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Summary. In RSA Cryptograms, many modulo calculations are used, but
modulo calculation is based on many subtractions and it takes long a time to

calculate it. In this article, we explain a new modulo calculation algorithm using

a table. And we prove that upper 3 digits of Radix-2k SD numbers are enough

to specify the answer.

In the first section, we present some useful theorems for operations of Radix-

2
k SD Number. In the second section, we define Upper 3 Digits of Radix-2k SD

number and prove that property. In the third section, we prove some property

connected with the minimum digits of Radix-2k SD number. In the fourth section,

we identify the range of modulo arithmetic result and prove that the Upper 3

Digits indicate two possible answers. And in the last section, we define a function

to select true answer from the results of Upper 3 Digits.

MML Identifier: RADIX 6.

The articles [8], [10], [9], [1], [7], [4], [2], [3], [11], [5], and [6] provide the termi-

nology and notation for this paper.

1. Some Useful Theorems

The following two propositions are true:

(1) Let n be a natural number. Suppose n  1. Let m, k be natu-

ral numbers. If m  1 and k  2, then SDDecFmin(m + n,m, k) =

SDDecFmin(m,m, k).

(2) For all natural numbers m, k such that m  1 and k  2 holds

SDDecFmin(m,m, k) > 0.
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2. Definitions of Upper 3 Digits of Radix-2k SD Number and Its

Property

Let i, m, k be natural numbers and let r be a m + 2-tuple of k−SD. Let us

assume that i ∈ Seg(m + 2). The functor M0Digit(r, i) yielding an element of

k−SD is defined as follows:

(Def. 1) M0Digit(r, i) =

{

r(i), if i  m,

0, if i < m.

Let m, k be natural numbers and let r be a m + 2-tuple of k−SD. The

functor M0(r) yielding a m + 2-tuple of k−SD is defined as follows:

(Def. 2) For every natural number i such that i ∈ Seg(m + 2) holds

DigA(M0(r), i) = M0Digit(r, i).

Let i, m, k be natural numbers and let r be a m + 2-tuple of k−SD. Let us

assume that k  2 and i ∈ Seg(m+2). The functor MmaxDigit(r, i) yielding an

element of k−SD is defined as follows:

(Def. 3) MmaxDigit(r, i) =

{

r(i), if i  m,

Radix k − 1, if i < m.

Let m, k be natural numbers and let r be a m + 2-tuple of k−SD. The

functor Mmax(r) yields a m + 2-tuple of k−SD and is defined as follows:

(Def. 4) For every natural number i such that i ∈ Seg(m + 2) holds

DigA(Mmax(r), i) = MmaxDigit(r, i).

Let i, m, k be natural numbers and let r be a m + 2-tuple of k−SD. Let us

assume that k  2 and i ∈ Seg(m + 2). The functor MminDigit(r, i) yields an

element of k−SD and is defined by:

(Def. 5) MminDigit(r, i) =

{

r(i), if i  m,

−Radix k + 1, if i < m.

Let m, k be natural numbers and let r be a m + 2-tuple of k−SD. The

functor Mmin(r) yielding a m + 2-tuple of k−SD is defined by:

(Def. 6) For every natural number i such that i ∈ Seg(m + 2) holds

DigA(Mmin(r), i) = MminDigit(r, i).

One can prove the following two propositions:

(3) For all natural numbers m, k such that m  1 and k  2 and for every

m + 2-tuple r of k−SD holds SDDecMmax(r)  SDDec r.

(4) For all natural numbers m, k such that m  1 and k  2 and for every

m + 2-tuple r of k−SD holds SDDec r  SDDecMmin(r).

3. Properties of Minimum Digits of Radix-2k SD Number

Let n, k be natural numbers and let x be an integer. We say that x needs

digits of n, k if and only if:
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(Def. 7) x < (Radix k)n and x  (Radix k)n−
′
1.

One can prove the following three propositions:

(5) For all natural numbers x, n, k, i such that i ∈ Segn holds

DigA(DecSD(x, n, k), i)  0.

(6) For all natural numbers n, k, x such that n  1 and k  2 and x needs

digits of n, k holds DigA(DecSD(x, n, k), n) > 0.

(7) For all natural numbers f , m, k such that m  1 and k  2 and f needs

digits of m, k holds f  SDDecFmin(m + 2, m, k).

4. Modulo Calculation Algorithm Using Upper 3 Digits of

Radix-2k SD Number

Next we state several propositions:

(8) For all integers m1, m2, f such that m2 < m1 +f and f > 0 there exists

an integer s such that −f < m1 − s · f and m2 − s · f < f.

