Complex Linear Space and Complex Normed Space

Noboru Endou Gifu National College of Technology

Summary. In this article, we introduce the notion of complex linear space and complex normed space.

MML Identifier: CLVECT_1.

The articles [16], [7], [18], [1], [14], [13], [15], [8], [19], [4], [5], [2], [11], [17], [6], [10], [9], [3], and [12] provide the terminology and notation for this paper.

1. Complex Linear Space

We consider CLS structures as extensions of loop structure as systems \langle a carrier, a zero, an addition, an external multiplication \rangle ,

where the carrier is a set, the zero is an element of the carrier, the addition is a binary operation on the carrier, and the external multiplication is a function from $[\mathbb{C}, \text{ the carrier}]$ into the carrier.

Let us observe that there exists a CLS structure which is non empty.

Let V be a CLS structure. A vector of V is an element of V.

Let V be a non empty CLS structure, let v be a vector of V, and let z be a Complex. The functor $z \cdot v$ yielding an element of V is defined as follows:

(Def. 1) $z \cdot v = (\text{the external multiplication of } V)(\langle z, v \rangle).$

Let Z_1 be a non empty set, let O be an element of Z_1 , let F be a binary operation on Z_1 , and let G be a function from $[\mathbb{C}, Z_1]$ into Z_1 . One can verify that $\langle Z_1, O, F, G \rangle$ is non empty.

Let I_1 be a non empty CLS structure. We say that I_1 is complex linear space-like if and only if the conditions (Def. 2) are satisfied.

C 2004 University of Białystok ISSN 1426-2630

NOBORU ENDOU

- (Def. 2)(i) For every Complex z and for all vectors v, w of I_1 holds $z \cdot (v+w) = z \cdot v + z \cdot w$,
 - (ii) for all Complexes z_1 , z_2 and for every vector v of I_1 holds $(z_1 + z_2) \cdot v = z_1 \cdot v + z_2 \cdot v$,
 - (iii) for all Complexes z_1 , z_2 and for every vector v of I_1 holds $(z_1 \cdot z_2) \cdot v = z_1 \cdot (z_2 \cdot v)$, and
 - (iv) for every vector v of I_1 holds $1_{\mathbb{C}} \cdot v = v$.

Let us observe that there exists a non empty CLS structure which is non empty, strict, Abelian, add-associative, right zeroed, right complementable, and complex linear space-like.

A complex linear space is an Abelian add-associative right zeroed right complementable complex linear space-like non empty CLS structure.

One can prove the following proposition

(1) Let V be a non empty CLS structure. Suppose that for all vectors v, w of V holds v + w = w + v and for all vectors u, v, w of V holds (u+v)+w = u + (v+w) and for every vector v of V holds $v+0_V = v$ and for every vector v of V there exists a vector w of V such that $v + w = 0_V$ and for every Complex z and for all vectors v, w of V holds $z \cdot (v+w) = z \cdot v + z \cdot w$ and for all Complexes z_1, z_2 and for every vector v of V holds $(z_1 + z_2) \cdot v = z_1 \cdot v + z_2 \cdot v$ and for all Complexes z_1, z_2 and for every vector v of V holds $(z_1 \cdot z_2) \cdot v = z_1 \cdot (z_2 \cdot v)$ and for every vector v of V holds $1_{\mathbb{C}} \cdot v = v$. Then V is a complex linear space.

We adopt the following convention: V, X, Y are complex linear spaces, u, v, v_1, v_2 are vectors of V, and z, z_1, z_2 are Complexes.

