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Summary. Two kinds of sorting operators, descendent one and ascendent
one are introduced for finite sequences of reals. They are also called rearrange-
ment of finite sequences of reals. Maximum and minimum values of finite sequ-
ences of reals are also defined. We also discuss relations between these concepts.

MML Identifier: RFINSEQ2.

The articles [13], [12], [15], [4], [5], [2], [1], [9], [14], [10], [6], [7], [3], [11], and [8]
provide the notation and terminology for this paper.

Let f be a finite sequence of elements of R. The functor maxp f yielding a
natural number is defined by the conditions (Def. 1).

(Def. 1)(i) If len f = 0, then maxp f = 0, and
(ii) if len f > 0, then maxp f ∈ dom f and for every natural number i

and for all real numbers r1, r2 such that i ∈ dom f and r1 = f(i) and
r2 = f(maxp f) holds r1 ¬ r2 and for every natural number j such that
j ∈ dom f and f(j) = f(maxp f) holds maxp f ¬ j.

Let f be a finite sequence of elements of R. The functor minp f yields a
natural number and is defined by the conditions (Def. 2).

(Def. 2)(i) If len f = 0, then minp f = 0, and
(ii) if len f > 0, then minp f ∈ dom f and for every natural number i

and for all real numbers r1, r2 such that i ∈ dom f and r1 = f(i) and
r2 = f(minp f) holds r1 ­ r2 and for every natural number j such that
j ∈ dom f and f(j) = f(minp f) holds minp f ¬ j.

Let f be a finite sequence of elements of R. The functor max f yields a real
number and is defined by:

(Def. 3) max f = f(maxp f).
The functor min f yields a real number and is defined by:
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(Def. 4) min f = f(minp f).

The following propositions are true:

(1) Let f be a finite sequence of elements of R and i be a natural number.
If 1 ¬ i and i ¬ len f, then f(i) ¬ f(maxp f) and f(i) ¬ max f.

(2) Let f be a finite sequence of elements of R and i be a natural number.
If 1 ¬ i and i ¬ len f, then f(i) ­ f(minp f) and f(i) ­ min f.

(3) For every finite sequence f of elements of R and for every real number
r such that f = 〈r〉 holds maxp f = 1 and max f = r.

(4) For every finite sequence f of elements of R and for every real number
r such that f = 〈r〉 holds minp f = 1 and min f = r.

(5) Let f be a finite sequence of elements of R and r1, r2 be real numbers. If
f = 〈r1, r2〉, then max f = max(r1, r2) and maxp f = (r1 = max(r1, r2)→
1, 2).

(6) Let f be a finite sequence of elements of R and r1, r2 be real numbers. If
f = 〈r1, r2〉, then min f = min(r1, r2) and minp f = (r1 = min(r1, r2) →
1, 2).

(7) For all finite sequences f1, f2 of elements of R such that len f1 = len f2

and len f1 > 0 holds max(f1 + f2) ¬ max f1 + max f2.

(8) For all finite sequences f1, f2 of elements of R such that len f1 = len f2

and len f1 > 0 holds min(f1 + f2) ­ min f1 + min f2.

(9) Let f be a finite sequence of elements of R and a be a real number. If
len f > 0 and a > 0, then max(a ·f) = a ·max f and maxp(a ·f) = maxp f.

(10) Let f be a finite sequence of elements of R and a be a real number. If
len f > 0 and a > 0, then min(a · f) = a ·min f and minp(a · f) = minp f.

(11) For every finite sequence f of elements of R such that len f > 0 holds
max(−f) = −min f and maxp(−f) = minp f.

(12) For every finite sequence f of elements of R such that len f > 0 holds
min(−f) = −max f and minp(−f) = maxp f.

(13) Let f be a finite sequence of elements of R and n be a natural number.
If 1 ¬ n and n < len f, then max(fºn) ¬ max f and min(fºn) ­ min f.

(14) For all finite sequences f , g of elements of R such that f and g are
fiberwise equipotent holds max f = max g.

(15) For all finite sequences f , g of elements of R such that f and g are
fiberwise equipotent holds min f = min g.

Let f be a finite sequence of elements of R. The functor sortd f yields a
non-increasing finite sequence of elements of R and is defined by:

(Def. 5) f and sortd f are fiberwise equipotent.

Next we state four propositions:
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(16) For every finite sequence R of elements of R such that len R = 0 or
len R = 1 holds R is non-decreasing.

(17) Let R be a finite sequence of elements of R. Then R is non-decreasing
if and only if for all natural numbers n, m such that n ∈ dom R and
m ∈ dom R and n < m holds R(n) ¬ R(m).

(18) Let R be a non-decreasing finite sequence of elements of R and n be a
natural number. Then R¹n is a non-decreasing finite sequence of elements
of R.

(19) Let R1, R2 be non-decreasing finite sequences of elements of R. If R1

and R2 are fiberwise equipotent, then R1 = R2.

Let f be a finite sequence of elements of R. The functor sorta f yields a
non-decreasing finite sequence of elements of R and is defined as follows:

(Def. 6) f and sorta f are fiberwise equipotent.

Next we state a number of propositions:

(20) For every non-increasing finite sequence f of elements of R holds
sortd f = f.

(21) For every non-decreasing finite sequence f of elements of R holds
sorta f = f.

(22) For every finite sequence f of elements of R holds sortd sortd f = sortd f.

(23) For every finite sequence f of elements of R holds sorta sorta f = sorta f.

(24) For every finite sequence f of elements of R such that f is non-increasing
holds −f is non-decreasing.

(25) For every finite sequence f of elements of R such that f is non-decreasing
holds −f is non-increasing.

(26) Let f , g be finite sequences of elements of R and P be a permutation of
dom g. If f = g · P and len g ­ 1, then −f = (−g) · P.

(27) Let f , g be finite sequences of elements of R. Suppose f and g are
fiberwise equipotent. Then −f and −g are fiberwise equipotent.

(28) For every finite sequence f of elements of R holds sortd(−f) = −sorta f.

(29) For every finite sequence f of elements of R holds sorta(−f) = −sortd f.

(30) For every finite sequence f of elements of R holds dom sortd f = dom f

and len sortd f = len f.

(31) For every finite sequence f of elements of R holds dom sorta f = dom f

and len sorta f = len f.

(32) For every finite sequence f of elements of R such that len f ­ 1 holds
maxp sortd f = 1 and minp sorta f = 1 and (sortd f)(1) = max f and
(sorta f)(1) = min f.
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Summary. In this article, magnitude relation properties of Radix-2k SD
number are discussed. Until now, the Radix-2k SD Number has been proposed
for the high-speed calculations for RSA Cryptograms. In RSA Cryptograms,
many modulo calculations are used, and modulo calculations need a comparison
between two numbers.

In this article, we discuss magnitude relation of Radix-2k SD Number. In
the first section, we present some useful theorems for operations of Radix-2k

SD Number. In the second section, we prove some properties of the primary
numbers expressed by Radix-2k SD Number such as 0, 1, and Radix(k). In the
third section, we prove primary magnitude relations between two Radix-2k SD
Numbers. In the fourth section, we define Max/Min numbers in some cases. And
in the last section, we prove some relations between the addition of Max/Min
numbers.

MML Identifier: RADIX 5.

The terminology and notation used here are introduced in the following articles:
[7], [8], [1], [6], [4], [2], [3], and [5].

1. Some Useful Theorems

The following propositions are true:

(1) For every natural number k such that k ­ 2 holds Radix k−1 ∈ k−SD .

(2) For all natural numbers i, n such that i > 1 and i ∈ Seg n holds i−′ 1 ∈
Seg n.

(3) For every natural number k such that 2 ¬ k holds 4 ¬ Radix k.
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(4) For every natural number k and for every 1-tuple t1 of k−SD holds
SDDec t1 = DigA(t1, 1).

2. Properties of Primary Radix-2k SD Number

Next we state several propositions:

(5) For all natural numbers i, k, n such that i ∈ Seg n holds
DigA(DecSD(0, n, k), i) = 0.

(6) For all natural numbers n, k such that n ­ 1 holds
SDDec DecSD(0, n, k) = 0.

(7) For all natural numbers k, n such that 1 ∈ Seg n and k ­ 2 holds
DigA(DecSD(1, n, k), 1) = 1.

(8) For all natural numbers i, k, n such that i ∈ Seg n and i > 1 and k ­ 2
holds DigA(DecSD(1, n, k), i) = 0.

(9) For all natural numbers n, k such that n ­ 1 and k ­ 2 holds
SDDec DecSD(1, n, k) = 1.

(10) For every natural number k such that k ­ 2 holds
SD Add Carry Radix k = 1.

(11) For every natural number k such that k ­ 2 holds
SD Add Data(Radix k, k) = 0.

3. Primary Magnitude Relation of Radix-2k SD Number

Next we state four propositions:

(12) Let n be a natural number. Suppose n ­ 1. Let k be a natural number
and t1, t2 be n-tuples of k−SD. If for every natural number i such that
i ∈ Seg n holds DigA(t1, i) = DigA(t2, i), then SDDec t1 = SDDec t2.

(13) Let n be a natural number. Suppose n ­ 1. Let k be a natural number
and t1, t2 be n-tuples of k−SD. If for every natural number i such that
i ∈ Seg n holds DigA(t1, i) ­ DigA(t2, i), then SDDec t1 ­ SDDec t2.

(14) Let n be a natural number. Suppose n ­ 1. Let k be a natural num-
ber. Suppose k ­ 2. Let t1, t2, t3, t4 be n-tuples of k−SD. Suppose
that for every natural number i such that i ∈ Seg n holds DigA(t1, i) =
DigA(t3, i) and DigA(t2, i) = DigA(t4, i) or DigA(t2, i) = DigA(t3, i)
and DigA(t1, i) = DigA(t4, i). Then SDDec t3 + SDDec t4 = SDDec t1 +
SDDec t2.

