Complex Linear Space and Complex Normed Space

Noboru Endou
Gifu National College of Technology

Abstract

Summary. In this article, we introduce the notion of complex linear space and complex normed space.

MML Identifier: CLVECT_1.

The articles [16], [7], [18], [1], [14], [13], [15], [8], [19], [4], [5], [2], [11], [17], [6], [10], [9], [3], and [12] provide the terminology and notation for this paper.

1. Complex Linear Space

We consider CLS structures as extensions of loop structure as systems < a carrier, a zero, an addition, an external multiplication 〉,
where the carrier is a set, the zero is an element of the carrier, the addition is a binary operation on the carrier, and the external multiplication is a function from : \mathbb{C}, the carrier: $]$ into the carrier.

Let us observe that there exists a CLS structure which is non empty.
Let V be a CLS structure. A vector of V is an element of V.
Let V be a non empty CLS structure, let v be a vector of V, and let z be a Complex. The functor $z \cdot v$ yielding an element of V is defined as follows:
(Def. 1) $z \cdot v=($ the external multiplication of $V)(\langle z, v\rangle)$.
Let Z_{1} be a non empty set, let O be an element of Z_{1}, let F be a binary operation on Z_{1}, and let G be a function from : \mathbb{C}, Z_{1} : into Z_{1}. One can verify that $\left\langle Z_{1}, O, F, G\right\rangle$ is non empty.

Let I_{1} be a non empty CLS structure. We say that I_{1} is complex linear space-like if and only if the conditions (Def. 2) are satisfied.
(Def. 2)(i) For every Complex z and for all vectors v, w of I_{1} holds $z \cdot(v+w)=$ $z \cdot v+z \cdot w$,
(ii) for all Complexes z_{1}, z_{2} and for every vector v of I_{1} holds $\left(z_{1}+z_{2}\right) \cdot v=$ $z_{1} \cdot v+z_{2} \cdot v$,
(iii) for all Complexes z_{1}, z_{2} and for every vector v of I_{1} holds $\left(z_{1} \cdot z_{2}\right) \cdot v=$ $z_{1} \cdot\left(z_{2} \cdot v\right)$, and
(iv) for every vector v of I_{1} holds $1_{\mathbb{C}} \cdot v=v$.

Let us observe that there exists a non empty CLS structure which is non empty, strict, Abelian, add-associative, right zeroed, right complementable, and complex linear space-like.

A complex linear space is an Abelian add-associative right zeroed right complementable complex linear space-like non empty CLS structure.

One can prove the following proposition
(1) Let V be a non empty CLS structure. Suppose that for all vectors v, w of V holds $v+w=w+v$ and for all vectors u, v, w of V holds $(u+v)+w=u+(v+w)$ and for every vector v of V holds $v+0_{V}=v$ and for every vector v of V there exists a vector w of V such that $v+w=0_{V}$ and for every Complex z and for all vectors v, w of V holds $z \cdot(v+w)=$ $z \cdot v+z \cdot w$ and for all Complexes z_{1}, z_{2} and for every vector v of V holds $\left(z_{1}+z_{2}\right) \cdot v=z_{1} \cdot v+z_{2} \cdot v$ and for all Complexes z_{1}, z_{2} and for every vector v of V holds $\left(z_{1} \cdot z_{2}\right) \cdot v=z_{1} \cdot\left(z_{2} \cdot v\right)$ and for every vector v of V holds $1_{\mathbb{C}} \cdot v=v$. Then V is a complex linear space.
We adopt the following convention: V, X, Y are complex linear spaces, u, v, v_{1}, v_{2} are vectors of V, and z, z_{1}, z_{2} are Complexes.

