Primitive Roots of Unity and Cyclotomic Polynomials ${ }^{1}$

Broderick Arneson
University of Alberta
Edmonton

Piotr Rudnicki
University of Alberta
Edmonton

Abstract

Summary. We present a formalization of roots of unity, define cyclotomic polynomials and demonstrate the relationship between cyclotomic polynomials and unital polynomials.

MML Identifier: UNIROOTS.

The papers [34], [42], [32], [31], [11], [14], [35], [17], [2], [26], [41], [16], [24], [5], [43], [8], [9], [4], [15], [7], [39], [36], [10], [6], [27], [12], [25], [18], [19], [22], [20], [21], [23], [1], [40], [44], [28], [13], [37], [33], [3], [38], [30], [45], and [29] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following proposition
(1) For every natural number n holds $n=0$ or $n=1$ or $n \geqslant 2$.

The scheme Comp Ind $N E$ concerns a unary predicate \mathcal{P}, and states that:
For every non empty natural number k holds $\mathcal{P}[k]$ provided the parameters satisfy the following condition:

- For every non empty natural number k such that for every non empty natural number n such that $n<k$ holds $\mathcal{P}[n]$ holds $\mathcal{P}[k]$.
Next we state the proposition
(2) For every finite sequence f such that $1 \leqslant \operatorname{len} f$ holds $f \upharpoonright \operatorname{Seg} 1=\langle f(1)\rangle$.

The following propositions are true:

[^0](3) Let f be a finite sequence of elements of \mathbb{C}_{F} and g be a finite sequence of elements of \mathbb{R}. Suppose len $f=\operatorname{len} g$ and for every natural number i such that $i \in \operatorname{dom} f$ holds $\left|f_{i}\right|=g(i)$. Then $\left|\prod f\right|=\prod g$.
(4) Let s be a non empty finite subset of \mathbb{C}_{F}, x be an element of \mathbb{C}_{F}, and r be a finite sequence of elements of \mathbb{R}. Suppose len $r=\operatorname{card} s$ and for every natural number i and for every element c of \mathbb{C}_{F} such that $i \in \operatorname{dom} r$ and $c=(\operatorname{CFS}(s))(i)$ holds $r(i)=|x-c|$. Then \mid eval(poly_with_roots $((s, 1)-\mathrm{bag}), x) \mid=\prod r$.
(5) Let f be a finite sequence of elements of \mathbb{C}_{F}. Suppose that for every natural number i such that $i \in \operatorname{dom} f$ holds $f(i)$ is integer. Then $\sum f$ is integer.
(6) For every real number r there exists an element z of \mathbb{C} such that $z=r$ and $z=r+0 i$.
(7) For all elements x, y of \mathbb{C}_{F} and for all real numbers r_{1}, r_{2} such that $r_{1}=x$ and $r_{2}=y$ holds $r_{1} \cdot r_{2}=x \cdot y$ and $r_{1}+r_{2}=x+y$.
(8) Let q be a real number. Suppose q is an integer and $q>0$. Let r be an element of \mathbb{C}_{F}. If $|r|=1$ and $r \neq 1+0 i_{\mathbb{C}_{\mathrm{F}}}$, then $\left|\left(q+0 i_{\mathbb{C}_{\mathrm{F}}}\right)-r\right|>q-1$.
(9) Let p_{1} be a non empty finite sequence of elements of \mathbb{R} and x be a real number. Suppose $x \geqslant 1$ and for every natural number i such that $i \in \operatorname{dom} p_{1}$ holds $p_{1}(i)>x$. Then $\prod p_{1}>x$.
(10) For every natural number n holds $\mathbf{1}_{\mathbb{C}_{F}}=\operatorname{power}_{\mathbb{C}_{F}}\left(\mathbf{1}_{\mathbb{C}_{F}}, n\right)$.
(11) Let n be a non empty natural number and i be a natural number. Then $\cos \left(\frac{2 \cdot \pi \cdot i}{n}\right)=\cos \left(\frac{2 \cdot \pi \cdot(i \bmod n)}{n}\right)$ and $\sin \left(\frac{2 \cdot \pi \cdot i}{n}\right)=\sin \left(\frac{2 \cdot \pi \cdot(i \bmod n)}{n}\right)$.
(12) For every non empty natural number n and for every natural number i holds $\cos \left(\frac{2 \cdot \pi \cdot i}{n}\right)+\sin \left(\frac{2 \cdot \pi \cdot i}{n}\right) i_{\mathbb{C}_{\mathrm{F}}}=\cos \left(\frac{2 \cdot \pi \cdot(i \bmod n)}{n}\right)+\sin \left(\frac{2 \cdot \pi \cdot(i \bmod n)}{n}\right) i_{\mathbb{C}_{\mathrm{F}}}$.
(13) Let n be a non empty natural number and i, j be natural numbers. Then $\left(\cos \left(\frac{2 \cdot \pi \cdot i}{n}\right)+\sin \left(\frac{2 \cdot \pi \cdot i}{n}\right) i_{\mathbb{C}_{\mathrm{F}}}\right) \cdot\left(\cos \left(\frac{2 \cdot \pi \cdot j}{n}\right)+\sin \left(\frac{2 \cdot \pi \cdot j}{n}\right) i_{\mathbb{C}_{\mathrm{F}}}\right)=$ $\cos \left(\frac{2 \cdot \pi \cdot((i+j) \bmod n)}{n}\right)+\sin \left(\frac{2 \cdot \pi \cdot((i+j) \bmod n)}{n}\right) i_{\mathbb{C}_{\mathrm{F}}}$.
(14) Let L be a unital associative non empty groupoid, x be an element of L, and n, m be natural numbers. Then $\operatorname{power}_{L}(x, n \cdot m)=\operatorname{power}_{L}\left(\operatorname{power}_{L}(x\right.$, $n), m)$.
(15) For every natural number n and for every element x of \mathbb{C}_{F} such that x is an integer holds power $\mathbb{C}_{\mathfrak{F}}(x, n)$ is an integer.
(16) Let F be a finite sequence of elements of \mathbb{C}_{F}. Suppose that for every natural number i such that $i \in \operatorname{dom} F$ holds $F(i)$ is an integer. Then $\sum F$ is an integer.
(17) For every real number a such that $0 \leqslant a$ and $a<2 \cdot \pi$ and $\cos a=1$ holds $a=0$.