(15) Let n, k be natural numbers. Suppose n ­ 1 and k ­ 2. Let t1, t2, t3 be
n-tuples of k−SD. Suppose that for every natural number i such that i ∈
Seg n holds DigA(t1, i) = DigA(t3, i) and DigA(t2, i) = 0 or DigA(t2, i) =
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DigA(t3, i) and DigA(t1, i) = 0. Then SDDec t3 + SDDec DecSD(0, n, k) =
SDDec t1 + SDDec t2.

4. Definition of Max/Min Radix-2k SD Numbers in Some Digits

Let i, m, k be natural numbers. Let us assume that k ­ 2. The functor
SDMinDigit(m, k, i) yielding an element of k−SD is defined as follows:

(Def. 1) SDMinDigit(m, k, i) =
{ −Radix k + 1, if 1 ¬ i and i < m,

0, otherwise.

Let n, m, k be natural numbers. The functor SDMin(n,m, k) yields a n-tuple
of k−SD and is defined by:

(Def. 2) For every natural number i such that i ∈ Seg n holds
DigA(SDMin(n,m, k), i) = SDMinDigit(m, k, i).

Let i, m, k be natural numbers. Let us assume that k ­ 2. The functor
SDMaxDigit(m, k, i) yielding an element of k−SD is defined as follows:

(Def. 3) SDMaxDigit(m, k, i) =
{

Radix k − 1, if 1 ¬ i and i < m,

0, otherwise.

Let n, m, k be natural numbers. The functor SDMax(n,m, k) yields a n-tuple
of k−SD and is defined by:

(Def. 4) For every natural number i such that i ∈ Seg n holds
DigA(SDMax(n,m, k), i) = SDMaxDigit(m, k, i).

Let i, m, k be natural numbers. Let us assume that k ­ 2. The functor
FminDigit(m, k, i) yielding an element of k−SD is defined by:

(Def. 5) FminDigit(m, k, i) =
{

1, if i = m,

0, otherwise.

Let n, m, k be natural numbers. The functor Fmin(n,m, k) yields a n-tuple
of k−SD and is defined as follows:

(Def. 6) For every natural number i such that i ∈ Seg n holds
DigA(Fmin(n,m, k), i) = FminDigit(m, k, i).

Let i, m, k be natural numbers. Let us assume that k ­ 2. The functor
FmaxDigit(m, k, i) yielding an element of k−SD is defined as follows:

(Def. 7) FmaxDigit(m, k, i) =
{

Radix k − 1, if i = m,

0, otherwise.

Let n, m, k be natural numbers. The functor Fmax(n,m, k) yielding a n-
tuple of k−SD is defined as follows:

(Def. 8) For every natural number i such that i ∈ Seg n holds
DigA(Fmax(n,m, k), i) = FmaxDigit(m, k, i).
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5. Properties of Max/Min Radix-2k SD Numbers

Next we state four propositions:

(16) Let n, m, k be natural numbers. Suppose n ­ 1 and k ­ 2 and m ∈ Seg n.

Let i be a natural number. If i ∈ Seg n, then DigA(SDMax(n, m, k), i) +
DigA(SDMin(n,m, k), i) = 0.

(17) Let n be a natural number. Suppose n ­ 1. Let m, k be natu-
ral numbers. If m ∈ Seg n and k ­ 2, then SDDec SDMax(n,m, k) +
SDDec SDMin(n,m, k) = SDDec DecSD(0, n, k).

(18) Let n be a natural number. Suppose n ­ 1. Let m, k be natu-
ral numbers. If m ∈ Seg n and k ­ 2, then SDDec Fmin(n,m, k) =
SDDec SDMax(n,m, k) + SDDec DecSD(1, n, k).

(19) For all natural numbers n, m, k such that m ∈ Seg n and k ­ 2 holds
SDDec Fmin(n+1,m+1, k) = SDDec Fmin(n+1,m, k)+SDDec Fmax(n+
1,m, k).
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Summary. In RSA Cryptograms, many modulo calculations are used, but
modulo calculation is based on many subtractions and it takes long a time to
calculate it. In this article, we explain a new modulo calculation algorithm using
a table. And we prove that upper 3 digits of Radix-2k SD numbers are enough
to specify the answer.

In the first section, we present some useful theorems for operations of Radix-
2k SD Number. In the second section, we define Upper 3 Digits of Radix-2k SD
number and prove that property. In the third section, we prove some property
connected with the minimum digits of Radix-2k SD number. In the fourth section,
we identify the range of modulo arithmetic result and prove that the Upper 3
Digits indicate two possible answers. And in the last section, we define a function
to select true answer from the results of Upper 3 Digits.

MML Identifier: RADIX 6.

The articles [8], [10], [9], [1], [7], [4], [2], [3], [11], [5], and [6] provide the termi-
nology and notation for this paper.

1. Some Useful Theorems

The following two propositions are true:

(1) Let n be a natural number. Suppose n ­ 1. Let m, k be natu-
ral numbers. If m ­ 1 and k ­ 2, then SDDec Fmin(m + n,m, k) =
SDDec Fmin(m,m, k).

(2) For all natural numbers m, k such that m ­ 1 and k ­ 2 holds
SDDec Fmin(m,m, k) > 0.
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2. Definitions of Upper 3 Digits of Radix-2k SD Number and Its
Property

Let i, m, k be natural numbers and let r be a m + 2-tuple of k−SD. Let us
assume that i ∈ Seg(m + 2). The functor M0Digit(r, i) yielding an element of
k−SD is defined as follows:

(Def. 1) M0Digit(r, i) =
{

r(i), if i ­ m,

0, if i < m.

Let m, k be natural numbers and let r be a m + 2-tuple of k−SD. The
functor M0(r) yielding a m + 2-tuple of k−SD is defined as follows:

(Def. 2) For every natural number i such that i ∈ Seg(m + 2) holds
DigA(M0(r), i) = M0Digit(r, i).

Let i, m, k be natural numbers and let r be a m + 2-tuple of k−SD. Let us
assume that k ­ 2 and i ∈ Seg(m+2). The functor MmaxDigit(r, i) yielding an
element of k−SD is defined as follows:

(Def. 3) MmaxDigit(r, i) =
{

r(i), if i ­ m,

Radix k − 1, if i < m.

Let m, k be natural numbers and let r be a m + 2-tuple of k−SD. The
functor Mmax(r) yields a m + 2-tuple of k−SD and is defined as follows:

(Def. 4) For every natural number i such that i ∈ Seg(m + 2) holds
DigA(Mmax(r), i) = MmaxDigit(r, i).

Let i, m, k be natural numbers and let r be a m + 2-tuple of k−SD. Let us
assume that k ­ 2 and i ∈ Seg(m + 2). The functor MminDigit(r, i) yields an
element of k−SD and is defined by:

(Def. 5) MminDigit(r, i) =
{

r(i), if i ­ m,

−Radix k + 1, if i < m.

Let m, k be natural numbers and let r be a m + 2-tuple of k−SD. The
functor Mmin(r) yielding a m + 2-tuple of k−SD is defined by:

(Def. 6) For every natural number i such that i ∈ Seg(m + 2) holds
DigA(Mmin(r), i) = MminDigit(r, i).

One can prove the following two propositions:

(3) For all natural numbers m, k such that m ­ 1 and k ­ 2 and for every
m + 2-tuple r of k−SD holds SDDec Mmax(r) ­ SDDec r.

(4) For all natural numbers m, k such that m ­ 1 and k ­ 2 and for every
m + 2-tuple r of k−SD holds SDDec r ­ SDDec Mmin(r).

3. Properties of Minimum Digits of Radix-2k SD Number

Let n, k be natural numbers and let x be an integer. We say that x needs
digits of n, k if and only if:
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(Def. 7) x < (Radix k)n and x ­ (Radix k)n−′1.
One can prove the following three propositions:

(5) For all natural numbers x, n, k, i such that i ∈ Seg n holds
DigA(DecSD(x, n, k), i) ­ 0.

(6) For all natural numbers n, k, x such that n ­ 1 and k ­ 2 and x needs
digits of n, k holds DigA(DecSD(x, n, k), n) > 0.

(7) For all natural numbers f , m, k such that m ­ 1 and k ­ 2 and f needs
digits of m, k holds f ­ SDDec Fmin(m + 2, m, k).

4. Modulo Calculation Algorithm Using Upper 3 Digits of
Radix-2k SD Number

Next we state several propositions:

(8) For all integers m1, m2, f such that m2 < m1 +f and f > 0 there exists
an integer s such that −f < m1 − s · f and m2 − s · f < f.

(9) Let m, k be natural numbers. Suppose m ­ 1 and k ­ 2. Let r be a
m+2-tuple of k−SD. Then SDDec Mmax(r)+SDDec DecSD(0,m+2, k) =
SDDec M0(r) + SDDec SDMax(m + 2, m, k).

(10) For all natural numbers m, k such that m ­ 1 and k ­ 2 and for
every m + 2-tuple r of k−SD holds SDDec Mmax(r) < SDDec M0(r) +
SDDec Fmin(m + 2,m, k).

(11) Let m, k be natural numbers. Suppose m ­ 1 and k ­ 2. Let r be a
m+2-tuple of k−SD. Then SDDec Mmin(r)+SDDec DecSD(0,m+2, k) =
SDDec M0(r) + SDDec SDMin(m + 2, m, k).