The following propositions are true:

- (2) If $z = 0_{\mathbb{C}}$ or $v = 0_V$, then $z \cdot v = 0_V$.
- (3) If $z \cdot v = 0_V$, then $z = 0_{\mathbb{C}}$ or $v = 0_V$.
- $(4) \quad -v = (-1_{\mathbb{C}}) \cdot v.$
- (5) If v = -v, then $v = 0_V$.
- (6) If $v + v = 0_V$, then $v = 0_V$.
- (7) $z \cdot -v = (-z) \cdot v.$
- (8) $z \cdot -v = -z \cdot v.$
- $(9) \quad (-z) \cdot -v = z \cdot v.$
- (10) $z \cdot (v u) = z \cdot v z \cdot u.$
- (11) $(z_1 z_2) \cdot v = z_1 \cdot v z_2 \cdot v.$
- (12) If $z \neq 0$ and $z \cdot v = z \cdot u$, then v = u.
- (13) If $v \neq 0_V$ and $z_1 \cdot v = z_2 \cdot v$, then $z_1 = z_2$.
- (14) Let F, G be finite sequences of elements of the carrier of V. Suppose len F = len G and for every natural number k and for every vector v of V

such that $k \in \text{dom } F$ and v = G(k) holds $F(k) = z \cdot v$. Then $\sum F = z \cdot \sum G$.

- (15) $z \cdot \sum (\varepsilon_{\text{(the carrier of } V)}) = 0_V.$
- (16) $z \cdot \sum \langle v, u \rangle = z \cdot v + z \cdot u.$
- (17) $z \cdot \sum \langle u, v_1, v_2 \rangle = z \cdot u + z \cdot v_1 + z \cdot v_2.$
- (18) $\sum \langle v, v \rangle = (2+0i) \cdot v.$
- (19) $\sum \langle -v, -v \rangle = (-2+0i) \cdot v.$
- (20) $\sum \langle v, v, v \rangle = (3+0i) \cdot v.$

2. Subspace and Cosets of Subspaces in Complex Linear Space

In the sequel V_1 , V_2 , V_3 are subsets of V.

Let us consider V, V_1 . We say that V_1 is linearly closed if and only if the conditions (Def. 3) are satisfied.

- (Def. 3)(i) For all vectors v, u of V such that $v \in V_1$ and $u \in V_1$ holds $v + u \in V_1$, and
 - (ii) for every Complex z and for every vector v of V such that $v \in V_1$ holds $z \cdot v \in V_1$.

Next we state several propositions:

- (21) If $V_1 \neq \emptyset$ and V_1 is linearly closed, then $0_V \in V_1$.
- (22) If V_1 is linearly closed, then for every vector v of V such that $v \in V_1$ holds $-v \in V_1$.
- (23) If V_1 is linearly closed, then for all vectors v, u of V such that $v \in V_1$ and $u \in V_1$ holds $v - u \in V_1$.
- (24) $\{0_V\}$ is linearly closed.
- (25) If the carrier of $V = V_1$, then V_1 is linearly closed.
- (26) If V_1 is linearly closed and V_2 is linearly closed and $V_3 = \{v + u : v \in V_1 \land u \in V_2\}$, then V_3 is linearly closed.
- (27) If V_1 is linearly closed and V_2 is linearly closed, then $V_1 \cap V_2$ is linearly closed.

Let us consider V. A complex linear space is said to be a subspace of V if it satisfies the conditions (Def. 4).

- (Def. 4)(i) The carrier of it \subseteq the carrier of V,
 - (ii) the zero of it = the zero of V,
 - (iii) the addition of it = (the addition of V) [the carrier of it, the carrier of it], and
 - (iv) the external multiplication of it = (the external multiplication of V) [\mathbb{C} , the carrier of it].

We use the following convention: W, W_1 , W_2 denote subspaces of V, x denotes a set, and w, w_1 , w_2 denote vectors of W.

We now state a number of propositions:

- (28) If $x \in W_1$ and W_1 is a subspace of W_2 , then $x \in W_2$.
- (29) If $x \in W$, then $x \in V$.
- (30) w is a vector of V.
- (31) $0_W = 0_V$.
- $(32) \quad 0_{(W_1)} = 0_{(W_2)}.$
- (33) If $w_1 = v$ and $w_2 = u$, then $w_1 + w_2 = v + u$.
- (34) If w = v, then $z \cdot w = z \cdot v$.
- (35) If w = v, then -v = -w.
- (36) If $w_1 = v$ and $w_2 = u$, then $w_1 w_2 = v u$.
- $(37) \quad 0_V \in W.$
- (38) $0_{(W_1)} \in W_2$.
- (39) $0_W \in V.$
- (40) If $u \in W$ and $v \in W$, then $u + v \in W$.
- (41) If $v \in W$, then $z \cdot v \in W$.
- (42) If $v \in W$, then $-v \in W$.
- (43) If $u \in W$ and $v \in W$, then $u v \in W$.