Let us note that there exists a field which is finite and there exists a skew
field which is finite.

2. Multiplicative Group of a Skew Field

Let R be a skew field. The functor $\operatorname{MultGroup}(R)$ yields a strict group and is defined by the conditions (Def. 1).
(Def. 1)(i) The carrier of $\operatorname{MultGroup}(R)=($ the carrier of $R) \backslash\left\{0_{R}\right\}$, and
(ii) the multiplication of $\operatorname{Mult} \operatorname{Group}(R)=($ the multiplication of $R) \upharpoonright$: the carrier of $\operatorname{MultGroup}(R)$, the carrier of $\operatorname{MultGroup}(R):]$.
Next we state three propositions:
(18) For every skew field R holds the carrier of $R=$ (the carrier of $\operatorname{MultGroup}(R)) \cup\left\{0_{R}\right\}$.
(19) Let R be a skew field, a, b be elements of R, and c, d be elements of $\operatorname{MultGroup}(R)$. If $a=c$ and $b=d$, then $c \cdot d=a \cdot b$.
(20) For every skew field R holds $\mathbf{1}_{R}=1_{\operatorname{MultGroup}(R)}$.

Let R be a finite skew field. Observe that $\operatorname{MultGroup}(R)$ is finite.
We now state three propositions:
(21) For every finite skew field R holds ord $(\operatorname{MultGroup}(R))=\operatorname{card}($ the carrier of R) -1 .
(22) For every skew field R and for every set s such that $s \in$ the carrier of MultGroup (R) holds $s \in$ the carrier of R.
(23) For every skew field R holds the carrier of $\operatorname{MultGroup}(R) \subseteq$ the carrier of R.

