Primitive Roots of Unity and Cyclotomic Polynomials¹

Broderick Arneson University of Alberta Edmonton Piotr Rudnicki University of Alberta Edmonton

Summary. We present a formalization of roots of unity, define cyclotomic polynomials and demonstrate the relationship between cyclotomic polynomials and unital polynomials.

MML Identifier: UNIROOTS.

The papers [34], [42], [32], [31], [11], [14], [35], [17], [2], [26], [41], [16], [24], [5], [43], [8], [9], [4], [15], [7], [39], [36], [10], [6], [27], [12], [25], [18], [19], [22], [20], [21], [23], [1], [40], [44], [28], [13], [37], [33], [3], [38], [30], [45], and [29] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following proposition

(1) For every natural number n holds n = 0 or n = 1 or $n \ge 2$.

The scheme *Comp Ind NE* concerns a unary predicate \mathcal{P} , and states that:

For every non empty natural number k holds $\mathcal{P}[k]$

provided the parameters satisfy the following condition:

• For every non empty natural number k such that for every non empty natural number n such that n < k holds $\mathcal{P}[n]$ holds $\mathcal{P}[k]$. Next we state the proposition

(2) For every finite sequence f such that $1 \leq \text{len } f$ holds $f \upharpoonright \text{Seg } 1 = \langle f(1) \rangle$. The following propositions are true:

C 2004 University of Białystok ISSN 1426-2630

¹This work has been supported by NSERC Grant OGP9207.

BRODERICK ARNESON AND PIOTR RUDNICKI

- (3) Let f be a finite sequence of elements of \mathbb{C}_{F} and g be a finite sequence of elements of \mathbb{R} . Suppose len $f = \operatorname{len} g$ and for every natural number i such that $i \in \operatorname{dom} f$ holds $|f_i| = g(i)$. Then $|\prod f| = \prod g$.
- (4) Let s be a non empty finite subset of \mathbb{C}_{F} , x be an element of \mathbb{C}_{F} , and r be a finite sequence of elements of \mathbb{R} . Suppose len $r = \operatorname{card} s$ and for every natural number i and for every element c of \mathbb{C}_{F} such that $i \in \operatorname{dom} r$ and $c = (\operatorname{CFS}(s))(i)$ holds r(i) = |x - c|. Then $|\operatorname{eval}(\operatorname{poly}_with_\operatorname{roots}((s, 1) - \operatorname{bag}), x)| = \prod r$.
- (5) Let f be a finite sequence of elements of \mathbb{C}_{F} . Suppose that for every natural number i such that $i \in \mathrm{dom} f$ holds f(i) is integer. Then $\sum f$ is integer.
- (6) For every real number r there exists an element z of \mathbb{C} such that z = r and z = r + 0i.
- (7) For all elements x, y of \mathbb{C}_{F} and for all real numbers r_1, r_2 such that $r_1 = x$ and $r_2 = y$ holds $r_1 \cdot r_2 = x \cdot y$ and $r_1 + r_2 = x + y$.
- (8) Let q be a real number. Suppose q is an integer and q > 0. Let r be an element of \mathbb{C}_{F} . If |r| = 1 and $r \neq 1 + 0i_{\mathbb{C}_{\mathrm{F}}}$, then $|(q + 0i_{\mathbb{C}_{\mathrm{F}}}) r| > q 1$.
- (9) Let p_1 be a non empty finite sequence of elements of \mathbb{R} and x be a real number. Suppose $x \ge 1$ and for every natural number i such that $i \in \text{dom } p_1 \text{ holds } p_1(i) > x$. Then $\prod p_1 > x$.
- (10) For every natural number *n* holds $\mathbf{1}_{\mathbb{C}_{\mathrm{F}}} = \mathrm{power}_{\mathbb{C}_{\mathrm{F}}}(\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}, n)$.
- (11) Let *n* be a non empty natural number and *i* be a natural number. Then $\cos(\frac{2\cdot\pi\cdot i}{n}) = \cos(\frac{2\cdot\pi\cdot (i \mod n)}{n})$ and $\sin(\frac{2\cdot\pi\cdot i}{n}) = \sin(\frac{2\cdot\pi\cdot (i \mod n)}{n})$.
- (12) For every non empty natural number n and for every natural number i holds $\cos(\frac{2\cdot\pi\cdot i}{n}) + \sin(\frac{2\cdot\pi\cdot i}{n})i_{\mathbb{C}_{\mathrm{F}}} = \cos(\frac{2\cdot\pi\cdot(i \mod n)}{n}) + \sin(\frac{2\cdot\pi\cdot(i \mod n)}{n})i_{\mathbb{C}_{\mathrm{F}}}.$ (13) Let n be a non empty natural number and i, j be natural num-
- (13) Let *n* be a non empty natural number and *i*, *j* be natural numbers. Then $(\cos(\frac{2\cdot\pi\cdot i}{n}) + \sin(\frac{2\cdot\pi\cdot i}{n})i_{\mathbb{C}_{\mathrm{F}}}) \cdot (\cos(\frac{2\cdot\pi\cdot j}{n}) + \sin(\frac{2\cdot\pi\cdot j}{n})i_{\mathbb{C}_{\mathrm{F}}}) = \cos(\frac{2\cdot\pi\cdot((i+j)\bmod n)}{n}) + \sin(\frac{2\cdot\pi\cdot((i+j)\bmod n)}{n})i_{\mathbb{C}_{\mathrm{F}}}.$
- (14) Let L be a unital associative non empty groupoid, x be an element of L, and n, m be natural numbers. Then $power_L(x, n \cdot m) = power_L(power_L(x, n), m)$.
- (15) For every natural number n and for every element x of \mathbb{C}_{F} such that x is an integer holds $\mathrm{power}_{\mathbb{C}_{\mathrm{F}}}(x, n)$ is an integer.
- (16) Let F be a finite sequence of elements of \mathbb{C}_{F} . Suppose that for every natural number i such that $i \in \operatorname{dom} F$ holds F(i) is an integer. Then $\sum F$ is an integer.
- (17) For every real number a such that $0 \le a$ and $a < 2 \cdot \pi$ and $\cos a = 1$ holds a = 0.