(12) Let m, k be natural numbers and r be a m + 2-tuple of k−SD. If
m ­ 1 and k ­ 2, then SDDec M0(r) + SDDec DecSD(0,m + 2, k) =
SDDec Mmin(r) + SDDec SDMax(m + 2,m, k).

(13) For all natural numbers m, k such that m ­ 1 and k ­ 2 and for
every m + 2-tuple r of k−SD holds SDDec M0(r) < SDDec Mmin(r) +
SDDec Fmin(m + 2,m, k).

(14) Let m, k, f be natural numbers and r be a m+2-tuple of k−SD. Suppose
m ­ 1 and k ­ 2 and f needs digits of m, k. Then there exists an integer
s such that −f < SDDec M0(r)− s · f and SDDec Mmax(r)− s · f < f.

(15) Let m, k, f be natural numbers and r be a m+2-tuple of k−SD. Suppose
m ­ 1 and k ­ 2 and f needs digits of m, k. Then there exists an integer
s such that −f < SDDec Mmin(r)− s · f and SDDec M0(r)− s · f < f.

(16) Let m, k be natural numbers and r be a m+2-tuple of k−SD. If m ­ 1
and k ­ 2, then SDDec M0(r) ¬ SDDec r and SDDec r ¬ SDDec Mmax(r)
or SDDec Mmin(r) ¬ SDDec r and SDDec r < SDDec M0(r).
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5. How to Identify the Range of Modulo Arithmetic Result

Let i, m, k be natural numbers and let r be a m + 2-tuple of k−SD. Let us
assume that i ∈ Seg(m + 2). The functor MmaskDigit(r, i) yielding an element
of k−SD is defined by:

(Def. 8) MmaskDigit(r, i) =
{

r(i), if i < m,

0, if i ­ m.

Let m, k be natural numbers and let r be a m + 2-tuple of k−SD. The
functor Mmask(r) yields a m + 2-tuple of k−SD and is defined by:

(Def. 9) For every natural number i such that i ∈ Seg(m + 2) holds
DigA(Mmask(r), i) = MmaskDigit(r, i).

One can prove the following two propositions:

(17) For all natural numbers m, k and for every m + 2-tuple r of k−SD
such that m ­ 1 and k ­ 2 holds SDDec M0(r) + SDDec Mmask(r) =
SDDec r + SDDec DecSD(0,m + 2, k).

(18) For all natural numbers m, k and for every m + 2-tuple r of k−SD such
that m ­ 1 and k ­ 2 holds if SDDec Mmask(r) > 0, then SDDec r >

SDDec M0(r).

Let i, m, k be natural numbers. Let us assume that k ­ 2. The functor
FSDMinDigit(m, k, i) yields an element of k−SD and is defined as follows:

(Def. 10) FSDMinDigit(m, k, i) =





0, if i > m,

1, if i = m,

−Radix k + 1, otherwise.

Let n, m, k be natural numbers. The functor FSDMin(n,m, k) yields a n-
tuple of k−SD and is defined as follows:

(Def. 11) For every natural number i such that i ∈ Seg n holds
DigA(FSDMin(n,m, k), i) = FSDMinDigit(m, k, i).

One can prove the following proposition

(19) For every natural number n such that n ­ 1 and for all natural numbers
m, k such that m ∈ Seg n and k ­ 2 holds SDDec FSDMin(n,m, k) = 1.

Let n, m, k be natural numbers and let r be a m + 2-tuple of k−SD. We
say that r is zero over n if and only if:

(Def. 12) For every natural number i such that i > n holds DigA(r, i) = 0.

We now state the proposition

(20) Let m be a natural number. Suppose m ­ 1. Let n, k be natural numbers
and r be a m+2-tuple of k−SD. If k ­ 2 and n ∈ Seg(m+2) and Mmask(r)
is zero over n and DigA(Mmask(r), n) > 0, then SDDec Mmask(r) > 0.
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The papers [22], [11], [25], [8], [9], [2], [3], [20], [21], [10], [1], [27], [7], [24],
[23], [15], [19], [26], [4], [5], [6], [14], [12], [17], [18], [13], and [16] provide the
terminology and notation for this paper.

1. Inclusion of Fuzzy Sets

In this paper X, Y denote non empty sets.
Let X be a non empty set. Observe that every membership function of X is

real-yielding.
Let f , g be real-yielding functions. The predicate f v g is defined by:

(Def. 1) dom f ⊆ dom g and for every set x such that x ∈ dom f holds f(x) ¬
g(x).

Let X be a non empty set and let f , g be membership functions of X. Let
us observe that f v g if and only if:

(Def. 2) For every element x of X holds f(x) ¬ g(x).
We introduce f ⊆ g as a synonym of f v g.

Let X, Y be non empty sets and let f , g be membership functions of X, Y .
Let us observe that f v g if and only if:

(Def. 3) For every element x of X and for every element y of Y holds f(〈〈x,

y〉〉) ¬ g(〈〈x, y〉〉).
One can prove the following propositions:

1This work has been partially supported by the Polish Academy of Sciences and the Japan
Society for the Promotion of Science (JSPS Grant 0324101 and JSPS Grant-in-aid 15700195)
when the first author was visiting Białystok Technical University as postdoctoral fellow.
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16 takashi mitsuishi and grzegorz bancerek

(1) For all membership functions R, S of X such that for every element x

of X holds R(x) = S(x) holds R = S.

(2) Let R, S be membership functions of X, Y . Suppose that for every
element x of X and for every element y of Y holds R(〈〈x, y〉〉) = S(〈〈x, y〉〉).
Then R = S.

(3) For all membership functions R, S of X holds R = S iff R ⊆ S and
S ⊆ R.

(4) For every membership function R of X holds R ⊆ R.

(5) For all membership functions R, S, T of X such that R ⊆ S and S ⊆ T

holds R ⊆ T.

(6) Let X, Y , Z be non empty sets, R, S be membership functions of X, Y ,
and T , U be membership functions of Y , Z. If R ⊆ S and T ⊆ U, then
R T ⊆ S U.

Let X be a non empty set and let f , g be membership functions of X. Let
us note that the functor min(f, g) is commutative. Let us note that the functor
max(f, g) is commutative.

We now state two propositions:

(7) For all membership functions f , g of X holds min(f, g) ⊆ f.

(8) For all membership functions f , g of X holds f ⊆ max(f, g).

2. Properties of Fuzzy Relations

Let X be a non empty set and let R be a membership function of X, X. We
say that R is reflexive if and only if:

(Def. 4) Imf(X,X) ⊆ R.

Let X be a non empty set and let R be a membership function of X, X. Let
us observe that R is reflexive if and only if:

(Def. 5) For every element x of X holds R(〈〈x, x〉〉) = 1.
Let X be a non empty set and let R be a membership function of X, X. We

say that R is symmetric if and only if:

(Def. 6) converse R = R.

Let X be a non empty set and let R be a membership function of X, X. Let
us observe that R is symmetric if and only if:

(Def. 7) For all elements x, y of X holds R(〈〈x, y〉〉) = R(〈〈y, x〉〉).
Let X be a non empty set and let R be a membership function of X, X. We

say that R is transitive if and only if:

(Def. 8) R R ⊆ R.

Let X be a non empty set and let R be a membership function of X, X. Let
us observe that R is transitive if and only if:
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(Def. 9) For all elements x, y, z of X holds R(〈〈x, y〉〉) uR(〈〈y, z〉〉) � R(〈〈x, z〉〉).
Let X be a non empty set and let R be a membership function of X, X. We

say that R is antisymmetric if and only if:

(Def. 10) For all elements x, y of X such that R(〈〈x, y〉〉) 6= 0 and R(〈〈y, x〉〉) 6= 0
holds x = y.

Let X be a non empty set and let R be a membership function of X, X. Let
us observe that R is antisymmetric if and only if:

(Def. 11) For all elements x, y of X such that R(〈〈x, y〉〉) 6= 0 and x 6= y holds R(〈〈y,

x〉〉) = 0.

Let us consider X. Note that Imf(X, X) is symmetric, transitive, reflexive,
and antisymmetric.

Let us consider X. Observe that there exists a membership function of X,
X which is reflexive, transitive, symmetric, and antisymmetric.

Next we state two propositions:

(9) For all membership functions R, S of X, X such that R is symmetric
and S is symmetric holds converse min(R, S) = min(R, S).

(10) For all membership functions R, S of X, X such that R is symmetric
and S is symmetric holds converse max(R, S) = max(R, S).

Let us consider X and let R, S be symmetric membership functions of X,
X. Note that min(R, S) is symmetric and max(R,S) is symmetric.

One can prove the following proposition

(11) For all membership functions R, S of X, X such that R is transitive and
S is transitive holds min(R,S) min(R, S) ⊆ min(R, S).

Let us consider X and let R, S be transitive membership functions of X, X.
Observe that min(R, S) is transitive.

Let A be a set and let X be a non empty set. Then χA,X is a membership
function of X.

One can prove the following propositions:

(12) For every binary relation r on X such that r is reflexive in X holds
χ

r,[: X, X :] is reflexive.

(13) For every binary relation r on X such that r is antisymmetric holds
χ

r,[: X, X :] is antisymmetric.

(14) For every binary relation r on X such that r is symmetric holds χ
r,[: X, X :]

is symmetric.

(15) For every binary relation r on X such that r is transitive holds χ
r,[: X, X :]

is transitive.

(16) Zmf(X, X) is symmetric, antisymmetric, and transitive.

(17) Umf(X,X) is symmetric, transitive, and reflexive.
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(18) For every membership function R of X, X holds max(R, converse R) is
symmetric.

(19) For every membership function R of X, X holds min(R, converse R) is
symmetric.