3. Roots of Unity

Let n be a non empty natural number. The functor n-roots_of_1 yielding a subset of \mathbb{C}_{F} is defined by:
(Def. 2) n-roots_of_ $1=\left\{x ; x\right.$ ranges over elements of $\mathbb{C}_{\mathrm{F}}: x$ is a complex root of $\left.n, \mathbf{1}_{\mathbb{C}_{F}}\right\}$.
We now state several propositions:
(24) Let n be a non empty natural number and x be an element of \mathbb{C}_{F}. Then $x \in n$-roots_of_1 if and only if x is a complex root of $n, \mathbf{1}_{\mathbb{C}_{F}}$.
(25) For every non empty natural number n holds $\mathbf{1}_{\mathbb{C}_{F}} \in n$-roots_of_1.
(26) For every non empty natural number n and for every element x of \mathbb{C}_{F} such that $x \in n$-roots_of_1 holds $|x|=1$.
(27) Let n be a non empty natural number and x be an element of \mathbb{C}_{F}. Then $x \in n$-roots_of_1 if and only if there exists a natural number k such that $x=\cos \left(\frac{2 \cdot \pi \cdot k}{n}\right)+\sin \left(\frac{2 \cdot \pi \cdot k}{n}\right) i_{\mathbb{C}_{\mathrm{F}}}$.
(28) For every non empty natural number n and for all elements x, y of \mathbb{C} such that $x \in n$-roots_of_1 and $y \in n$-roots_of_1 holds $x \cdot y \in n$-roots_of_1.
(29) For every non empty natural number n holds n-roots_of_1 $=$ $\left\{\cos \left(\frac{2 \cdot \pi \cdot k}{n}\right)+\sin \left(\frac{2 \cdot \pi \cdot k}{n}\right) i_{\mathbb{C}_{\mathbb{F}}} ; k\right.$ ranges over natural numbers: $\left.k<n\right\}$.
(30) For every non empty natural number n holds $\overline{\overline{n-r o o t s _o f ~} 11}=n$.

Let n be a non empty natural number. One can check that n-roots_of $_1$ is non empty and n-roots_of 1 is finite.

Next we state several propositions:
(31) For all non empty natural numbers n, n_{1} such that $n_{1} \mid n$ holds n_{1}-roots_of_1 $\subseteq n$-roots_of_1 .
(32) Let R be a skew field, x be an element of $\operatorname{Mult} \operatorname{Group}(R)$, and y be an element of R. If $y=x$, then for every natural number k holds $\operatorname{power}_{M u l t G r o u p}(R)(x, k)=\operatorname{power}_{R}(y, k)$.
(33) For every non empty natural number n and for every element x of MultGroup $\left(\mathbb{C}_{\mathrm{F}}\right)$ such that $x \in n$-roots_of_ 1 holds x is not of order 0 .
(34) Let n be a non empty natural number, k be a natural number, and x be an element of $\operatorname{MultGroup}\left(\mathbb{C}_{\mathrm{F}}\right)$. If $x=\cos \left(\frac{2 \cdot \pi \cdot k}{n}\right)+\sin \left(\frac{2 \cdot \pi \cdot k}{n}\right) i_{\mathbb{C}_{\mathrm{F}}}$, then $\operatorname{ord}(x)=n \div(k \operatorname{gcd} n)$.
(35) For every non empty natural number n holds n-roots_of_ $1 \subseteq$ the carrier of MultGroup $\left(\mathbb{C}_{F}\right)$.
(36) For every non empty natural number n there exists an element x of $\operatorname{MultGroup}\left(\mathbb{C}_{F}\right)$ such that ord $(x)=n$.
(37) For every non empty natural number n and for every element x of $\operatorname{MultGroup}\left(\mathbb{C}_{\mathrm{F}}\right)$ holds ord $(x) \mid n$ iff $x \in n$-roots_of_1.
(38) For every non empty natural number n holds n-roots_of $_1=\{x ; x$ ranges over elements of $\left.\operatorname{MultGroup}\left(\mathbb{C}_{F}\right): \operatorname{ord}(x) \mid n\right\}$.
(39) Let n be a non empty natural number and x be a set. Then $x \in$ n-roots_of_1 if and only if there exists an element y of MultGroup $\left(\mathbb{C}_{F}\right)$ such that $x=y$ and $\operatorname{ord}(y) \mid n$.