Let us note that there exists a field which is finite and there exists a skew

field which is finite.

2. Multiplicative Group of a Skew Field

Let R be a skew field. The functor MultGroup(R) yields a strict group and is defined by the conditions (Def. 1).

- (Def. 1)(i) The carrier of MultGroup(R) = (the carrier of R) \ {0_R}, and
 - (ii) the multiplication of MultGroup(R) = (the multiplication of R) \models [the carrier of MultGroup(R), the carrier of MultGroup(R)].

Next we state three propositions:

- (18) For every skew field R holds the carrier of R = (the carrier of MultGroup(R)) $\cup \{0_R\}$.
- (19) Let R be a skew field, a, b be elements of R, and c, d be elements of MultGroup(R). If a = c and b = d, then $c \cdot d = a \cdot b$.
- (20) For every skew field R holds $\mathbf{1}_R = \mathbf{1}_{\text{MultGroup}(R)}$. Let R be a finite skew field. Observe that MultGroup(R) is finite. We now state three propositions:
- (21) For every finite skew field R holds $\operatorname{ord}(\operatorname{MultGroup}(R)) = \operatorname{card}(\operatorname{the carrier of } R) 1.$
- (22) For every skew field R and for every set s such that $s \in$ the carrier of MultGroup(R) holds $s \in$ the carrier of R.
- (23) For every skew field R holds the carrier of $MultGroup(R) \subseteq$ the carrier of R.

3. Roots of Unity

Let n be a non empty natural number. The functor n-roots_of_1 yielding a subset of \mathbb{C}_{F} is defined by:

(Def. 2) n-roots_of_1 = {x; x ranges over elements of \mathbb{C}_F : x is a complex root of $n, \mathbf{1}_{\mathbb{C}_F}$ }.

We now state several propositions:

- (24) Let *n* be a non empty natural number and *x* be an element of \mathbb{C}_{F} . Then $x \in n$ -roots_of_1 if and only if *x* is a complex root of *n*, $\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}$.
- (25) For every non empty natural number n holds $\mathbf{1}_{\mathbb{C}_{\mathrm{F}}} \in n$ -roots_of_1.
- (26) For every non empty natural number n and for every element x of \mathbb{C}_{F} such that $x \in n$ -roots_of_1 holds |x| = 1.
- (27) Let *n* be a non empty natural number and *x* be an element of \mathbb{C}_{F} . Then $x \in n$ -roots_of_1 if and only if there exists a natural number *k* such that $x = \cos(\frac{2\cdot\pi\cdot k}{n}) + \sin(\frac{2\cdot\pi\cdot k}{n})i_{\mathbb{C}_{\mathrm{F}}}.$

BRODERICK ARNESON AND PIOTR RUDNICKI

- (28) For every non empty natural number n and for all elements x, y of \mathbb{C} such that $x \in n$ -roots_of_1 and $y \in n$ -roots_of_1 holds $x \cdot y \in n$ -roots_of_1.
- (29) For every non empty natural number n holds n-roots_of_1 = $\{\cos(\frac{2 \cdot n \cdot k}{n}) + \sin(\frac{2 \cdot n \cdot k}{n})i_{\mathbb{C}_{\mathrm{F}}}; k \text{ ranges over natural numbers: } k < n\}.$
- (30) For every non empty natural number n holds $\overline{n \text{roots}_{0}} = n$.