In the sequel D denotes a non empty set, d_1 denotes an element of D, A denotes a binary operation on D, and M denotes a function from $[:\mathbb{C}, D:]$ into D.

Next we state several propositions:

- (44) Suppose $V_1 = D$ and $d_1 = 0_V$ and $A = (\text{the addition of } V) \upharpoonright [V_1, V_1]$ and $M = (\text{the external multiplication of } V) \upharpoonright [\mathbb{C}, V_1]$. Then $\langle D, d_1, A, M \rangle$ is a subspace of V.
- (45) V is a subspace of V.
- (46) Let V, X be strict complex linear spaces. If V is a subspace of X and X is a subspace of V, then V = X.
- (47) If V is a subspace of X and X is a subspace of Y, then V is a subspace of Y.
- (48) If the carrier of $W_1 \subseteq$ the carrier of W_2 , then W_1 is a subspace of W_2 .
- (49) If for every v such that $v \in W_1$ holds $v \in W_2$, then W_1 is a subspace of W_2 .

Let us consider V. Observe that there exists a subspace of V which is strict. The following propositions are true:

- (50) For all strict subspaces W_1 , W_2 of V such that the carrier of W_1 = the carrier of W_2 holds $W_1 = W_2$.
- (51) For all strict subspaces W_1 , W_2 of V such that for every v holds $v \in W_1$ iff $v \in W_2$ holds $W_1 = W_2$.

- (52) Let V be a strict complex linear space and W be a strict subspace of V. If the carrier of W = the carrier of V, then W = V.
- (53) Let V be a strict complex linear space and W be a strict subspace of V. If for every vector v of V holds $v \in W$ iff $v \in V$, then W = V.
- (54) If the carrier of $W = V_1$, then V_1 is linearly closed.
- (55) If $V_1 \neq \emptyset$ and V_1 is linearly closed, then there exists a strict subspace W of V such that V_1 = the carrier of W.

Let us consider V. The functor $\mathbf{0}_V$ yields a strict subspace of V and is defined by:

(Def. 5) The carrier of $\mathbf{0}_V = \{\mathbf{0}_V\}$.

Let us consider V. The functor Ω_V yields a strict subspace of V and is defined as follows:

(Def. 6) Ω_V = the CLS structure of V.

We now state several propositions:

- (56) $\mathbf{0}_W = \mathbf{0}_V.$
- (57) $\mathbf{0}_{(W_1)} = \mathbf{0}_{(W_2)}.$
- (58) $\mathbf{0}_W$ is a subspace of V.
- (59) $\mathbf{0}_V$ is a subspace of W.
- (60) $\mathbf{0}_{(W_1)}$ is a subspace of W_2 .
- (61) Every strict complex linear space V is a subspace of Ω_V .

Let us consider V and let us consider v, W. The functor v + W yielding a subset of V is defined by:

(Def. 7) $v + W = \{v + u : u \in W\}.$

Let us consider V and let us consider W. A subset of V is called a coset of W if:

- (Def. 8) There exists v such that it = v + W. In the sequel B, C denote cosets of W. The following propositions are true:
 - (62) $0_V \in v + W$ iff $v \in W$.
 - $(63) \quad v \in v + W.$
 - (64) $0_V + W =$ the carrier of W.
 - (65) $v + \mathbf{0}_V = \{v\}.$
 - (66) $v + \Omega_V =$ the carrier of V.
 - (67) $0_V \in v + W$ iff v + W = the carrier of W.
 - (68) $v \in W$ iff v + W = the carrier of W.
 - (69) If $v \in W$, then $z \cdot v + W =$ the carrier of W.
 - (70) If $z \neq 0_{\mathbb{C}}$ and $z \cdot v + W =$ the carrier of W, then $v \in W$.
 - (71) $v \in W$ iff -v + W = the carrier of W.