(20) Let R be a membership function of X, X and R′ be a membership func-
tion of X, X. If R′ is symmetric and R ⊆ R′, then max(R, converse R) ⊆
R′.

(21) Let R be a membership function of X, X and R′ be a member-
ship function of X, X. If R′ is symmetric and R′ ⊆ R, then R′ ⊆
min(R, converse R).

3. Transitive Closure

Let X be a non empty set, let R be a membership function of X, X, and let
n be a natural number. The functor Rn yielding a membership function of X,
X is defined by the condition (Def. 12).

(Def. 12) There exists a function F from N into [0, 1][: X, X :] such that
(i) Rn = F (n),
(ii) F (0) = Imf(X,X), and
(iii) for every natural number k there exists a membership function Q of

X, X such that F (k) = Q and F (k + 1) = Q R.

In the sequel X denotes a non empty set and R denotes a membership
function of X, X.

Next we state several propositions:

(22) Imf(X,X) R = R.

(23) R Imf(X, X) = R.

(24) R0 = Imf(X,X).
(25) R1 = R.

(26) For every natural number n holds R(n+1) = Rn R.

(27) For all natural numbers m, n holds R(m+n) = Rm Rn.

(28) For all natural numbers m, n holds R(m·n) = (Rn)m.

Let X be a non empty set and let R be a membership function of X, X. The
functor TrCl R yields a membership function of X, X and is defined as follows:

(Def. 13) TrCl R =
⊔

FuzzyLattice[: X, X :]{Rn; n ranges over natural numbers: n > 0}.
Next we state several propositions:

(29) For all elements x, y of X holds
(TrCl R)(〈〈x, y〉〉) =

⊔
RealPoset[0,1] π〈〈x, y〉〉{Rn; n ranges over natural num-

bers: n > 0}.
(30) R ⊆ TrCl R.
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(31) For every natural number n such that n > 0 holds Rn ⊆ TrCl R.

(32) For every subset Q of FuzzyLattice X and for every element x of X holds
(
⊔

FuzzyLattice X Q)(x) =
⊔

RealPoset[0,1] πxQ.

(33) Let R be a complete Heyting lattice, X be a subset of R, and y be an
element of R. Then y u⊔

R X =
⊔

R{y u x; x ranges over elements of R:
x ∈ X}.

(34) Let R be a membership function of X, X and Q be a
subset of FuzzyLattice[: X, X :]. Then R (@

⊔
FuzzyLattice[: X, X :] Q) =⊔

FuzzyLattice[: X, X :]{R (@r); r ranges over elements of FuzzyLattice[:X, X :] :
r ∈ Q}.

(35) Let R be a membership function of X, X and Q be a
subset of FuzzyLattice[: X, X :]. Then (@

⊔
FuzzyLattice[: X, X :] Q) R =⊔

FuzzyLattice[: X, X :]{(@r) R; r ranges over elements of FuzzyLattice[:X, X :] :
r ∈ Q}.

(36) Let R be a membership function of X, X. Then TrCl R TrCl R =⊔
FuzzyLattice[: X, X :]{Ri Rj ; i ranges over natural numbers, j ranges over na-

tural numbers: i > 0 ∧ j > 0}.
Let X be a non empty set and let R be a membership function of X, X.

Note that TrCl R is transitive.
We now state four propositions:

(37) Let R be a membership function of X, X and n be a natural number. If
R is transitive and n > 0, then Rn ⊆ R.

(38) For every membership function R of X, X such that R is transitive holds
R = TrCl R.

(39) For all membership functions R, S of X, X and for every natural number
n such that R ⊆ S holds Rn ⊆ Sn.

(40) For all membership functions R, S of X, X such that S is transitive and
R ⊆ S holds TrCl R ⊆ S.
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Summary. We present basic concepts concerning rough set theory. We
define tolerance and approximation spaces and rough membership function. Dif-
ferent rough inclusions as well as the predicate of rough equality of sets are also
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The notation and terminology used here are introduced in the following papers:
[21], [9], [25], [19], [1], [13], [22], [11], [20], [26], [28], [6], [2], [10], [5], [27], [8], [3],
[15], [14], [7], [4], [16], [23], [24], [17], [18], and [12].

1. Preliminaries

Let A be a set. One can verify that 〈A, idA〉 is discrete.
The following proposition is true

(1) For every set X such that ∇X ⊆ idX holds X is trivial.

Let A be a relational structure. We say that A is diagonal if and only if:

(Def. 1) The internal relation of A ⊆ idthe carrier of A.

Let A be a non trivial set. Observe that 〈A,∇A〉 is non diagonal.
We now state the proposition

(2) For every reflexive relational structure L holds idthe carrier of L ⊆ the
internal relation of L.

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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Let us note that every reflexive relational structure which is non discrete is
also non trivial and every relational structure which is reflexive and trivial is
also discrete.

One can prove the following proposition

(3) For every set X and for every total reflexive binary relation R on X

holds idX ⊆ R.

One can verify that every relational structure which is discrete is also dia-
gonal and every relational structure which is non diagonal is also non discrete.

One can verify that there exists a relational structure which is non diagonal
and non empty.

We now state three propositions:

(4) Let A be a non diagonal non empty relational structure. Then there exist
elements x, y of A such that x 6= y and 〈〈x, y〉〉 ∈ the internal relation of A.

(5) For every set D and for all finite sequences p, q of elements of D holds⋃
(p a q) =

⋃
p ∪⋃

q.

(6) For all functions p, q such that q is disjoint valued and p ⊆ q holds p is
disjoint valued.

One can verify that every function which is empty is also disjoint valued.
Let A be a set. One can verify that there exists a finite sequence of elements

of A which is disjoint valued.
Let A be a non empty set. Observe that there exists a finite sequence of

elements of A which is non empty and disjoint valued.
Let A be a set, let X be a finite sequence of elements of 2A, and let n be a

natural number. Then X(n) is a subset of A.
Let A be a set and let X be a finite sequence of elements of 2A. Then

⋃
X

is a subset of A.
Let A be a finite set and let R be a binary relation on A. One can check

that 〈A, R〉 is finite.
One can prove the following proposition

(7) For all sets X, x, y and for every tolerance T of X such that x ∈ [y]T
holds y ∈ [x]T .

2. Tolerance and Approximation Spaces

Let P be a relational structure. We say that P has equivalence relation if
and only if:

(Def. 2) The internal relation of P is an equivalence relation of the carrier of P .

We say that P has tolerance relation if and only if:

(Def. 3) The internal relation of P is a tolerance of the carrier of P .
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Let us note that every relational structure which has equivalence relation
has also tolerance relation.

Let A be a set. Observe that 〈A, idA〉 has equivalence relation.
One can verify that there exists a relational structure which is discrete,

finite, and non empty and has equivalence relation and there exists a relational
structure which is non diagonal, finite, and non empty and has equivalence
relation.

An approximation space is a non empty relational structure with equivalence
relation. A tolerance space is a non empty relational structure with tolerance
relation.

Let A be a tolerance space. Note that the internal relation of A is total,
reflexive, and symmetric.

Let A be an approximation space. Observe that the internal relation of A is
transitive.

Let A be a tolerance space and let X be a subset of A. The functor LAp(X)
yielding a subset of A is defined as follows:

(Def. 4) LAp(X) = {x; x ranges over elements of A: [x]the internal relation of A ⊆
X}.

The functor UAp(X) yielding a subset of A is defined as follows:

(Def. 5) UAp(X) = {x; x ranges over elements of A: [x]the internal relation of A

meets X}.
Let A be a tolerance space and let X be a subset of A. The functor BndAp(X)

yielding a subset of A is defined as follows:

(Def. 6) BndAp(X) = UAp(X) \ LAp(X).
Let A be a tolerance space and let X be a subset of A. We say that X is

rough if and only if:

(Def. 7) BndAp(X) 6= ∅.
We introduce X is exact as an antonym of X is rough.

In the sequel A is a tolerance space and X, Y are subsets of A.
Next we state a number of propositions:

(8) For every set x such that x ∈ LAp(X) holds [x]the internal relation of A ⊆ X.

(9) For every element x of A such that [x]the internal relation of A ⊆ X holds
x ∈ LAp(X).

(10) For every set x such that x ∈ UAp(X) holds [x]the internal relation of A

meets X.

(11) For every element x of A such that [x]the internal relation of A meets X holds
x ∈ UAp(X).

(12) LAp(X) ⊆ X.

(13) X ⊆ UAp(X).
(14) LAp(X) ⊆ UAp(X).
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(15) X is exact iff LAp(X) = X.

(16) X is exact iff UAp(X) = X.

(17) X = LAp(X) iff X = UAp(X).
(18) LAp(∅A) = ∅.
(19) UAp(∅A) = ∅.
(20) LAp(ΩA) = ΩA.

(21) UAp(ΩA) = ΩA.

(22) LAp(X ∩ Y ) = LAp(X) ∩ LAp(Y ).
(23) UAp(X ∪ Y ) = UAp(X) ∪UAp(Y ).
(24) If X ⊆ Y, then LAp(X) ⊆ LAp(Y ).
(25) If X ⊆ Y, then UAp(X) ⊆ UAp(Y ).
(26) LAp(X) ∪ LAp(Y ) ⊆ LAp(X ∪ Y ).
(27) UAp(X ∩ Y ) ⊆ UAp(X) ∩UAp(Y ).
(28) LAp(Xc) = (UAp(X))c.

(29) UAp(Xc) = (LAp(X))c.

(30) UAp(LAp(UAp(X))) = UAp(X).
(31) LAp(UAp(LAp(X))) = LAp(X).
(32) BndAp(X) = BndAp(Xc).