Let n be a non empty natural number. One can check that n-roots_of_1 is non empty and n-roots_of_1 is finite.

Next we state several propositions:

- (31) For all non empty natural numbers n, n_1 such that $n_1 \mid n$ holds n_1 -roots_of_1 $\subseteq n$ -roots_of_1.
- (32) Let R be a skew field, x be an element of MultGroup(R), and y be an element of R. If y = x, then for every natural number k holds power_{MultGroup(R)}(x, k) = power_R(y, k).
- (33) For every non empty natural number n and for every element x of MultGroup(\mathbb{C}_{F}) such that $x \in n$ -roots_of_1 holds x is not of order 0.
- (34) Let *n* be a non empty natural number, *k* be a natural number, and *x* be an element of MultGroup(\mathbb{C}_{F}). If $x = \cos(\frac{2\cdot\pi\cdot k}{n}) + \sin(\frac{2\cdot\pi\cdot k}{n})i_{\mathbb{C}_{\mathrm{F}}}$, then $\operatorname{ord}(x) = n \div (k \operatorname{gcd} n)$.
- (35) For every non empty natural number n holds n-roots_of_1 \subseteq the carrier of MultGroup(\mathbb{C}_F).
- (36) For every non empty natural number n there exists an element x of MultGroup(\mathbb{C}_{F}) such that $\operatorname{ord}(x) = n$.
- (37) For every non empty natural number n and for every element x of MultGroup(\mathbb{C}_{F}) holds $\operatorname{ord}(x) \mid n$ iff $x \in n$ -roots_of_1.
- (38) For every non empty natural number n holds n-roots_of_1 = {x; x ranges over elements of MultGroup(\mathbb{C}_F): ord(x) | n}.
- (39) Let n be a non empty natural number and x be a set. Then $x \in n$ -roots_of_1 if and only if there exists an element y of MultGroup(\mathbb{C}_{F}) such that x = y and $\operatorname{ord}(y) \mid n$.

Let n be a non empty natural number. The functor n-th_roots_of_1 yielding a strict group is defined as follows:

(Def. 3) The carrier of n-th_roots_of_1 = n-roots_of_1 and the multiplication of n-th_roots_of_1 = (the multiplication of $\mathbb{C}_{\mathrm{F}})\upharpoonright [n$ -roots_of_1, n-roots_of_1].

One can prove the following proposition

(40) For every non empty natural number n holds n-th_roots_of_1 is a subgroup of MultGroup(\mathbb{C}_F).

62

4. The Unital Polynomial $x^n - 1$

Let n be a non empty natural number and let L be a left unital non empty double loop structure. The functor unital_poly(L, n) yields a polynomial of L and is defined as follows:

(Def. 4) unital_poly
$$(L, n) = \mathbf{0} \cdot L + (0, -\mathbf{1}_L) + (n, \mathbf{1}_L)$$
.

Next we state four propositions:

- (41) unital_poly($\mathbb{C}_{\mathrm{F}}, 1$) = $\langle -\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}, \mathbf{1}_{\mathbb{C}_{\mathrm{F}}} \rangle$.
- (42) Let L be a left unital non empty double loop structure and n be a non empty natural number. Then $(unital_poly(L, n))(0) = -\mathbf{1}_L$ and $(unital_poly(L, n))(n) = \mathbf{1}_L$.
- (43) Let L be a left unital non empty double loop structure, n be a non empty natural number, and i be a natural number. If $i \neq 0$ and $i \neq n$, then $(unital_poly(L, n))(i) = 0_L$.
- (44) Let L be a non degenerated left unital non empty double loop structure and n be a non empty natural number. Then len unital_poly(L, n) = n+1.

Let L be a non degenerated left unital non empty double loop structure and let n be a non empty natural number. Observe that $unital_poly(L, n)$ is non-zero.