NOBORU ENDOU

- (72) $u \in W$ iff v + W = v + u + W.
- (73) $u \in W$ iff v + W = (v u) + W.
- (74) $v \in u + W$ iff u + W = v + W.
- (75) v + W = -v + W iff $v \in W$.
- (76) If $u \in v_1 + W$ and $u \in v_2 + W$, then $v_1 + W = v_2 + W$.
- (77) If $u \in v + W$ and $u \in -v + W$, then $v \in W$.
- (78) If $z \neq 1_{\mathbb{C}}$ and $z \cdot v \in v + W$, then $v \in W$.
- (79) If $v \in W$, then $z \cdot v \in v + W$.
- $(80) \quad -v \in v + W \text{ iff } v \in W.$
- (81) $u + v \in v + W$ iff $u \in W$.
- (82) $v u \in v + W$ iff $u \in W$.
- (83) $u \in v + W$ iff there exists v_1 such that $v_1 \in W$ and $u = v + v_1$.
- (84) $u \in v + W$ iff there exists v_1 such that $v_1 \in W$ and $u = v v_1$.
- (85) There exists v such that $v_1 \in v + W$ and $v_2 \in v + W$ iff $v_1 v_2 \in W$.
- (86) If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v + v_1 = u$.
- (87) If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v v_1 = u$.
- (88) For all strict subspaces W_1 , W_2 of V holds $v + W_1 = v + W_2$ iff $W_1 = W_2$.
- (89) For all strict subspaces W_1 , W_2 of V such that $v + W_1 = u + W_2$ holds $W_1 = W_2$.
- (90) C is linearly closed iff C = the carrier of W.
- (91) For all strict subspaces W_1 , W_2 of V and for every coset C_1 of W_1 and for every coset C_2 of W_2 such that $C_1 = C_2$ holds $W_1 = W_2$.
- (92) $\{v\}$ is a coset of $\mathbf{0}_V$.
- (93) If V_1 is a coset of $\mathbf{0}_V$, then there exists v such that $V_1 = \{v\}$.
- (94) The carrier of W is a coset of W.
- (95) The carrier of V is a coset of Ω_V .
- (96) If V_1 is a coset of Ω_V , then V_1 = the carrier of V.
- (97) $0_V \in C$ iff C = the carrier of W.
- (98) $u \in C$ iff C = u + W.
- (99) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u + v_1 = v$.
- (100) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u v_1 = v$.
- (101) There exists C such that $v_1 \in C$ and $v_2 \in C$ iff $v_1 v_2 \in W$.
- (102) If $u \in B$ and $u \in C$, then B = C.

3. Complex Normed Space

We consider complex normed space structures as extensions of CLS structure as systems

 \langle a carrier, a zero, an addition, an external multiplication, a norm \rangle ,

where the carrier is a set, the zero is an element of the carrier, the addition is a binary operation on the carrier, the external multiplication is a function from $[\mathbb{C}, \text{ the carrier }]$ into the carrier, and the norm is a function from the carrier into \mathbb{R} .

Let us mention that there exists a complex normed space structure which is non empty.

In the sequel X is a non empty complex normed space structure and x is a point of X.

Let us consider X, x. The functor ||x|| yielding a real number is defined by: (Def. 9) ||x|| = (the norm of X)(x).

Let I_1 be a non empty complex normed space structure. We say that I_1 is complex normed space-like if and only if:

(Def. 10) For all points x, y of I_1 and for every z holds ||x|| = 0 iff $x = 0_{(I_1)}$ and $||z \cdot x|| = |z| \cdot ||x||$ and $||x + y|| \le ||x|| + ||y||$.

One can verify that there exists a non empty complex normed space structure which is complex normed space-like, complex linear space-like, Abelian, addassociative, right zeroed, right complementable, and strict.

A complex normed space is a complex normed space-like complex linear space-like Abelian add-associative right zeroed right complementable non empty complex normed space structure.

We follow the rules: C_3 is a complex normed space and x, y, w, g are points of C_3 .