In the sequel A is an approximation space and X is a subset of A.
The following four propositions are true:

(33) LAp(LAp(X)) = LAp(X).
(34) LAp(LAp(X)) = UAp(LAp(X)).
(35) UAp(UAp(X)) = UAp(X).
(36) UAp(UAp(X)) = LAp(UAp(X)).

Let A be an approximation space. Note that there exists a subset of A which
is exact.

Let A be an approximation space and let X be a subset of A. One can check
that LAp(X) is exact and UAp(X) is exact.

The following proposition is true

(37) Let A be an approximation space, X be a subset of A, and x, y be sets.
If x ∈ UAp(X) and 〈〈x, y〉〉 ∈ the internal relation of A, then y ∈ UAp(X).

Let A be a non diagonal approximation space. Observe that there exists a
subset of A which is rough.

Let A be an approximation space and let X be a subset of A. Rough set of
X is defined by:

(Def. 8) It = 〈〈LAp(X), UAp(X)〉〉.
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3. Membership Function

Let A be a finite tolerance space and let x be an element of A. One can
check that card([x]the internal relation of A) is non empty.

Let A be a finite tolerance space and let X be a subset of A. The functor
MemberFunc(X, A) yielding a function from the carrier of A into R is defined
by:

(Def. 9) For every element x of A holds (MemberFunc(X,A))(x) =
card(X∩[x]the internal relation of A)

card([x]the internal relation of A) .

In the sequel A denotes a finite tolerance space, X denotes a subset of A,
and x denotes an element of A.

One can prove the following propositions:

(38) 0 ¬ (MemberFunc(X, A))(x) and (MemberFunc(X, A))(x) ¬ 1.

(39) (MemberFunc(X,A))(x) ∈ [0, 1].
In the sequel A is a finite approximation space, X, Y are subsets of A, and

x is an element of A.
We now state four propositions:

(40) (MemberFunc(X,A))(x) = 1 iff x ∈ LAp(X).
(41) (MemberFunc(X,A))(x) = 0 iff x ∈ (UAp(X))c.

(42) 0 < (MemberFunc(X,A))(x) and (MemberFunc(X, A))(x) < 1 iff x ∈
BndAp(X).

(43) For every discrete approximation space A holds every subset of A is
exact.

Let A be a discrete approximation space. Note that every subset of A is
exact.

The following propositions are true:

(44) For every discrete finite approximation space A and for every subset X

of A holds MemberFunc(X, A) = χX,the carrier of A.

(45) Let A be a finite approximation space, X be a subset of A, and x, y be
sets. If 〈〈x, y〉〉 ∈ the internal relation of A, then (MemberFunc(X,A))(x) =
(MemberFunc(X, A))(y).

(46) (MemberFunc(Xc, A))(x) = 1− (MemberFunc(X,A))(x).
(47) If X ⊆ Y, then (MemberFunc(X, A))(x) ¬ (MemberFunc(Y,A))(x).
(48) (MemberFunc(X ∪ Y, A))(x) ­ (MemberFunc(X,A))(x).
(49) (MemberFunc(X ∩ Y, A))(x) ¬ (MemberFunc(X,A))(x).
(50) (MemberFunc(X ∪ Y, A))(x) ­ max((MemberFunc(X,A))(x),

(MemberFunc(Y,A))(x)).
(51) If X misses Y , then (MemberFunc(X∪Y, A))(x) = (MemberFunc(X, A))

(x) + (MemberFunc(Y, A))(x).
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(52) (MemberFunc(X ∩ Y, A))(x) ¬ min((MemberFunc(X,A))(x),
(MemberFunc(Y,A))(x)).

Let A be a finite tolerance space, let X be a finite sequence of elements of
2the carrier of A, and let x be an element of A. The functor FinSeqM(x,X) yields
a finite sequence of elements of R and is defined as follows:

(Def. 10) dom FinSeqM(x,X) = dom X and for every natural number n such that
n ∈ dom X holds (FinSeqM(x,X))(n) = (MemberFunc(X(n), A))(x).

We now state several propositions:

(53) Let X be a finite sequence of elements of 2the carrier of A, x be an element
of A, and y be an element of 2the carrier of A. Then FinSeqM(x,X a 〈y〉) =
(FinSeqM(x,X)) a 〈(MemberFunc(y, A))(x)〉.

(54) (MemberFunc(∅A, A))(x) = 0.

(55) For every disjoint valued finite sequence X of elements of 2the carrier of A

holds (MemberFunc(
⋃

X, A))(x) =
∑

FinSeqM(x,X).

(56) LAp(X) = {x; x ranges over elements of A: (MemberFunc(X,A))
(x) = 1}.

(57) UAp(X) = {x;x ranges over elements of A: (MemberFunc(X, A))
(x) > 0}.

(58) BndAp(X) = {x; x ranges over elements of A: 0 < (MemberFunc(X,A))
(x) ∧ (MemberFunc(X, A))(x) < 1}.

4. Rough Inclusion

In the sequel A is a tolerance space and X, Y , Z are subsets of A.
Let A be a tolerance space and let X, Y be subsets of A. The predicate

X ⊆∗ Y is defined as follows:

(Def. 11) LAp(X) ⊆ LAp(Y ).

The predicate X ⊆∗ Y is defined as follows:

(Def. 12) UAp(X) ⊆ UAp(Y ).

Let A be a tolerance space and let X, Y be subsets of A. The predicate
X ⊆∗∗ Y is defined as follows:

(Def. 13) X ⊆∗ Y and X ⊆∗ Y.

One can prove the following three propositions:

(59) If X ⊆∗ Y and Y ⊆∗ Z, then X ⊆∗ Z.

(60) If X ⊆∗ Y and Y ⊆∗ Z, then X ⊆∗ Z.

(61) If X ⊆∗∗ Y and Y ⊆∗∗ Z, then X ⊆∗∗ Z.
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5. Rough Equality of Sets

Let A be a tolerance space and let X, Y be subsets of A. The predicate
X =∗ Y is defined by:

(Def. 14) LAp(X) = LAp(Y ).
Let us notice that the predicate X =∗ Y is reflexive and symmetric. The predi-
cate X =∗ Y is defined as follows:

(Def. 15) UAp(X) = UAp(Y ).
Let us notice that the predicate X =∗ Y is reflexive and symmetric. The predi-
cate X =∗∗ Y is defined by:

(Def. 16) LAp(X) = LAp(Y ) and UAp(X) = UAp(Y ).
Let us notice that the predicate X =∗∗ Y is reflexive and symmetric.

Let A be a tolerance space and let X, Y be subsets of A. Let us observe that
X =∗ Y if and only if:

(Def. 17) X ⊆∗ Y and Y ⊆∗ X.

Let us observe that X =∗ Y if and only if:

(Def. 18) X ⊆∗ Y and Y ⊆∗ X.

Let us observe that X =∗∗ Y if and only if:

(Def. 19) X =∗ Y and X =∗ Y.
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Correctness of Non Overwriting Programs.
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Yatsuka Nakamura
Shinshu University

Nagano

Summary. Non overwriting program is a program where each variable
used in it is written only just one time, but the control variables used for
“for-statement” are exceptional. Contrarily, variables are allowed to be read
many times. There are other restrictions for the non overwriting program. For
statements, only the following are allowed: “substituting-statement”, “if-else-
statement”, “for-statement” (with break and without break), function (correct
one) – “call-statement” and “return-statement”. Grammar of non overwriting
program is like the one of the C-language. For type of variables, “int”, “real”,
“char” and “float” can be used, and array of them can also be used. For ope-
ration, “+”, “−” and “*” are used for a type “int”; “+”, “−”, “*” and “/” are
used for a type “float”. User can also define structures like in C. Non overwriting
program can be translated to (predicative) logic formula in definition part to
define functions. If a new function is correctly defined, a corresponding program
is correct, if it does not use arrays. If it uses arrays, area check is necessary in
the following theorem.

Semantic correctness is shown by some theorems following the definition.
These theorems must tie up the result of the program and mathematical con-
cepts introduced before. Correctness is proven function-wise. We must use only
correctness-proven functions to define a new function (to write a new program
as a form of a function). Here, we present two programs of division function of
two natural numbers and of two integers. An algorithm is checked for each case
by proving correctness of the definitions. We also perform an area check of the
index of arrays used in one of the programs.

MML Identifier: PRGCOR 1.

The articles [6], [3], [2], [7], [5], [8], [1], and [4] provide the terminology and
notation for this paper.

One can prove the following propositions:
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(1) For all natural numbers n, m, k holds (n + k)−′ (m + k) = n−′ m.

(2) For all natural numbers n, k such that k > 0 and n mod 2 · k ­ k holds
(n mod 2 · k)− k = n mod k and (n mod k) + k = n mod 2 · k.

(3) For all natural numbers n, k such that k > 0 and n mod 2 · k ­ k holds
n÷ k = (n÷ 2 · k) · 2 + 1.

(4) For all natural numbers n, k such that k > 0 and n mod 2 · k < k holds
n mod 2 · k = n mod k.

(5) For all natural numbers n, k such that k > 0 and n mod 2 · k < k holds
n÷ k = (n÷ 2 · k) · 2.

Let C be a set, let f be a partial function from C to Z, and let x be a set.
One can verify that f(x) is integer.

Next we state two propositions:

(6) Let m, n be natural numbers. Suppose m > 0. Then there exists a
natural number i such that for every natural number k2 such that k2 < i

holds m · 2k2 ¬ n and m · 2i > n.

(7) For every integer i and for every finite sequence f such that 1 ¬ i and
i ¬ len f holds i ∈ dom f.

Let n, m be integers. Let us assume that n ­ 0 and m > 0. The functor
Idiv1Prg(n,m) yields an integer and is defined by the condition (Def. 1).