The following propositions are true:

- (45) For every non empty natural number n and for every element x of \mathbb{C}_{F} holds eval(unital_poly($\mathbb{C}_{\mathrm{F}}, n$), x) = power_{\mathbb{C}_{F}}(x, n) 1.
- (46) For every non empty natural number n holds Roots unital_poly($\mathbb{C}_{\mathrm{F}}, n$) = n-roots_of_1.
- (47) Let n be a natural number and z be an element of \mathbb{C}_{F} . Suppose z is a real number. Then there exists a real number x such that x = z and $\mathrm{power}_{\mathbb{C}_{\mathrm{F}}}(z, n) = x^n$.
- (48) Let n be a non empty natural number and x be a real number. Then there exists an element y of \mathbb{C}_{F} such that y = x and eval(unital_poly($\mathbb{C}_{\mathrm{F}}, n$), y) = $x^n 1$.
- (49) For every non empty natural number n holds BRoots(unital_poly($\mathbb{C}_{\mathrm{F}}, n$)) = $(n \operatorname{-roots_of_1}, 1) \operatorname{-bag}$.
- (50) For every non empty natural number n holds unital_poly($\mathbb{C}_{\mathrm{F}}, n$) = poly_with_roots($(n \operatorname{-roots_of_-1}, 1)$ -bag).

Let i be an integer and let n be a natural number. Then i^n is an integer. The following proposition is true

(51) For every non empty natural number n and for every element i of \mathbb{C}_{F} such that i is an integer holds eval(unital_poly($\mathbb{C}_{\mathrm{F}}, n$), i) is an integer.

5. Cyclotomic Polynomials

Let d be a non empty natural number. The functor cyclotomic_poly(d) yields a polynomial of \mathbb{C}_{F} and is defined by:

(Def. 5) There exists a non empty finite subset s of \mathbb{C}_{F} such that $s = \{y; y \text{ ranges} over elements of MultGroup}(\mathbb{C}_{\mathrm{F}}): \operatorname{ord}(y) = d\}$ and cyclotomic_poly $(d) = \operatorname{poly_with_roots}((s, 1) \operatorname{-bag}).$

The following propositions are true:

- (52) cyclotomic_poly(1) = $\langle -\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}, \mathbf{1}_{\mathbb{C}_{\mathrm{F}}} \rangle$.
- (53) Let *n* be a non empty natural number and *f* be a finite sequence of elements of the carrier of Polynom-Ring(\mathbb{C}_{F}). Suppose len f = n and for every non empty natural number *i* such that $i \in \text{dom } f$ holds if $i \nmid n$, then $f(i) = \langle \mathbf{1}_{\mathbb{C}_{\mathrm{F}}} \rangle$ and if $i \mid n$, then f(i) = cyclotomic-poly(i). Then unital_poly($\mathbb{C}_{\mathrm{F}}, n$) = $\prod f$.
- (54) Let *n* be a non empty natural number. Then there exists a finite sequence *f* of elements of the carrier of Polynom-Ring(\mathbb{C}_{F}) and there exists a polynomial *p* of \mathbb{C}_{F} such that
 - (i) $p = \prod f$,
 - (ii) $\operatorname{dom} f = \operatorname{Seg} n$,
- (iii) for every non empty natural number i such that $i \in \text{Seg } n$ holds if $i \nmid n$ or i = n, then $f(i) = \langle \mathbf{1}_{\mathbb{C}_{\mathrm{F}}} \rangle$ and if $i \mid n$ and $i \neq n$, then f(i) = cyclotomic-poly(i), and
- (iv) unital_poly($\mathbb{C}_{\mathrm{F}}, n$) = cyclotomic_poly(n) * p.
- (55) For every non empty natural number d and for every natural number i holds (cyclotomic_poly(d))(0) = 1 or (cyclotomic_poly(d))(0) = -1 but (cyclotomic_poly(d))(i) is integer.
- (56) For every non empty natural number d and for every element z of \mathbb{C}_{F} such that z is an integer holds eval(cyclotomic_poly(d), z) is an integer.
- (57) Let n, n_1 be non empty natural numbers, f be a finite sequence of elements of the carrier of Polynom-Ring(\mathbb{C}_F), and s be a finite subset of \mathbb{C}_F . Suppose that
 - (i) $s = \{y; y \text{ ranges over elements of MultGroup}(\mathbb{C}_{\mathrm{F}}): \operatorname{ord}(y) \mid n \wedge \operatorname{ord}(y) \nmid n_1 \wedge \operatorname{ord}(y) \neq n\},\$
 - (ii) $\operatorname{dom} f = \operatorname{Seg} n$, and
- (iii) for every non empty natural number i such that $i \in \text{dom } f$ holds if $i \nmid n$ or $i \mid n_1$ or i = n, then $f(i) = \langle \mathbf{1}_{\mathbb{C}_F} \rangle$ and if $i \mid n$ and $i \nmid n_1$ and $i \neq n$, then $f(i) = \text{cyclotomic_poly}(i)$.