(9) Let m, k be natural numbers. Suppose m  1 and k  2. Let r be a

m+2-tuple of k−SD. Then SDDecMmax(r)+SDDecDecSD(0,m+2, k) =

SDDecM0(r) + SDDec SDMax(m + 2, m, k).

(10) For all natural numbers m, k such that m  1 and k  2 and for

every m + 2-tuple r of k−SD holds SDDecMmax(r) < SDDecM0(r) +

SDDecFmin(m + 2,m, k).

(11) Let m, k be natural numbers. Suppose m  1 and k  2. Let r be a

m+2-tuple of k−SD. Then SDDecMmin(r)+SDDecDecSD(0,m+2, k) =

SDDecM0(r) + SDDec SDMin(m + 2, m, k).

(12) Let m, k be natural numbers and r be a m + 2-tuple of k−SD. If

m  1 and k  2, then SDDecM0(r) + SDDecDecSD(0,m + 2, k) =

SDDecMmin(r) + SDDec SDMax(m + 2,m, k).

(13) For all natural numbers m, k such that m  1 and k  2 and for

every m + 2-tuple r of k−SD holds SDDecM0(r) < SDDecMmin(r) +

SDDecFmin(m + 2,m, k).

(14) Letm, k, f be natural numbers and r be am+2-tuple of k−SD. Suppose

m  1 and k  2 and f needs digits of m, k. Then there exists an integer

s such that −f < SDDecM0(r)− s · f and SDDecMmax(r)− s · f < f.

(15) Letm, k, f be natural numbers and r be am+2-tuple of k−SD. Suppose

m  1 and k  2 and f needs digits of m, k. Then there exists an integer

s such that −f < SDDecMmin(r)− s · f and SDDecM0(r)− s · f < f.

(16) Let m, k be natural numbers and r be a m+2-tuple of k−SD. If m  1

and k  2, then SDDecM0(r) ¬ SDDec r and SDDec r ¬ SDDecMmax(r)

or SDDecMmin(r) ¬ SDDec r and SDDec r < SDDecM0(r).
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5. How to Identify the Range of Modulo Arithmetic Result

Let i, m, k be natural numbers and let r be a m + 2-tuple of k−SD. Let us

assume that i ∈ Seg(m + 2). The functor MmaskDigit(r, i) yielding an element

of k−SD is defined by:

(Def. 8) MmaskDigit(r, i) =

{

r(i), if i < m,

0, if i  m.

Let m, k be natural numbers and let r be a m + 2-tuple of k−SD. The

functor Mmask(r) yields a m + 2-tuple of k−SD and is defined by:

(Def. 9) For every natural number i such that i ∈ Seg(m + 2) holds

DigA(Mmask(r), i) = MmaskDigit(r, i).

One can prove the following two propositions:

(17) For all natural numbers m, k and for every m + 2-tuple r of k−SD

such that m  1 and k  2 holds SDDecM0(r) + SDDecMmask(r) =

SDDec r + SDDecDecSD(0,m + 2, k).

(18) For all natural numbers m, k and for every m + 2-tuple r of k−SD such

that m  1 and k  2 holds if SDDecMmask(r) > 0, then SDDec r >

SDDecM0(r).

Let i, m, k be natural numbers. Let us assume that k  2. The functor

FSDMinDigit(m, k, i) yields an element of k−SD and is defined as follows:

(Def. 10) FSDMinDigit(m, k, i) =







0, if i > m,

1, if i = m,

−Radix k + 1, otherwise.

Let n, m, k be natural numbers. The functor FSDMin(n,m, k) yields a n-

tuple of k−SD and is defined as follows:

(Def. 11) For every natural number i such that i ∈ Segn holds

DigA(FSDMin(n,m, k), i) = FSDMinDigit(m, k, i).

One can prove the following proposition

(19) For every natural number n such that n  1 and for all natural numbers

m, k such that m ∈ Seg n and k  2 holds SDDecFSDMin(n,m, k) = 1.

Let n, m, k be natural numbers and let r be a m + 2-tuple of k−SD. We

say that r is zero over n if and only if:

(Def. 12) For every natural number i such that i > n holds DigA(r, i) = 0.

We now state the proposition

(20) Letm be a natural number. Supposem  1. Let n, k be natural numbers

and r be am+2-tuple of k−SD. If k  2 and n ∈ Seg(m+2) and Mmask(r)

is zero over n and DigA(Mmask(r), n) > 0, then SDDecMmask(r) > 0.
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