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Summary. Non overwriting program is a program where each variable
used in it is written only just one time, but the control variables used for

“for-statement” are exceptional. Contrarily, variables are allowed to be read

many times. There are other restrictions for the non overwriting program. For

statements, only the following are allowed: “substituting-statement”, “if-else-

statement”, “for-statement” (with break and without break), function (correct

one) – “call-statement” and “return-statement”. Grammar of non overwriting

program is like the one of the C-language. For type of variables, “int”, “real”,

“char” and “float” can be used, and array of them can also be used. For ope-

ration, “+”, “−” and “*” are used for a type “int”; “+”, “−”, “*” and “/” are

used for a type “float”. User can also define structures like in C. Non overwriting

program can be translated to (predicative) logic formula in definition part to

define functions. If a new function is correctly defined, a corresponding program

is correct, if it does not use arrays. If it uses arrays, area check is necessary in

the following theorem.

Semantic correctness is shown by some theorems following the definition.

These theorems must tie up the result of the program and mathematical con-

cepts introduced before. Correctness is proven function-wise. We must use only

correctness-proven functions to define a new function (to write a new program

as a form of a function). Here, we present two programs of division function of

two natural numbers and of two integers. An algorithm is checked for each case

by proving correctness of the definitions. We also perform an area check of the

index of arrays used in one of the programs.

MML Identifier: PRGCOR 1.

The articles [6], [3], [2], [7], [5], [8], [1], and [4] provide the terminology and

notation for this paper.

One can prove the following propositions:
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(1) For all natural numbers n, m, k holds (n + k)−′ (m + k) = n−′ m.

(2) For all natural numbers n, k such that k > 0 and nmod 2 · k ­ k holds

(nmod 2 · k)− k = nmod k and (nmod k) + k = nmod 2 · k.

(3) For all natural numbers n, k such that k > 0 and nmod 2 · k ­ k holds

n÷ k = (n÷ 2 · k) · 2 + 1.

(4) For all natural numbers n, k such that k > 0 and nmod 2 · k < k holds

nmod 2 · k = nmod k.

(5) For all natural numbers n, k such that k > 0 and nmod 2 · k < k holds

n÷ k = (n÷ 2 · k) · 2.

Let C be a set, let f be a partial function from C to Z, and let x be a set.

One can verify that f(x) is integer.

Next we state two propositions:

(6) Let m, n be natural numbers. Suppose m > 0. Then there exists a

natural number i such that for every natural number k2 such that k2 < i

holds m · 2k2 ¬ n and m · 2i > n.

(7) For every integer i and for every finite sequence f such that 1 ¬ i and

i ¬ len f holds i ∈ dom f.

Let n, m be integers. Let us assume that n ­ 0 and m > 0. The functor

Idiv1Prg(n,m) yields an integer and is defined by the condition (Def. 1).

(Def. 1) There exist finite sequences s1, s2, p1 of elements of Z such that

(i) len s1 = n + 1,

(ii) len s2 = n + 1,

(iii) len p1 = n + 1,

(iv) if n < m, then Idiv1Prg(n,m) = 0, and

(v) if n 6< m, then s1(1) = m and there exists an integer i such that

1 ¬ i and i ¬ n and for every integer k such that 1 ¬ k and k < i holds

s1(k + 1) = s1(k) · 2 and s1(k + 1) 6> n and s1(i + 1) = s1(i) · 2 and

s1(i + 1) > n and p1(i + 1) = 0 and s2(i + 1) = n and for every integer j

such that 1 ¬ j and j ¬ i holds if s2((i+1)−(j−1)) ­ s1((i+1)−j), then

s2((i+1)− j) = s2((i+1)− (j− 1))− s1((i+1)− j) and p1((i+1)− j) =

p1((i+1)− (j−1)) ·2+1 and if s2((i+1)− (j−1)) 6­ s1((i+1)− j), then

s2((i+1)−j) = s2((i+1)−(j−1)) and p1((i+1)−j) = p1((i+1)−(j−1))·2

and Idiv1Prg(n,m) = p1(1).

Next we state four propositions:

(8) Let n, m be integers. Suppose n ­ 0 and m > 0. Let s1, s2, p1 be finite

sequences of elements of Z and i be an integer. Suppose that

(i) len s1 = n + 1,

(ii) len s2 = n + 1,

(iii) len p1 = n + 1, and
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(iv) if n 6< m, then s1(1) = m and 1 ¬ i and i ¬ n and for every integer k

such that 1 ¬ k and k < i holds s1(k+1) = s1(k) ·2 and s1(k+1) 6> n and

s1(i+1) = s1(i)·2 and s1(i+1) > n and p1(i+1) = 0 and s2(i+1) = n and

for every integer j such that 1 ¬ j and j ¬ i holds if s2((i+1)− (j−1)) ­

s1((i + 1)− j), then s2((i + 1)− j) = s2((i + 1)− (j − 1))− s1((i + 1)− j)

and p1((i + 1) − j) = p1((i + 1) − (j − 1)) · 2 + 1 and if s2((i + 1) − (j −

1)) 6­ s1((i + 1) − j), then s2((i + 1) − j) = s2((i + 1) − (j − 1)) and

p1((i + 1)− j) = p1((i + 1)− (j − 1)) · 2 and Idiv1Prg(n,m) = p1(1).