Let n be a non empty natural number. The functor n-th_roots_of_1 yielding a strict group is defined as follows:
(Def. 3) The carrier of n-th_roots_of_1 $=n$-roots_of_1 and the multiplication of n-th_roots_of_1 $=$ (the multiplication of $\left.\mathbb{C}_{F}\right) \upharpoonright \mid: n$-roots_of_1, n-roots_of 1:].
One can prove the following proposition
(40) For every non empty natural number n holds n-th_roots_of 11 is a subgroup of $\operatorname{MultGroup}\left(\mathbb{C}_{F}\right)$.

4. The Unital Polynomial $x^{n}-1$

Let n be a non empty natural number and let L be a left unital non empty double loop structure. The functor unital_poly (L, n) yields a polynomial of L and is defined as follows:
(Def. 4) unital_poly $(L, n)=\mathbf{0} . L+\cdot\left(0,-\mathbf{1}_{L}\right)+\cdot\left(n, \mathbf{1}_{L}\right)$.
Next we state four propositions:
(41) unital_poly $\left(\mathbb{C}_{\mathrm{F}}, 1\right)=\left\langle-\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}, \mathbf{1}_{\mathbb{C}_{\mathrm{F}}}\right\rangle$.
(42) Let L be a left unital non empty double loop structure and n be a non empty natural number. Then (unital_poly $(L, n))(0)=-\mathbf{1}_{L}$ and $($ unital_poly $(L, n))(n)=\mathbf{1}_{L}$.
(43) Let L be a left unital non empty double loop structure, n be a non empty natural number, and i be a natural number. If $i \neq 0$ and $i \neq n$, then (unital_poly $(L, n))(i)=0_{L}$.
(44) Let L be a non degenerated left unital non empty double loop structure and n be a non empty natural number. Then len unital_poly $(L, n)=n+1$.
Let L be a non degenerated left unital non empty double loop structure and let n be a non empty natural number. Observe that unital_poly (L, n) is non-zero.

The following propositions are true:
(45) For every non empty natural number n and for every element x of \mathbb{C}_{F} holds eval(unital_poly $\left.\left(\mathbb{C}_{F}, n\right), x\right)=\operatorname{power}_{\mathbb{C}_{F}}(x, n)-1$.
(46) For every non empty natural number n holds Roots unital_poly $\left(\mathbb{C}_{F}, n\right)=$ n-roots_of_1.
(47) Let n be a natural number and z be an element of \mathbb{C}_{F}. Suppose z is a real number. Then there exists a real number x such that $x=z$ and $\operatorname{power}_{\mathbb{C}_{\mathrm{F}}}(z, n)=x^{n}$.
(48) Let n be a non empty natural number and x be a real number. Then there exists an element y of \mathbb{C}_{F} such that $y=x$ and eval(unital_poly $\left.\left(\mathbb{C}_{\mathrm{F}}, n\right), y\right)=$ $x^{n}-1$.
(49) For every non empty natural number n holds BRoots(unital_poly $\left.\left(\mathbb{C}_{\mathrm{F}}, n\right)\right)=$ (n-roots_of_1, 1)-bag .
(50) For every non empty natural number n holds unital_poly $\left(\mathbb{C}_{F}, n\right)=$ poly_with_roots((n-roots_of_1, 1$)$-bag $)$.
Let i be an integer and let n be a natural number. Then i^{n} is an integer.
The following proposition is true
(51) For every non empty natural number n and for every element i of \mathbb{C}_{F} such that i is an integer holds eval(unital_poly $\left.\left(\mathbb{C}_{F}, n\right), i\right)$ is an integer.

