ΩV .

Let us consider V and let us consider v, W . The functor v + W yielding a

subset of V is defined by:

(Def. 7) v + W = {v + u : u ∈W}.

Let us consider V and let us consider W . A subset of V is called a coset of

W if:

(Def. 8) There exists v such that it = v + W.

In the sequel B, C denote cosets of W .

The following propositions are true:

(62) 0V ∈ v + W iff v ∈W.

(63) v ∈ v + W.

(64) 0V + W = the carrier of W .

(65) v + 0V = {v}.

(66) v + ΩV = the carrier of V .

(67) 0V ∈ v + W iff v + W = the carrier of W .

(68) v ∈W iff v + W = the carrier of W .

(69) If v ∈W, then z · v + W = the carrier of W .

(70) If z 6= 0C and z · v + W = the carrier of W , then v ∈W.

(71) v ∈W iff −v + W = the carrier of W .
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(72) u ∈W iff v + W = v + u + W.

(73) u ∈W iff v + W = (v − u) + W.

(74) v ∈ u + W iff u + W = v + W.

(75) v + W = −v + W iff v ∈W.

(76) If u ∈ v1 + W and u ∈ v2 + W, then v1 + W = v2 + W.

(77) If u ∈ v + W and u ∈ −v + W, then v ∈W.

(78) If z 6= 1C and z · v ∈ v + W, then v ∈W.

(79) If v ∈W, then z · v ∈ v + W.

(80) −v ∈ v + W iff v ∈W.

(81) u + v ∈ v + W iff u ∈W.

(82) v − u ∈ v + W iff u ∈W.

(83) u ∈ v + W iff there exists v1 such that v1 ∈W and u = v + v1.

(84) u ∈ v + W iff there exists v1 such that v1 ∈W and u = v − v1.

(85) There exists v such that v1 ∈ v + W and v2 ∈ v + W iff v1 − v2 ∈W.

(86) If v +W = u+W, then there exists v1 such that v1 ∈W and v + v1 = u.

(87) If v +W = u+W, then there exists v1 such that v1 ∈W and v− v1 = u.

(88) For all strict subspacesW1,W2 of V holds v+W1 = v+W2 iffW1 = W2.

(89) For all strict subspaces W1, W2 of V such that v + W1 = u + W2 holds

W1 = W2.

(90) C is linearly closed iff C = the carrier of W .

(91) For all strict subspaces W1, W2 of V and for every coset C1 of W1 and

for every coset C2 of W2 such that C1 = C2 holds W1 = W2.

(92) {v} is a coset of 0V .

(93) If V1 is a coset of 0V , then there exists v such that V1 = {v}.

(94) The carrier of W is a coset of W .

(95) The carrier of V is a coset of ΩV .

(96) If V1 is a coset of ΩV , then V1 = the carrier of V .

(97) 0V ∈ C iff C = the carrier of W .

(98) u ∈ C iff C = u + W.

(99) If u ∈ C and v ∈ C, then there exists v1 such that v1 ∈W and u+v1 = v.

(100) If u ∈ C and v ∈ C, then there exists v1 such that v1 ∈W and u−v1 = v.

(101) There exists C such that v1 ∈ C and v2 ∈ C iff v1 − v2 ∈W.

(102) If u ∈ B and u ∈ C, then B = C.
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3. Complex Normed Space

We consider complex normed space structures as extensions of CLS structure

as systems

〈 a carrier, a zero, an addition, an external multiplication, a norm 〉,

where the carrier is a set, the zero is an element of the carrier, the addition is

a binary operation on the carrier, the external multiplication is a function from

[: C, the carrier :] into the carrier, and the norm is a function from the carrier

into R.

Let us mention that there exists a complex normed space structure which is

non empty.

In the sequel X is a non empty complex normed space structure and x is a

point of X.

Let us consider X, x. The functor ‖x‖ yielding a real number is defined by:

(Def. 9) ‖x‖ = (the norm of X)(x).

Let I1 be a non empty complex normed space structure. We say that I1 is

complex normed space-like if and only if:

(Def. 10) For all points x, y of I1 and for every z holds ‖x‖ = 0 iff x = 0(I1) and

‖z · x‖ = |z| · ‖x‖ and ‖x + y‖ ¬ ‖x‖+ ‖y‖.