The following propositions are true:
(2) If $z=0_{\mathbb{C}}$ or $v=0_{V}$, then $z \cdot v=0_{V}$.
(3) If $z \cdot v=0_{V}$, then $z=0_{\mathbb{C}}$ or $v=0_{V}$.
(4) $\quad-v=\left(-1_{\mathbb{C}}\right) \cdot v$.
(5) If $v=-v$, then $v=0_{V}$.
(6) If $v+v=0_{V}$, then $v=0_{V}$.
(7) $z \cdot-v=(-z) \cdot v$.
(8) $z \cdot-v=-z \cdot v$.
(9) $(-z) \cdot-v=z \cdot v$.
(10) $z \cdot(v-u)=z \cdot v-z \cdot u$.
(11) $\left(z_{1}-z_{2}\right) \cdot v=z_{1} \cdot v-z_{2} \cdot v$.
(12) If $z \neq 0$ and $z \cdot v=z \cdot u$, then $v=u$.
(13) If $v \neq 0_{V}$ and $z_{1} \cdot v=z_{2} \cdot v$, then $z_{1}=z_{2}$.
(14) Let F, G be finite sequences of elements of the carrier of V. Suppose len $F=\operatorname{len} G$ and for every natural number k and for every vector v of V
such that $k \in \operatorname{dom} F$ and $v=G(k)$ holds $F(k)=z \cdot v$. Then $\sum F=z \cdot \sum G$.
(15) $z \cdot \sum\left(\varepsilon_{(\text {the carrier of } V)}\right)=0_{V}$.
(16) $z \cdot \sum\langle v, u\rangle=z \cdot v+z \cdot u$.
$z \cdot \sum\left\langle u, v_{1}, v_{2}\right\rangle=z \cdot u+z \cdot v_{1}+z \cdot v_{2}$.
(18) $\sum\langle v, v\rangle=(2+0 i) \cdot v$.
(19) $\sum\langle-v,-v\rangle=(-2+0 i) \cdot v$. $\sum\langle v, v, v\rangle=(3+0 i) \cdot v$.

2. Subspace and Cosets of Subspaces in Complex Linear Space

In the sequel V_{1}, V_{2}, V_{3} are subsets of V.
Let us consider V, V_{1}. We say that V_{1} is linearly closed if and only if the conditions (Def. 3) are satisfied.
(Def. 3)(i) For all vectors v, u of V such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$, and
(ii) for every Complex z and for every vector v of V such that $v \in V_{1}$ holds $z \cdot v \in V_{1}$.
Next we state several propositions:
(21) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then $0_{V} \in V_{1}$.
(22) If V_{1} is linearly closed, then for every vector v of V such that $v \in V_{1}$ holds $-v \in V_{1}$.
(23) If V_{1} is linearly closed, then for all vectors v, u of V such that $v \in V_{1}$ and $u \in V_{1}$ holds $v-u \in V_{1}$.
(24) $\left\{0_{V}\right\}$ is linearly closed.
(25) If the carrier of $V=V_{1}$, then V_{1} is linearly closed.
(26) If V_{1} is linearly closed and V_{2} is linearly closed and $V_{3}=\{v+u: v \in$ $\left.V_{1} \wedge u \in V_{2}\right\}$, then V_{3} is linearly closed.
(27) If V_{1} is linearly closed and V_{2} is linearly closed, then $V_{1} \cap V_{2}$ is linearly closed.
Let us consider V. A complex linear space is said to be a subspace of V if it satisfies the conditions (Def. 4).
(Def. 4)(i) The carrier of it \subseteq the carrier of V,
(ii) the zero of it = the zero of V,
(iii) the addition of it $=($ the addition of $V) \upharpoonright$: the carrier of it, the carrier of it:], and
(iv) the external multiplication of it $=$ (the external multiplication of $V)\lceil: \mathbb{C}$, the carrier of it \ddagger.
We use the following convention: W, W_{1}, W_{2} denote subspaces of V, x denotes a set, and w, w_{1}, w_{2} denote vectors of W.

We now state a number of propositions:
(28) If $x \in W_{1}$ and W_{1} is a subspace of W_{2}, then $x \in W_{2}$.
(29) If $x \in W$, then $x \in V$.
(30) w is a vector of V.
(31) $0_{W}=0_{V}$.
(32) $0_{\left(W_{1}\right)}=0_{\left(W_{2}\right)}$.
(33) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}+w_{2}=v+u$.
(34) If $w=v$, then $z \cdot w=z \cdot v$.
(35) If $w=v$, then $-v=-w$.
(36) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}-w_{2}=v-u$.
(37) $\quad 0_{V} \in W$.
(38) $0_{\left(W_{1}\right)} \in W_{2}$.
(39) $0_{W} \in V$.
(40) If $u \in W$ and $v \in W$, then $u+v \in W$.
(41) If $v \in W$, then $z \cdot v \in W$.
(42) If $v \in W$, then $-v \in W$.
(43) If $u \in W$ and $v \in W$, then $u-v \in W$.