5. Cyclotomic Polynomials

Let d be a non empty natural number. The functor cyclotomic_poly (d) yields a polynomial of \mathbb{C}_{F} and is defined by:
(Def. 5) There exists a non empty finite subset s of \mathbb{C}_{F} such that $s=\{y ; y$ ranges over elements of $\left.\operatorname{MultGroup}\left(\mathbb{C}_{\mathrm{F}}\right): \operatorname{ord}(y)=d\right\}$ and cyclotomic_poly $(d)=$ poly_with_roots($(s, 1)$-bag $)$.
The following propositions are true:
(52) \quad cyclotomic_poly $(1)=\left\langle-\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}, \mathbf{1}_{\mathbb{C}_{\mathrm{F}}}\right\rangle$.
(53) Let n be a non empty natural number and f be a finite sequence of elements of the carrier of Polynom-Ring $\left(\mathbb{C}_{F}\right)$. Suppose len $f=n$ and for every non empty natural number i such that $i \in \operatorname{dom} f$ holds if $i \nmid n$, then $f(i)=\left\langle\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}\right\rangle$ and if $i \mid n$, then $f(i)=$ cyclotomic_poly (i). Then unital_poly $\left(\mathbb{C}_{\mathrm{F}}, n\right)=\prod f$.
(54) Let n be a non empty natural number. Then there exists a finite sequence f of elements of the carrier of Polynom-Ring $\left(\mathbb{C}_{F}\right)$ and there exists a polynomial p of \mathbb{C}_{F} such that
(i) $p=\prod f$,
(ii) $\operatorname{dom} f=\operatorname{Seg} n$,
(iii) for every non empty natural number i such that $i \in \operatorname{Seg} n$ holds if $i \nmid n$ or $i=n$, then $f(i)=\left\langle\mathbf{1}_{\mathbb{C}_{\mathbf{F}}}\right\rangle$ and if $i \mid n$ and $i \neq n$, then $f(i)=$ cyclotomic_poly (i), and
(iv) unital_poly $\left(\mathbb{C}_{\mathrm{F}}, n\right)=$ cyclotomic_poly $(n) * p$.
(55) For every non empty natural number d and for every natural number i holds $($ cyclotomic_poly $(d))(0)=1$ or $($ cyclotomic_poly $(d))(0)=-1$ but (cyclotomic_poly $(d))(i)$ is integer.
(56) For every non empty natural number d and for every element z of \mathbb{C}_{F} such that z is an integer holds eval(cyclotomic_poly $(d), z)$ is an integer.
(57) Let n, n_{1} be non empty natural numbers, f be a finite sequence of elements of the carrier of Polynom- $\operatorname{Ring}\left(\mathbb{C}_{\mathrm{F}}\right)$, and s be a finite subset of \mathbb{C}_{F}. Suppose that
(i) $s=\left\{y ; y\right.$ ranges over elements of MultGroup $\left(\mathbb{C}_{\mathrm{F}}\right): \operatorname{ord}(y) \mid n \wedge \operatorname{ord}(y) \nmid$ $\left.n_{1} \wedge \operatorname{ord}(y) \neq n\right\}$,
(ii) $\operatorname{dom} f=\operatorname{Seg} n$, and
(iii) for every non empty natural number i such that $i \in \operatorname{dom} f$ holds if $i \nmid n$ or $i \mid n_{1}$ or $i=n$, then $f(i)=\left\langle\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}\right\rangle$ and if $i \mid n$ and $i \nmid n_{1}$ and $i \neq n$, then $f(i)=$ cyclotomic_poly (i).
Then $\Pi f=$ poly_with_roots $((s, 1)$-bag $)$.
(58) Let n, n_{1} be non empty natural numbers. Suppose $n_{1}<n$ and n_{1} | n. Then there exists a finite sequence f of elements of the carrier of Polynom- $\operatorname{Ring}\left(\mathbb{C}_{F}\right)$ and there exists a polynomial p of \mathbb{C}_{F} such that
(i) $p=\prod f$,
(ii) $\operatorname{dom} f=\operatorname{Seg} n$,
(iii) for every non empty natural number i such that $i \in \operatorname{Seg} n$ holds if $i \nmid n$ or $i \mid n_{1}$ or $i=n$, then $f(i)=\left\langle\mathbf{1}_{\mathbb{C}_{\mathfrak{F}}}\right\rangle$ and if $i \mid n$ and $i \nmid n_{1}$ and $i \neq n$, then $f(i)=$ cyclotomic_poly (i), and
(iv) unital_poly $\left(\mathbb{C}_{\mathrm{F}}, n\right)=\operatorname{unital_ poly}\left(\mathbb{C}_{\mathrm{F}}, n_{1}\right) * \operatorname{cyclotomic_ poly}(n) * p$.