Then $\prod f = \text{poly_with_roots}((s, 1) \text{-bag}).$

(58) Let n, n_1 be non empty natural numbers. Suppose $n_1 < n$ and $n_1 \mid n$. Then there exists a finite sequence f of elements of the carrier of Polynom-Ring(\mathbb{C}_F) and there exists a polynomial p of \mathbb{C}_F such that

- (i) $p = \prod f$,
- (ii) $\operatorname{dom} f = \operatorname{Seg} n$,
- (iii) for every non empty natural number i such that $i \in \text{Seg } n$ holds if $i \nmid n$ or $i \mid n_1$ or i = n, then $f(i) = \langle \mathbf{1}_{\mathbb{C}_F} \rangle$ and if $i \mid n$ and $i \nmid n_1$ and $i \neq n$, then $f(i) = \text{cyclotomic_poly}(i)$, and
- (iv) unital_poly($\mathbb{C}_{\mathrm{F}}, n$) = unital_poly($\mathbb{C}_{\mathrm{F}}, n_1$) * cyclotomic_poly(n) * p.
- (59) Let *i* be an integer, *c* be an element of \mathbb{C}_{F} , *f* be a finite sequence of elements of the carrier of Polynom-Ring(\mathbb{C}_{F}), and *p* be a polynomial of \mathbb{C}_{F} . Suppose $p = \prod f$ and c = i and for every non empty natural number *i* such that $i \in \mathrm{dom} f$ holds $f(i) = \langle \mathbf{1}_{\mathbb{C}_{\mathrm{F}}} \rangle$ or $f(i) = \mathrm{cyclotomic_poly}(i)$. Then $\mathrm{eval}(p, c)$ is integer.
- (60) Let n be a non empty natural number, j, k, q be integers, and q_1 be an element of \mathbb{C}_{F} . If $q_1 = q$ and $j = \operatorname{eval}(\operatorname{cyclotomic_poly}(n), q_1)$ and $k = \operatorname{eval}(\operatorname{unital_poly}(\mathbb{C}_{\mathrm{F}}, n), q_1)$, then $j \mid k$.
- (61) Let n, n_1 be non empty natural numbers and q be an integer. Suppose $n_1 < n$ and $n_1 \mid n$. Let q_1 be an element of c_1 . Suppose $q_1 = q$. Let j, k, l be integers. If $j = \text{eval}(\text{cyclotomic_poly}(n), q_1)$ and $k = \text{eval}(\text{unital_poly}(\mathbb{C}_{\mathrm{F}}, n), q_1)$ and $l = \text{eval}(\text{unital_poly}(\mathbb{C}_{\mathrm{F}}, n_1), q_1)$, then $j \mid k \div l$, where $c_1 = \text{the carrier of } \mathbb{C}_{\mathrm{F}}$.
- (62) Let n, q be non empty natural numbers and q_1 be an element of \mathbb{C}_F . If $q_1 = q$, then for every integer j such that $j = \text{eval}(\text{cyclotomic_poly}(n), q_1)$ holds $j \mid q^n 1$.
- (63) Let n, n_1, q be non empty natural numbers. Suppose $n_1 < n$ and $n_1 | n$. Let q_1 be an element of \mathbb{C}_{F} . If $q_1 = q$, then for every integer j such that $j = \operatorname{eval}(\operatorname{cyclotomic_poly}(n), q_1)$ holds $j | (q^n - 1) \div (q^{n_1} - 1)$.
- (64) Let n be a non empty natural number. Suppose 1 < n. Let q be a natural number. Suppose 1 < q. Let q_1 be an element of \mathbb{C}_{F} . If $q_1 = q$, then for every integer i such that $i = \operatorname{eval}(\operatorname{cyclotomic_poly}(n), q_1)$ holds |i| > q 1.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [6] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

- [11] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [15] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841–845, 1990.
- [16] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829–832, 1990.
- [18] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265–269, 2001.
- [19] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. *Formalized Mathematics*, 9(2):363–371, 2001.
- [20] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391–395, 2001.
- [21] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461–470, 2001.
- [22] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339–346, 2001.
- [23] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9(3):455–460, 2001.
- [24] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [25] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. *Formalized Mathematics*, 2(1):97–104, 1991.
- [26] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [27] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [28] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125– 130, 1991.
- [29] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1):49–58, 2004.
- [30] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95–110, 2001.
- [31] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
- [32] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [33] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [34] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [35] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [36] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [37] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [38] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581–588, 1990.
- [39] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
 [40] Wainiach A. Trybulec. Subgroup and coasts of subgroups. Formalized Mathematics
- [40] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855–864, 1990.
- [41] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [42] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [43] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [44] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

[45] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205–211, 1992.

Received December 30, 2003