(Def. 1) There exist finite sequences s1, s2, p1 of elements of Z such that
(i) len s1 = n + 1,

(ii) len s2 = n + 1,

(iii) len p1 = n + 1,

(iv) if n < m, then Idiv1Prg(n,m) = 0, and
(v) if n 6< m, then s1(1) = m and there exists an integer i such that

1 ¬ i and i ¬ n and for every integer k such that 1 ¬ k and k < i holds
s1(k + 1) = s1(k) · 2 and s1(k + 1) 6> n and s1(i + 1) = s1(i) · 2 and
s1(i + 1) > n and p1(i + 1) = 0 and s2(i + 1) = n and for every integer j

such that 1 ¬ j and j ¬ i holds if s2((i+1)−(j−1)) ­ s1((i+1)−j), then
s2((i+1)− j) = s2((i+1)− (j− 1))− s1((i+1)− j) and p1((i+1)− j) =
p1((i+1)− (j−1)) ·2+1 and if s2((i+1)− (j−1)) 6­ s1((i+1)− j), then
s2((i+1)−j) = s2((i+1)−(j−1)) and p1((i+1)−j) = p1((i+1)−(j−1))·2
and Idiv1Prg(n,m) = p1(1).

Next we state four propositions:

(8) Let n, m be integers. Suppose n ­ 0 and m > 0. Let s1, s2, p1 be finite
sequences of elements of Z and i be an integer. Suppose that

(i) len s1 = n + 1,

(ii) len s2 = n + 1,

(iii) len p1 = n + 1, and
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(iv) if n 6< m, then s1(1) = m and 1 ¬ i and i ¬ n and for every integer k

such that 1 ¬ k and k < i holds s1(k+1) = s1(k) ·2 and s1(k+1) 6> n and
s1(i+1) = s1(i)·2 and s1(i+1) > n and p1(i+1) = 0 and s2(i+1) = n and
for every integer j such that 1 ¬ j and j ¬ i holds if s2((i+1)− (j−1)) ­
s1((i + 1)− j), then s2((i + 1)− j) = s2((i + 1)− (j − 1))− s1((i + 1)− j)
and p1((i + 1) − j) = p1((i + 1) − (j − 1)) · 2 + 1 and if s2((i + 1) − (j −
1)) 6­ s1((i + 1) − j), then s2((i + 1) − j) = s2((i + 1) − (j − 1)) and
p1((i + 1)− j) = p1((i + 1)− (j − 1)) · 2 and Idiv1Prg(n,m) = p1(1).
Then

(v) len s1 = n + 1,

(vi) len s2 = n + 1,

(vii) len p1 = n + 1,

(viii) if n < m, then Idiv1Prg(n,m) = 0, and
(ix) if n 6< m, then 1 ∈ dom s1 and s1(1) = m and 1 ¬ i and i ¬ n and

for every integer k such that 1 ¬ k and k < i holds k + 1 ∈ dom s1 and
k ∈ dom s1 and s1(k+1) = s1(k)·2 and s1(k+1) 6> n and i+1 ∈ dom s1 and
i ∈ dom s1 and s1(i + 1) = s1(i) · 2 and s1(i + 1) > n and i + 1 ∈ dom p1

and p1(i + 1) = 0 and i + 1 ∈ dom s2 and s2(i + 1) = n and for every
integer j such that 1 ¬ j and j ¬ i holds (i + 1) − (j − 1) ∈ dom s2 and
(i + 1) − j ∈ dom s1 and if s2((i + 1) − (j − 1)) ­ s1((i + 1) − j), then
(i+1)−j ∈ dom s2 and (i+1)−j ∈ dom s1 and s2((i+1)−j) = s2((i+1)−
(j−1))−s1((i+1)−j) and (i+1)−j ∈ dom p1 and (i+1)−(j−1) ∈ dom p1

and p1((i+1)−j) = p1((i+1)− (j−1)) ·2+1 and if s2((i+1)− (j−1)) 6­
s1((i + 1) − j), then (i + 1) − j ∈ dom s2 and (i + 1) − (j − 1) ∈ dom s2

and s2((i + 1) − j) = s2((i + 1) − (j − 1)) and (i + 1) − j ∈ dom p1 and
(i + 1)− (j− 1) ∈ dom p1 and p1((i + 1)− j) = p1((i + 1)− (j− 1)) · 2 and
1 ∈ dom p1 and Idiv1Prg(n,m) = p1(1).

(9) For all natural numbers n, m such that m > 0 holds Idiv1Prg((n qua
integer), (m qua integer)) = n÷m.

(10) For all integers n, m such that n ­ 0 and m > 0 holds Idiv1Prg(n,m) =
n÷m.

(11) Let n, m be integers and n2, m2 be natural numbers. Then
(i) if m = 0 and n2 = n and m2 = m, then n÷m = 0 and n2 ÷m2 = 0,

(ii) if n ­ 0 and m > 0 and n2 = n and m2 = m, then n÷m = n2 ÷m2,

(iii) if n ­ 0 and m < 0 and n2 = n and m2 = −m, then if m2 · (n2 ÷
m2) = n2, then n ÷ m = −(n2 ÷m2) and if m2 · (n2 ÷ m2) 6= n2, then
n÷m = −(n2 ÷m2)− 1,

(iv) if n < 0 and m > 0 and n2 = −n and m2 = m, then if m2 · (n2 ÷
m2) = n2, then n ÷ m = −(n2 ÷m2) and if m2 · (n2 ÷ m2) 6= n2, then
n÷m = −(n2 ÷m2)− 1, and

(v) if n < 0 and m < 0 and n2 = −n and m2 = −m, then n÷m = n2÷m2.
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Let n, m be integers. The functor IdivPrg(n,m) yields an integer and is
defined by the condition (Def. 2).

(Def. 2) There exists an integer i such that
(i) if m = 0, then IdivPrg(n,m) = 0, and
(ii) if m 6= 0, then if n ­ 0 and m > 0, then IdivPrg(n,m) = Idiv1Prg(n,m)

and if n 6­ 0 or m 6> 0, then if n ­ 0 and m < 0, then i = Idiv1Prg(n,−m)
and if (−m) · i = n, then IdivPrg(n,m) = −i and if (−m) · i 6= n, then
IdivPrg(n,m) = −i− 1 and if n 6­ 0 or m 6< 0, then if n < 0 and m > 0,

then i = Idiv1Prg(−n,m) and if m · i = −n, then IdivPrg(n,m) = −i and
if m · i 6= −n, then IdivPrg(n,m) = −i − 1 and if n 6< 0 or m 6> 0, then
IdivPrg(n,m) = Idiv1Prg(−n,−m).

The following proposition is true

(12) For all integers n, m holds IdivPrg(n,m) = n÷m.
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A Tree of Execution of a Macroinstruction1

Artur Korniłowicz
University of Białystok

Summary. A tree of execution of a macroinstruction is defined. It is a tree
decorated by the instruction locations of a computer. Successors of each vertex
are determined by the set of all possible values of the instruction counter after
execution of the instruction placed in the location indicated by given vertex.

MML Identifier: AMISTD 3.

The articles [22], [14], [25], [15], [1], [20], [3], [4], [16], [26], [11], [13], [12], [5], [6],
[21], [9], [8], [10], [2], [7], [18], [23], [19], [24], and [17] provide the notation and
terminology for this paper.

For simplicity, we adopt the following convention: x, y, X are sets, m, n are
natural numbers, O is an ordinal number, and R, S are binary relations.

Let D be a set, let f be a partial function from D to N, and let n be a set.
One can verify that f(n) is natural.

Let R be an empty binary relation and let X be a set. Observe that R¹X is
empty.

One can prove the following two propositions:

(1) If dom R = {x} and rng R = {y}, then R = x 7−→. y.

(2) field{〈〈x, x〉〉} = {x}.
Let X be an infinite set and let a be a set. One can verify that X 7−→ a is

infinite.
One can check that there exists a function which is infinite.
Let R be a finite binary relation. One can verify that field R is finite.
The following proposition is true

(3) If field R is finite, then R is finite.

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan.
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Let R be an infinite binary relation. Note that field R is infinite.
One can prove the following proposition

(4) If dom R is finite and rng R is finite, then R is finite.

Let us observe that ⊆∅ is empty.
Let X be a non empty set. One can verify that ⊆X is non empty.
Next we state two propositions:

(5) ⊆{x} = {〈〈x, x〉〉}.
(6) ⊆

X ⊆ [:X, X :].
Let X be a finite set. Note that ⊆X is finite.
One can prove the following proposition

(7) If ⊆X is finite, then X is finite.

Let X be an infinite set. One can verify that ⊆X is infinite.
The following propositions are true:

(8) If R and S are isomorphic and R is well-ordering, then S is well-ordering.

(9) If R and S are isomorphic and R is finite, then S is finite.

(10) x7−→. y is an isomorphism between {〈〈x, x〉〉} and {〈〈y, y〉〉}.
(11) {〈〈x, x〉〉} and {〈〈y, y〉〉} are isomorphic.

One can verify that ∅ is empty.
The following propositions are true:

(12) ⊆
O = O.

(13) For every finite set X such that X ⊆ O holds ⊆X = card X.

(14) If {x} ⊆ O, then ⊆{x} = 1.

(15) If {x} ⊆ O, then the canonical isomorphism between ⊆⊆{x} and ⊆{x} =
07−→. x.

Let O be an ordinal number, let X be a subset of O, and let n be a set. One
can check that (the canonical isomorphism between ⊆⊆

X
and ⊆X)(n) is ordinal.

Let X be a natural-membered set and let n be a set. Note that (the canonical
isomorphism between ⊆⊆

X
and ⊆X)(n) is natural.