(59) Let i be an integer, c be an element of $\mathbb{C}_{\mathrm{F}}, f$ be a finite sequence of elements of the carrier of Polynom-Ring $\left(\mathbb{C}_{F}\right)$, and p be a polynomial of \mathbb{C}_{F}. Suppose $p=\Pi f$ and $c=i$ and for every non empty natural number i such that $i \in \operatorname{dom} f$ holds $f(i)=\left\langle\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}\right\rangle$ or $f(i)=\operatorname{cyclotomic}$ _poly (i). Then $\operatorname{eval}(p, c)$ is integer.
(60) Let n be a non empty natural number, j, k, q be integers, and q_{1} be an element of \mathbb{C}_{F}. If $q_{1}=q$ and $\left.j=\operatorname{eval(\operatorname {cyclotomic}_ poly}(n), q_{1}\right)$ and $k=\operatorname{eval}\left(\right.$ unital_poly $\left.\left(\mathbb{C}_{\mathrm{F}}, n\right), q_{1}\right)$, then $j \mid k$.
(61) Let n, n_{1} be non empty natural numbers and q be an integer. Suppose $n_{1}<n$ and $n_{1} \mid n$. Let q_{1} be an element of c_{1}. Suppose $q_{1}=q$. Let j, k, l be integers. If $j=\operatorname{eval}\left(\operatorname{cyclotomic} _\operatorname{poly}(n), q_{1}\right)$ and $k=$ eval(unital_poly $\left.\left(\mathbb{C}_{\mathrm{F}}, n\right), q_{1}\right)$ and $l=\operatorname{eval}\left(\right.$ unital_poly $\left.\left(\mathbb{C}_{\mathrm{F}}, n_{1}\right), q_{1}\right)$, then $j \mid k \div l$, where $c_{1}=$ the carrier of \mathbb{C}_{F}.
(62) Let n, q be non empty natural numbers and q_{1} be an element of \mathbb{C}_{F}. If $q_{1}=q$, then for every integer j such that $j=$ eval(cyclotomic_poly $\left.(n), q_{1}\right)$ holds $j \mid q^{n}-1$.
(63) Let n, n_{1}, q be non empty natural numbers. Suppose $n_{1}<n$ and $n_{1} \mid n$. Let q_{1} be an element of \mathbb{C}_{F}. If $q_{1}=q$, then for every integer j such that $j=\operatorname{eval}\left(\right.$ cyclotomic_poly $\left.(n), q_{1}\right)$ holds $j \mid\left(q^{n}-1\right) \div\left(q^{n_{1}}-1\right)$.
(64) Let n be a non empty natural number. Suppose $1<n$. Let q be a natural number. Suppose $1<q$. Let q_{1} be an element of \mathbb{C}_{F}. If $q_{1}=q$, then for every integer i such that $i=\operatorname{eval}\left(\right.$ cyclotomic_poly $\left.(n), q_{1}\right)$ holds $|i|>q-1$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[15] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[16] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[18] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265-269, 2001.
[19] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. Formalized Mathematics, 9(2):363-371, 2001.
[20] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.
[21] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461470, 2001.
[22] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
[23] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9(3):455-460, 2001.
[24] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[25] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[26] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[27] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[28] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[29] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1):49-58, 2004.
[30] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
[31] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[32] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[33] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[34] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[35] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[36] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[37] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[38] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[39] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[40] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[41] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[42] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[43] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[44] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
[45] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

Received December 30, 2003

[^0]: ${ }^{1}$ This work has been supported by NSERC Grant OGP9207.