In the sequel D denotes a non empty set, d_{1} denotes an element of D, A denotes a binary operation on D, and M denotes a function from : $\mathbb{C}, D:$ into D.

Next we state several propositions:
(44) Suppose $V_{1}=D$ and $d_{1}=0_{V}$ and $A=($ the addition of $V) \upharpoonright\left[: V_{1}, V_{1}:\right.$ and $M=($ the external multiplication of $V) \upharpoonright: \mathbb{C}, V_{1} \ddagger$. Then $\left\langle D, d_{1}, A, M\right\rangle$ is a subspace of V.
(45) V is a subspace of V.
(46) Let V, X be strict complex linear spaces. If V is a subspace of X and X is a subspace of V, then $V=X$.
(47) If V is a subspace of X and X is a subspace of Y, then V is a subspace of Y.
(48) If the carrier of $W_{1} \subseteq$ the carrier of W_{2}, then W_{1} is a subspace of W_{2}.
(49) If for every v such that $v \in W_{1}$ holds $v \in W_{2}$, then W_{1} is a subspace of W_{2}.
Let us consider V. Observe that there exists a subspace of V which is strict. The following propositions are true:
(50) For all strict subspaces W_{1}, W_{2} of V such that the carrier of $W_{1}=$ the carrier of W_{2} holds $W_{1}=W_{2}$.
(51) For all strict subspaces W_{1}, W_{2} of V such that for every v holds $v \in W_{1}$ iff $v \in W_{2}$ holds $W_{1}=W_{2}$.
(52) Let V be a strict complex linear space and W be a strict subspace of V. If the carrier of $W=$ the carrier of V, then $W=V$.
(53) Let V be a strict complex linear space and W be a strict subspace of V. If for every vector v of V holds $v \in W$ iff $v \in V$, then $W=V$.
(54) If the carrier of $W=V_{1}$, then V_{1} is linearly closed.
(55) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then there exists a strict subspace W of V such that $V_{1}=$ the carrier of W.
Let us consider V. The functor $\mathbf{0}_{V}$ yields a strict subspace of V and is defined by:
(Def. 5) The carrier of $\mathbf{0}_{V}=\left\{0_{V}\right\}$.
Let us consider V. The functor Ω_{V} yields a strict subspace of V and is defined as follows:
(Def. 6) $\Omega_{V}=$ the CLS structure of V.
We now state several propositions:
(56) $\quad \mathbf{0}_{W}=\mathbf{0}_{V}$.
(57) $\quad \mathbf{0}_{\left(W_{1}\right)}=\mathbf{0}_{\left(W_{2}\right)}$.
(58) $\quad \mathbf{0}_{W}$ is a subspace of V.
(59) $\quad \mathbf{0}_{V}$ is a subspace of W.
(60) $\mathbf{0}_{\left(W_{1}\right)}$ is a subspace of W_{2}.
(61) Every strict complex linear space V is a subspace of Ω_{V}.