One can verify that there exists a non empty complex normed space structure

which is complex normed space-like, complex linear space-like, Abelian, add-

associative, right zeroed, right complementable, and strict.

A complex normed space is a complex normed space-like complex linear

space-like Abelian add-associative right zeroed right complementable non empty

complex normed space structure.

We follow the rules: C3 is a complex normed space and x, y, w, g are points

of C3.

The following propositions are true:

(103) ‖0(C3)‖ = 0.

(104) ‖−x‖ = ‖x‖.

(105) ‖x− y‖ ¬ ‖x‖+ ‖y‖.

(106) 0 ¬ ‖x‖.

(107) ‖z1 · x + z2 · y‖ ¬ |z1| · ‖x‖+ |z2| · ‖y‖.

(108) ‖x− y‖ = 0 iff x = y.

(109) ‖x− y‖ = ‖y − x‖.

(110) ‖x‖ − ‖y‖ ¬ ‖x− y‖.

(111) |‖x‖ − ‖y‖| ¬ ‖x− y‖.

(112) ‖x− w‖ ¬ ‖x− y‖+ ‖y − w‖.

(113) If x 6= y, then ‖x− y‖ 6= 0.
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We adopt the following rules: S, S1, S2 are sequences of C3, n, m are natural

numbers, and r is a real number.

One can prove the following proposition

(114) There exists S such that rngS = {0(C3)}.

In this article we present several logical schemes. The scheme ExCNSSeq

deals with a complex normed space A and a unary functor F yielding a point

of A, and states that:

There exists a sequence S of A such that for every n holds S(n) =

F(n)

for all values of the parameters.

The scheme ExCLSSeq deals with a complex linear space A and a unary

functor F yielding an element of A, and states that:

There exists a sequence S of A such that for every n holds S(n) =

F(n)

for all values of the parameters.

Let C3 be a complex linear space and let S1, S2 be sequences of C3. The

functor S1 + S2 yielding a sequence of C3 is defined by:

(Def. 11) For every n holds (S1 + S2)(n) = S1(n) + S2(n).

Let C3 be a complex linear space and let S1, S2 be sequences of C3. The

functor S1 − S2 yielding a sequence of C3 is defined by:

(Def. 12) For every n holds (S1 − S2)(n) = S1(n)− S2(n).

Let C3 be a complex linear space, let S be a sequence of C3, and let x be an

element of C3. The functor S − x yielding a sequence of C3 is defined by:

(Def. 13) For every n holds (S − x)(n) = S(n)− x.

Let C3 be a complex linear space, let S be a sequence of C3, and let us

consider z. The functor z · S yields a sequence of C3 and is defined as follows:

(Def. 14) For every n holds (z · S)(n) = z · S(n).

Let us consider C3 and let us consider S. We say that S is convergent if and

only if:

(Def. 15) There exists g such that for every r such that 0 < r there exists m such

that for every n such that m ¬ n holds ‖S(n)− g‖ < r.

The following four propositions are true:

(115) If S1 is convergent and S2 is convergent, then S1 + S2 is convergent.

(116) If S1 is convergent and S2 is convergent, then S1 − S2 is convergent.

(117) If S is convergent, then S − x is convergent.

(118) If S is convergent, then z · S is convergent.

Let us consider C3 and let us consider S. The functor ‖S‖ yielding a sequence

of real numbers is defined as follows:

(Def. 16) For every n holds ‖S‖(n) = ‖S(n)‖.
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The following proposition is true

(119) If S is convergent, then ‖S‖ is convergent.

Let us consider C3 and let us consider S. Let us assume that S is convergent.

The functor limS yields a point of C3 and is defined as follows:

(Def. 17) For every r such that 0 < r there exists m such that for every n such

that m ¬ n holds ‖S(n)− limS‖ < r.

The following propositions are true:

(120) If S is convergent and limS = g, then ‖S−g‖ is convergent and lim‖S−

g‖ = 0.

(121) If S1 is convergent and S2 is convergent, then lim(S1 + S2) = limS1 +

limS2.

(122) If S1 is convergent and S2 is convergent, then lim(S1 − S2) = limS1 −

limS2.

(123) If S is convergent, then lim(S − x) = limS − x.

(124) If S is convergent, then lim(z · S) = z · limS.
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