Next we state three propositions:

(16) If n 7→ x = m 7→ x, then n = m.

(17) For every tree T and for every element t of T holds t¹ Seg n ∈ T.

(18) For all trees T1, T2 such that for every natural number n holds
T1-level(n) = T2-level(n) holds T1 = T2.

The functor TrivialInfiniteTree is defined by:

(Def. 1) TrivialInfiniteTree = {k 7→ 0 : k ranges over natural numbers}.
One can check that TrivialInfiniteTree is non empty and tree-like.
We now state the proposition

(19) N ≈ TrivialInfiniteTree .
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Let us note that TrivialInfiniteTree is infinite.
The following proposition is true

(20) For every natural number n holds TrivialInfiniteTree -level(n) = {n 7→
0}.

For simplicity, we adopt the following convention: N denotes a set with
non empty elements, S denotes a standard IC-Ins-separated definite non empty
non void AMI over N , L, l1 denote instruction-locations of S, J denotes an
instruction of S, and F denotes a subset of the instruction locations of S.

Let N be a set with non empty elements, let S be a standard IC-Ins-separated
definite non empty non void AMI over N , and let F be a finite partial state
of S. Let us assume that F is non empty and F is programmed. The functor
FirstLoc(F ) yields an instruction-location of S and is defined by the condition
(Def. 2).

(Def. 2) There exists a non empty subset M of N such that M = {locnum(l); l
ranges over elements of the instruction locations of S: l ∈ dom F} and
FirstLoc(F ) = ilS(min M).

One can prove the following four propositions:

(21) For every non empty programmed finite partial state F of S holds
FirstLoc(F ) ∈ dom F.

(22) For all non empty programmed finite partial states F , G of S such that
F ⊆ G holds FirstLoc(G) ¬ FirstLoc(F ).

(23) For every non empty programmed finite partial state F of S such that
l1 ∈ dom F holds FirstLoc(F ) ¬ l1.

(24) For every lower non empty programmed finite partial state F of S holds
FirstLoc(F ) = ilS(0).

Let N be a set with non empty elements, let S be a standard IC-Ins-separated
definite non empty non void AMI over N , and let F be a subset of the instruction
locations of S. The functor LocNums(F ) yields a subset of N and is defined by:

(Def. 3) LocNums(F ) = {locnum(l); l ranges over instruction-locations of S: l ∈
F}.

We now state the proposition

(25) locnum(l1) ∈ LocNums(F ) iff l1 ∈ F.

Let N be a set with non empty elements, let S be a standard IC-Ins-separated
definite non empty non void AMI over N , and let F be an empty subset of the
instruction locations of S. Observe that LocNums(F ) is empty.

Let N be a set with non empty elements, let S be a standard IC-Ins-separated
definite non empty non void AMI over N , and let F be a non empty subset of
the instruction locations of S. Observe that LocNums(F ) is non empty.

We now state several propositions:

(26) If F = {ilS(n)}, then LocNums(F ) = {n}.
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(27) F ≈ LocNums(F ).

(28) F ⊆ ⊆LocNums(F ).

(29) If S is realistic and J is halting, then LocNums(NIC(J, L)) =
{locnum(L)}.

(30) If S is realistic and J is sequential, then LocNums(NIC(J, L)) =
{locnum(NextLoc L)}.

Let N be a set with non empty elements, let S be a standard IC-Ins-separated
definite non empty non void AMI over N , and let M be a subset of the instruc-
tion locations of S. The functor LocSeq(M) yielding a transfinite sequence of
elements of the instruction locations of S is defined as follows:

(Def. 4) dom LocSeq(M) = M and for every set m such that m ∈ M holds
(LocSeq(M))(m) = ilS((the canonical isomorphism between ⊆⊆

LocNums(M)

and ⊆LocNums(M))(m)).
One can prove the following proposition

(31) If F = {ilS(n)}, then LocSeq(F ) = 0 7−→. ilS(n).
Let N be a set with non empty elements, let S be a standard IC-Ins-separated

definite non empty non void AMI over N , and let M be a subset of the instruc-
tion locations of S. Note that LocSeq(M) is one-to-one.

Let N be a set with non empty elements, let S be a standard IC-Ins-separated
definite non empty non void AMI over N , and let M be a finite partial state
of S. The functor ExecTree(M) yields a tree decorated with elements of the
instruction locations of S and is defined by the conditions (Def. 5).

(Def. 5)(i) (ExecTree(M))(∅) = FirstLoc(M), and
(ii) for every element t of dom ExecTree(M) holds succ t = {ta〈k〉; k ranges

over natural numbers: k ∈ NIC(π(ExecTree(M))(t)M, (ExecTree(M))(t))}
and for every natural number m such that

m ∈ NIC(π(ExecTree(M))(t)M, (ExecTree(M))(t)) holds (ExecTree(M))(t a

〈m〉) = (LocSeq(NIC(π(ExecTree(M))(t)M, (ExecTree(M))(t))))(m).
One can prove the following proposition

(32) For every standard halting realistic IC-Ins-separated definite non empty
non void AMI S over N holds ExecTree(Stop S) = TrivialInfiniteTree 7−→
ilS(0).
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Summary. In this article, the basic properties of linear spaces which are
defined as the set of all linear operators from one linear space to another, are
described. Especially, the Banach space is introduced. This is defined by the set
of all bounded linear operators.

MML Identifier: LOPBAN 1.

The notation and terminology used in this paper are introduced in the following
articles: [26], [6], [24], [31], [27], [33], [32], [4], [5], [16], [23], [22], [3], [1], [2], [21],
[28], [9], [7], [30], [14], [25], [17], [29], [19], [18], [8], [20], [13], [11], [12], [10], and
[15].

1. Real Vector Space of Operators

Let X be a set, let Y be a non empty set, let F be a function from [:R, Y :]
into Y , let a be a real number, and let f be a function from X into Y . Then
F ◦(a, f) is an element of Y X .

One can prove the following propositions:

(1) Let X be a non empty set and Y be a non empty loop structure. Then
there exists a binary operation A1 on (the carrier of Y )X such that for
all elements f , g of (the carrier of Y )X holds A1(f, g) = (the addition of
Y )◦(f, g).

(2) Let X be a non empty set and Y be a real linear space. Then there exists
a function M1 from [:R, (the carrier of Y )X :] into (the carrier of Y )X such
that for every real number r and for every element f of (the carrier of
Y )X and for every element s of X holds M1(〈〈r, f〉〉)(s) = r · f(s).
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Let X be a non empty set and let Y be a non empty loop structure. The
functor FuncAdd(X, Y ) yields a binary operation on (the carrier of Y )X and is
defined by:

(Def. 1) For all elements f , g of (the carrier of Y )X holds (FuncAdd(X, Y ))(f,

g) = (the addition of Y )◦(f, g).
Let X be a non empty set and let Y be a real linear space. The functor

FuncExtMult(X, Y ) yields a function from [:R, (the carrier of Y )X :] into (the
carrier of Y )X and is defined by the condition (Def. 2).

(Def. 2) Let a be a real number, f be an element of (the carrier of Y )X , and x

be an element of X. Then (FuncExtMult(X, Y ))(〈〈a, f〉〉)(x) = a · f(x).
Let X be a set and let Y be a non empty zero structure. The functor

FuncZero(X, Y ) yielding an element of (the carrier of Y )X is defined as fol-
lows:

(Def. 3) FuncZero(X, Y ) = X 7−→ 0Y .

We adopt the following rules: X is a non empty set, Y is a real linear space,
and f , g, h are elements of (the carrier of Y )X .

The following two propositions are true:

(3) Let Y be a non empty loop structure and f , g, h be elements of (the
carrier of Y )X . Then h = (FuncAdd(X, Y ))(f, g) if and only if for every
element x of X holds h(x) = f(x) + g(x).

(4) For every element x of X holds (FuncZero(X, Y ))(x) = 0Y .

In the sequel a, b are real numbers.
The following propositions are true:

(5) h = (FuncExtMult(X, Y ))(〈〈a, f〉〉) iff for every element x of X holds
h(x) = a · f(x).

(6) (FuncAdd(X,Y ))(f, g) = (FuncAdd(X, Y ))(g, f).
(7) (FuncAdd(X,Y ))(f, (FuncAdd(X, Y ))(g, h)) = (FuncAdd(X,Y ))

((FuncAdd(X, Y ))(f, g), h).
(8) (FuncAdd(X,Y ))(FuncZero(X, Y ), f) = f.

(9) (FuncAdd(X,Y ))(f, (FuncExtMult(X, Y ))(〈〈−1, f〉〉)) = FuncZero(X, Y ).
(10) (FuncExtMult(X, Y ))(〈〈1, f〉〉) = f.

(11) (FuncExtMult(X, Y ))(〈〈a, (FuncExtMult(X, Y ))(〈〈b, f〉〉)〉〉) =
(FuncExtMult(X,Y ))(〈〈a · b, f〉〉).

(12) (FuncAdd(X,Y ))((FuncExtMult(X, Y ))(〈〈a, f〉〉), (FuncExtMult(X, Y ))
(〈〈b, f〉〉)) = (FuncExtMult(X, Y ))(〈〈a + b, f〉〉).

(13) 〈(the carrier of Y )X , FuncZero(X, Y ), FuncAdd(X, Y ), FuncExtMult
(X, Y )〉 is a real linear space.

Let X be a non empty set and let Y be a real linear space. The functor
RealVectSpace(X,Y ) yields a real linear space and is defined as follows:
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(Def. 4) RealVectSpace(X, Y ) = 〈(the carrier of Y )X , FuncZero(X, Y ),
FuncAdd(X,Y ), FuncExtMult(X, Y )〉.