Let us consider V and let us consider v, W. The functor $v+W$ yielding a subset of V is defined by:
(Def. 7) $v+W=\{v+u: u \in W\}$.
Let us consider V and let us consider W. A subset of V is called a coset of W if:
(Def. 8) There exists v such that it $=v+W$.
In the sequel B, C denote cosets of W.
The following propositions are true:
(62) $0_{V} \in v+W$ iff $v \in W$.
(63) $v \in v+W$.
(64) $0_{V}+W=$ the carrier of W.
(65) $v+\mathbf{0}_{V}=\{v\}$.
(66) $v+\Omega_{V}=$ the carrier of V.
(67) $0_{V} \in v+W$ iff $v+W=$ the carrier of W.
(68) $v \in W$ iff $v+W=$ the carrier of W.
(69) If $v \in W$, then $z \cdot v+W=$ the carrier of W.
(70) If $z \neq 0_{\mathbb{C}}$ and $z \cdot v+W=$ the carrier of W, then $v \in W$.
(71) $v \in W$ iff $-v+W=$ the carrier of W.
(72) $u \in W$ iff $v+W=v+u+W$.
(73) $u \in W$ iff $v+W=(v-u)+W$.
(74) $v \in u+W$ iff $u+W=v+W$.
(75) $v+W=-v+W$ iff $v \in W$.
(76) If $u \in v_{1}+W$ and $u \in v_{2}+W$, then $v_{1}+W=v_{2}+W$.
(77) If $u \in v+W$ and $u \in-v+W$, then $v \in W$.
(78) If $z \neq 1_{\mathbb{C}}$ and $z \cdot v \in v+W$, then $v \in W$.
(79) If $v \in W$, then $z \cdot v \in v+W$.
(80) $-v \in v+W$ iff $v \in W$.
(81) $u+v \in v+W$ iff $u \in W$.
(82) $v-u \in v+W$ iff $u \in W$.
(83) $u \in v+W$ iff there exists v_{1} such that $v_{1} \in W$ and $u=v+v_{1}$.
(84) $u \in v+W$ iff there exists v_{1} such that $v_{1} \in W$ and $u=v-v_{1}$.
(85) There exists v such that $v_{1} \in v+W$ and $v_{2} \in v+W$ iff $v_{1}-v_{2} \in W$.
(86) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v+v_{1}=u$.
(87) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v-v_{1}=u$.
(88) For all strict subspaces W_{1}, W_{2} of V holds $v+W_{1}=v+W_{2}$ iff $W_{1}=W_{2}$.
(89) For all strict subspaces W_{1}, W_{2} of V such that $v+W_{1}=u+W_{2}$ holds $W_{1}=W_{2}$.
(90) C is linearly closed iff $C=$ the carrier of W.
(91) For all strict subspaces W_{1}, W_{2} of V and for every coset C_{1} of W_{1} and for every coset C_{2} of W_{2} such that $C_{1}=C_{2}$ holds $W_{1}=W_{2}$.
(92) $\{v\}$ is a coset of $\mathbf{0}_{V}$.
(93) If V_{1} is a coset of $\mathbf{0}_{V}$, then there exists v such that $V_{1}=\{v\}$.
(94) The carrier of W is a coset of W.
(95) The carrier of V is a coset of Ω_{V}.
(96) If V_{1} is a coset of Ω_{V}, then $V_{1}=$ the carrier of V.
(97) $0_{V} \in C$ iff $C=$ the carrier of W.
(98) $u \in C$ iff $C=u+W$.
(99) If $u \in C$ and $v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u+v_{1}=v$.
(100) If $u \in C$ and $v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u-v_{1}=v$.
(101) There exists C such that $v_{1} \in C$ and $v_{2} \in C$ iff $v_{1}-v_{2} \in W$.
(102) If $u \in B$ and $u \in C$, then $B=C$.

3. Complex Normed Space

We consider complex normed space structures as extensions of CLS structure as systems
\langle a carrier, a zero, an addition, an external multiplication, a norm \rangle, where the carrier is a set, the zero is an element of the carrier, the addition is a binary operation on the carrier, the external multiplication is a function from : \mathbb{C}, the carrier: $]$ into the carrier, and the norm is a function from the carrier into \mathbb{R}.

Let us mention that there exists a complex normed space structure which is non empty.

In the sequel X is a non empty complex normed space structure and x is a point of X.

Let us consider X, x. The functor $\|x\|$ yielding a real number is defined by: (Def. 9) $\|x\|=($ the norm of $X)(x)$.

Let I_{1} be a non empty complex normed space structure. We say that I_{1} is complex normed space-like if and only if:
(Def. 10) For all points x, y of I_{1} and for every z holds $\|x\|=0$ iff $x=0_{\left(I_{1}\right)}$ and $\|z \cdot x\|=|z| \cdot\|x\|$ and $\|x+y\| \leqslant\|x\|+\|y\|$.
One can verify that there exists a non empty complex normed space structure which is complex normed space-like, complex linear space-like, Abelian, addassociative, right zeroed, right complementable, and strict.

A complex normed space is a complex normed space-like complex linear space-like Abelian add-associative right zeroed right complementable non empty complex normed space structure.

We follow the rules: C_{3} is a complex normed space and x, y, w, g are points of C_{3}.

The following propositions are true:
(103) $\left\|0_{\left(C_{3}\right)}\right\|=0$.
(104) $\|-x\|=\|x\|$.
(105) $\|x-y\| \leqslant\|x\|+\|y\|$.
(106) $0 \leqslant\|x\|$.
(107) $\left\|z_{1} \cdot x+z_{2} \cdot y\right\| \leqslant\left|z_{1}\right| \cdot\|x\|+\left|z_{2}\right| \cdot\|y\|$.
(108) $\|x-y\|=0$ iff $x=y$.
(109) $\|x-y\|=\|y-x\|$.
(110) $\|x\|-\|y\| \leqslant\|x-y\|$.
(111) $\quad|\|x\|-\|y\|| \leqslant\|x-y\|$.
(112) $\quad\|x-w\| \leqslant\|x-y\|+\|y-w\|$.
(113) If $x \neq y$, then $\|x-y\| \neq 0$.