Then

(v) len s1 = n + 1,

(vi) len s2 = n + 1,

(vii) len p1 = n + 1,

(viii) if n < m, then Idiv1Prg(n,m) = 0, and

(ix) if n 6< m, then 1 ∈ dom s1 and s1(1) = m and 1 ¬ i and i ¬ n and

for every integer k such that 1 ¬ k and k < i holds k + 1 ∈ dom s1 and

k ∈ dom s1 and s1(k+1) = s1(k)·2 and s1(k+1) 6> n and i+1 ∈ dom s1 and

i ∈ dom s1 and s1(i + 1) = s1(i) · 2 and s1(i + 1) > n and i + 1 ∈ dom p1

and p1(i + 1) = 0 and i + 1 ∈ dom s2 and s2(i + 1) = n and for every

integer j such that 1 ¬ j and j ¬ i holds (i + 1) − (j − 1) ∈ dom s2 and

(i + 1) − j ∈ dom s1 and if s2((i + 1) − (j − 1)) ­ s1((i + 1) − j), then

(i+1)−j ∈ dom s2 and (i+1)−j ∈ dom s1 and s2((i+1)−j) = s2((i+1)−

(j−1))−s1((i+1)−j) and (i+1)−j ∈ dom p1 and (i+1)−(j−1) ∈ dom p1

and p1((i+1)−j) = p1((i+1)− (j−1)) ·2+1 and if s2((i+1)− (j−1)) 6­

s1((i + 1) − j), then (i + 1) − j ∈ dom s2 and (i + 1) − (j − 1) ∈ dom s2

and s2((i + 1) − j) = s2((i + 1) − (j − 1)) and (i + 1) − j ∈ dom p1 and

(i + 1)− (j− 1) ∈ dom p1 and p1((i + 1)− j) = p1((i + 1)− (j− 1)) · 2 and

1 ∈ dom p1 and Idiv1Prg(n,m) = p1(1).

(9) For all natural numbers n, m such that m > 0 holds Idiv1Prg((n qua

integer), (m qua integer)) = n÷m.

(10) For all integers n, m such that n ­ 0 and m > 0 holds Idiv1Prg(n,m) =

n÷m.

(11) Let n, m be integers and n2, m2 be natural numbers. Then

(i) if m = 0 and n2 = n and m2 = m, then n÷m = 0 and n2 ÷m2 = 0,

(ii) if n ­ 0 and m > 0 and n2 = n and m2 = m, then n÷m = n2 ÷m2,

(iii) if n ­ 0 and m < 0 and n2 = n and m2 = −m, then if m2 · (n2 ÷

m2) = n2, then n ÷ m = −(n2 ÷m2) and if m2 · (n2 ÷ m2) 6= n2, then

n÷m = −(n2 ÷m2)− 1,

(iv) if n < 0 and m > 0 and n2 = −n and m2 = m, then if m2 · (n2 ÷

m2) = n2, then n ÷ m = −(n2 ÷m2) and if m2 · (n2 ÷ m2) 6= n2, then

n÷m = −(n2 ÷m2)− 1, and

(v) if n < 0 and m < 0 and n2 = −n and m2 = −m, then n÷m = n2÷m2.
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Let n, m be integers. The functor IdivPrg(n,m) yields an integer and is

defined by the condition (Def. 2).

(Def. 2) There exists an integer i such that

(i) if m = 0, then IdivPrg(n,m) = 0, and

(ii) ifm 6= 0, then if n ­ 0 andm > 0, then IdivPrg(n,m) = Idiv1Prg(n,m)

and if n 6­ 0 or m 6> 0, then if n ­ 0 and m < 0, then i = Idiv1Prg(n,−m)

and if (−m) · i = n, then IdivPrg(n,m) = −i and if (−m) · i 6= n, then

IdivPrg(n,m) = −i− 1 and if n 6­ 0 or m 6< 0, then if n < 0 and m > 0,

then i = Idiv1Prg(−n,m) and if m · i = −n, then IdivPrg(n,m) = −i and

if m · i 6= −n, then IdivPrg(n,m) = −i − 1 and if n 6< 0 or m 6> 0, then

IdivPrg(n,m) = Idiv1Prg(−n,−m).

The following proposition is true

(12) For all integers n, m holds IdivPrg(n,m) = n÷m.
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