The following propositions are true:

- (103) $||0_{(C_3)}|| = 0.$
- $(104) \quad ||-x|| = ||x||.$
- (105) $||x y|| \le ||x|| + ||y||.$
- (106) $0 \leq ||x||.$
- (107) $||z_1 \cdot x + z_2 \cdot y|| \leq |z_1| \cdot ||x|| + |z_2| \cdot ||y||.$
- (108) ||x y|| = 0 iff x = y.
- (109) ||x y|| = ||y x||.
- (110) $||x|| ||y|| \le ||x y||.$
- (111) $|||x|| ||y||| \le ||x y||.$
- (112) $||x w|| \le ||x y|| + ||y w||.$
- (113) If $x \neq y$, then $||x y|| \neq 0$.

We adopt the following rules: S, S_1, S_2 are sequences of C_3, n, m are natural numbers, and r is a real number.

One can prove the following proposition

(114) There exists S such that rng $S = \{0_{(C_3)}\}$.

In this article we present several logical schemes. The scheme ExCNSSeq deals with a complex normed space \mathcal{A} and a unary functor \mathcal{F} yielding a point of \mathcal{A} , and states that:

There exists a sequence S of A such that for every n holds S(n) =

 $\mathcal{F}(n)$

for all values of the parameters.

The scheme ExCLSSeq deals with a complex linear space \mathcal{A} and a unary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

There exists a sequence S of A such that for every n holds $S(n) = \mathcal{F}(n)$

for all values of the parameters.

Let C_3 be a complex linear space and let S_1 , S_2 be sequences of C_3 . The functor $S_1 + S_2$ yielding a sequence of C_3 is defined by:

(Def. 11) For every *n* holds $(S_1 + S_2)(n) = S_1(n) + S_2(n)$.

Let C_3 be a complex linear space and let S_1 , S_2 be sequences of C_3 . The functor $S_1 - S_2$ yielding a sequence of C_3 is defined by:

(Def. 12) For every *n* holds $(S_1 - S_2)(n) = S_1(n) - S_2(n)$.

Let C_3 be a complex linear space, let S be a sequence of C_3 , and let x be an element of C_3 . The functor S - x yielding a sequence of C_3 is defined by:

(Def. 13) For every n holds (S - x)(n) = S(n) - x.

Let C_3 be a complex linear space, let S be a sequence of C_3 , and let us consider z. The functor $z \cdot S$ yields a sequence of C_3 and is defined as follows:

(Def. 14) For every *n* holds $(z \cdot S)(n) = z \cdot S(n)$.

Let us consider C_3 and let us consider S. We say that S is convergent if and only if:

(Def. 15) There exists g such that for every r such that 0 < r there exists m such that for every n such that $m \leq n$ holds ||S(n) - g|| < r.

The following four propositions are true:

- (115) If S_1 is convergent and S_2 is convergent, then $S_1 + S_2$ is convergent.
- (116) If S_1 is convergent and S_2 is convergent, then $S_1 S_2$ is convergent.
- (117) If S is convergent, then S x is convergent.
- (118) If S is convergent, then $z \cdot S$ is convergent.

Let us consider C_3 and let us consider S. The functor ||S|| yielding a sequence of real numbers is defined as follows:

(Def. 16) For every *n* holds ||S||(n) = ||S(n)||.

The following proposition is true

(119) If S is convergent, then ||S|| is convergent.

Let us consider C_3 and let us consider S. Let us assume that S is convergent. The functor $\lim S$ yields a point of C_3 and is defined as follows:

(Def. 17) For every r such that 0 < r there exists m such that for every n such that $m \leq n$ holds $||S(n) - \lim S|| < r$.

The following propositions are true:

- (120) If S is convergent and $\lim S = g$, then ||S g|| is convergent and $\lim ||S g|| = 0$.
- (121) If S_1 is convergent and S_2 is convergent, then $\lim(S_1 + S_2) = \lim S_1 + \lim S_2$.
- (122) If S_1 is convergent and S_2 is convergent, then $\lim(S_1 S_2) = \lim S_1 \lim S_2$.
- (123) If S is convergent, then $\lim(S x) = \lim S x$.
- (124) If S is convergent, then $\lim(z \cdot S) = z \cdot \lim S$.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [11] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [12] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [13] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
- [14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

NOBORU ENDOU

- [17] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291–296, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received January 26, 2004