We adopt the following rules: S, S_{1}, S_{2} are sequences of C_{3}, n, m are natural numbers, and r is a real number.

One can prove the following proposition
(114) There exists S such that rng $S=\left\{0_{\left(C_{3}\right)}\right\}$.

In this article we present several logical schemes. The scheme ExCNSSeq deals with a complex normed space \mathcal{A} and a unary functor \mathcal{F} yielding a point of \mathcal{A}, and states that:

There exists a sequence S of \mathcal{A} such that for every n holds $S(n)=$ $\mathcal{F}(n)$
for all values of the parameters.
The scheme ExCLSSeq deals with a complex linear space \mathcal{A} and a unary functor \mathcal{F} yielding an element of \mathcal{A}, and states that:

There exists a sequence S of \mathcal{A} such that for every n holds $S(n)=$ $\mathcal{F}(n)$
for all values of the parameters.
Let C_{3} be a complex linear space and let S_{1}, S_{2} be sequences of C_{3}. The functor $S_{1}+S_{2}$ yielding a sequence of C_{3} is defined by:
(Def. 11) For every n holds $\left(S_{1}+S_{2}\right)(n)=S_{1}(n)+S_{2}(n)$.
Let C_{3} be a complex linear space and let S_{1}, S_{2} be sequences of C_{3}. The functor $S_{1}-S_{2}$ yielding a sequence of C_{3} is defined by:
(Def. 12) For every n holds $\left(S_{1}-S_{2}\right)(n)=S_{1}(n)-S_{2}(n)$.
Let C_{3} be a complex linear space, let S be a sequence of C_{3}, and let x be an element of C_{3}. The functor $S-x$ yielding a sequence of C_{3} is defined by:
(Def. 13) For every n holds $(S-x)(n)=S(n)-x$.
Let C_{3} be a complex linear space, let S be a sequence of C_{3}, and let us consider z. The functor $z \cdot S$ yields a sequence of C_{3} and is defined as follows:
(Def. 14) For every n holds $(z \cdot S)(n)=z \cdot S(n)$.
Let us consider C_{3} and let us consider S. We say that S is convergent if and only if:
(Def. 15) There exists g such that for every r such that $0<r$ there exists m such that for every n such that $m \leqslant n$ holds $\|S(n)-g\|<r$.
The following four propositions are true:
(115) If S_{1} is convergent and S_{2} is convergent, then $S_{1}+S_{2}$ is convergent.
(116) If S_{1} is convergent and S_{2} is convergent, then $S_{1}-S_{2}$ is convergent.
(117) If S is convergent, then $S-x$ is convergent.
(118) If S is convergent, then $z \cdot S$ is convergent.

Let us consider C_{3} and let us consider S. The functor $\|S\|$ yielding a sequence of real numbers is defined as follows:
(Def. 16) For every n holds $\|S\|(n)=\|S(n)\|$.

The following proposition is true
(119) If S is convergent, then $\|S\|$ is convergent.

Let us consider C_{3} and let us consider S. Let us assume that S is convergent. The functor $\lim S$ yields a point of C_{3} and is defined as follows:
(Def. 17) For every r such that $0<r$ there exists m such that for every n such that $m \leqslant n$ holds $\|S(n)-\lim S\|<r$.
The following propositions are true:
(120) If S is convergent and $\lim S=g$, then $\|S-g\|$ is convergent and $\lim \| S$ $g \|=0$.
(121) If S_{1} is convergent and S_{2} is convergent, then $\lim \left(S_{1}+S_{2}\right)=\lim S_{1}+$ $\lim S_{2}$.
(122) If S_{1} is convergent and S_{2} is convergent, then $\lim \left(S_{1}-S_{2}\right)=\lim S_{1}-$ $\lim S_{2}$.
(123) If S is convergent, then $\lim (S-x)=\lim S-x$.
(124) If S is convergent, then $\lim (z \cdot S)=z \cdot \lim S$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[12] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[13] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 26, 2004