Let X be a non empty set and let Y be a real linear space. One can check
that RealVectSpace(X,Y ) is strict.

Let X be a non empty set and let Y be a real linear space. Note that every
vector of RealVectSpace(X,Y ) is function-like and relation-like.

Let X be a non empty set, let Y be a real linear space, let f be a vector of
RealVectSpace(X,Y ), and let x be an element of X. Then f(x) is a vector of
Y .

One can prove the following propositions:

(14) Let X be a non empty set, Y be a real linear space, and f , g, h be vectors
of RealVectSpace(X,Y ). Then h = f + g if and only if for every element
x of X holds h(x) = f(x) + g(x).

(15) Let X be a non empty set, Y be a real linear space, f , h be vectors of
RealVectSpace(X, Y ), and a be a real number. Then h = a · f if and only
if for every element x of X holds h(x) = a · f(x).

(16) For every non empty set X and for every real linear space Y holds
0RealVectSpace(X,Y ) = X 7−→ 0Y .

2. Real Vector Space of Linear Operators

Let X be a non empty RLS structure, let Y be a non empty loop structure,
and let I1 be a function from X into Y . We say that I1 is additive if and only
if:

(Def. 5) For all vectors x, y of X holds I1(x + y) = I1(x) + I1(y).
Let X, Y be non empty RLS structures and let I1 be a function from X into

Y . We say that I1 is homogeneous if and only if:

(Def. 6) For every vector x of X and for every real number r holds I1(r · x) =
r · I1(x).

Let X be a non empty RLS structure and let Y be a real linear space. Note
that there exists a function from X into Y which is additive and homogeneous.

Let X, Y be real linear spaces. A linear operator from X into Y is an additive
homogeneous function from X into Y .

Let X, Y be real linear spaces. The functor LinearOperators(X, Y ) yields a
subset of RealVectSpace(the carrier of X, Y ) and is defined as follows:

(Def. 7) For every set x holds x ∈ LinearOperators(X,Y ) iff x is a linear operator
from X into Y .

Let X, Y be real linear spaces. Note that LinearOperators(X, Y ) is non
empty.

One can prove the following propositions:
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(17) For all real linear spaces X, Y holds LinearOperators(X,Y ) is linearly
closed.

(18) Let X, Y be real linear spaces. Then 〈LinearOperators(X,Y ),
Zero (LinearOperators(X,Y ), RealVectSpace(the carrier of X, Y )),
Add (LinearOperators(X, Y ), RealVectSpace(the carrier of X, Y )),
Mult (LinearOperators(X,Y ), RealVectSpace(the carrier of X, Y ))〉 is a
subspace of RealVectSpace(the carrier of X, Y ).

Let X, Y be real linear spaces. One can verify that 〈LinearOperators(X, Y ),
Zero (LinearOperators(X, Y ), RealVectSpace(the carrier of X, Y )),
Add (LinearOperators(X,Y ), RealVectSpace(the carrier of X, Y )),
Mult (LinearOperators(X, Y ), RealVectSpace(the carrier of X, Y ))〉 is Abe-

lian, add-associative, right zeroed, right complementable, and real linear space-
like.

One can prove the following proposition

(19) Let X, Y be real linear spaces. Then 〈LinearOperators(X,Y ),
Zero (LinearOperators(X,Y ), RealVectSpace(the carrier of X, Y )),
Add (LinearOperators(X, Y ), RealVectSpace(the carrier of X, Y )),
Mult (LinearOperators(X,Y ), RealVectSpace(the carrier of X, Y ))〉 is a
real linear space.

Let X, Y be real linear spaces. The functor RVectorSpaceOfLinearOperators
(X, Y ) yielding a real linear space is defined as follows:

(Def. 8) RVectorSpaceOfLinearOperators(X, Y ) = 〈LinearOperators(X, Y ),
Zero (LinearOperators(X,Y ), RealVectSpace(the carrier of X, Y )),
Add (LinearOperators(X, Y ), RealVectSpace(the carrier of X, Y )),
Mult (LinearOperators(X,Y ), RealVectSpace(the carrier of X, Y ))〉.

Let X, Y be real linear spaces. Observe that RVectorSpaceOfLinearOperators
(X, Y ) is strict.
Let X, Y be real linear spaces. Note that every element of

RVectorSpaceOfLinearOperators(X,Y ) is function-like and relation-like.
Let X, Y be real linear spaces, let f be an element of
RVectorSpaceOfLinearOperators(X,Y ), and let v be a vector of X. Then

f(v) is a vector of Y .
We now state four propositions:

(20) Let X, Y be real linear spaces and f , g, h be vectors of
RVectorSpaceOfLinearOperators(X, Y ). Then h = f + g if and only if
for every vector x of X holds h(x) = f(x) + g(x).

(21) Let X, Y be real linear spaces, f , h be vectors
of RVectorSpaceOfLinearOperators(X, Y ), and a be a real number. Then
h = a · f if and only if for every vector x of X holds h(x) = a · f(x).
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(22) For all real linear spaces X, Y holds 0RVectorSpaceOfLinearOperators(X,Y ) =
(the carrier of X) 7−→ 0Y .

(23) For all real linear spaces X, Y holds (the carrier of X) 7−→ 0Y is a linear
operator from X into Y .

3. Real Normed Linear Space of Bounded Linear Operators

One can prove the following proposition

(24) Let X be a real normed space, s1 be a sequence of X, and g be a point
of X. If s1 is convergent and lim s1 = g, then ‖s1‖ is convergent and
lim‖s1‖ = ‖g‖.

Let X, Y be real normed spaces and let I1 be a linear operator from X into
Y . We say that I1 is bounded if and only if:

(Def. 9) There exists a real number K such that 0 ¬ K and for every vector x of
X holds ‖I1(x)‖ ¬ K · ‖x‖.

Next we state the proposition

(25) Let X, Y be real normed spaces and f be a linear operator from X into
Y . If for every vector x of X holds f(x) = 0Y , then f is bounded.

Let X, Y be real normed spaces. One can check that there exists a linear
operator from X into Y which is bounded.

Let X, Y be real normed spaces. The functor BoundedLinearOperators(X,Y )
yields a subset of RVectorSpaceOfLinearOperators(X,Y ) and is defined by:

(Def. 10) For every set x holds x ∈ BoundedLinearOperators(X, Y ) iff x is a bo-
unded linear operator from X into Y .

Let X, Y be real normed spaces. One can verify that BoundedLinearOperators
(X, Y ) is non empty.
One can prove the following two propositions:

(26) For all real normed spaces X, Y holds BoundedLinearOperators(X, Y )
is linearly closed.

(27) For all real normed spaces X, Y holds 〈BoundedLinearOperators(X, Y ),
Zero (BoundedLinearOperators(X,Y ), RVectorSpaceOfLinearOperators
(X, Y )), Add (BoundedLinearOperators(X,Y ),
RVectorSpaceOfLinearOperators(X, Y )), Mult (BoundedLinearOperators
(X, Y ), RVectorSpaceOfLinearOperators(X,Y ))〉 is a subspace
of RVectorSpaceOfLinearOperators(X, Y ).

Let X, Y be real normed spaces.
Observe that 〈BoundedLinearOperators(X, Y ),
Zero (BoundedLinearOperators(X, Y ), RVectorSpaceOfLinearOperators(X,

Y )), Add (BoundedLinearOperators(X, Y ), RVectorSpaceOfLinearOperators
(X, Y )), Mult (BoundedLinearOperators(X, Y ),
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RVectorSpaceOfLinearOperators(X,Y ))〉 is Abelian, add-associative, right
zeroed, right complementable, and real linear space-like.

One can prove the following proposition

(28) For all real normed spaces X, Y holds 〈BoundedLinearOperators(X, Y ),
Zero (BoundedLinearOperators(X, Y ), RVectorSpaceOfLinearOperators
(X, Y )), Add (BoundedLinearOperators(X,Y ),
RVectorSpaceOfLinearOperators(X, Y )),
Mult (BoundedLinearOperators(X, Y ), RVectorSpaceOfLinearOperators
(X, Y ))〉 is a real linear space.

Let X, Y be real normed spaces.
The functor RVectorSpaceOfBoundedLinearOperators(X, Y ) yields a real li-

near space and is defined by:

(Def. 11) RVectorSpaceOfBoundedLinearOperators(X, Y ) =
〈BoundedLinearOperators(X,Y ), Zero (BoundedLinearOperators(X, Y ),
RVectorSpaceOfLinearOperators(X, Y )), Add (BoundedLinearOperators
(X, Y ), RVectorSpaceOfLinearOperators(X,Y )),
Mult (BoundedLinearOperators(X, Y ), RVectorSpaceOfLinearOperators
(X, Y ))〉.

Let X, Y be real normed spaces.
Observe that RVectorSpaceOfBoundedLinearOperators(X,Y ) is strict.
Let X, Y be real normed spaces. Note that every element of

RVectorSpaceOfBoundedLinearOperators(X,Y ) is function-like and relation-
like.

Let X, Y be real normed spaces, let f be an element of
RVectorSpaceOfBoundedLinearOperators(X,Y ), and let v be a vector of X.
Then f(v) is a vector of Y .

One can prove the following propositions:

(29) Let X, Y be real normed spaces and f , g, h be vectors of
RVectorSpaceOfBoundedLinearOperators(X, Y ). Then h = f + g if and
only if for every vector x of X holds h(x) = f(x) + g(x).

(30) Let X, Y be real normed spaces, f , h be vectors
of RVectorSpaceOfBoundedLinearOperators(X, Y ), and a be a real num-
ber. Then h = a · f if and only if for every vector x of X holds
h(x) = a · f(x).

(31) For all real normed spaces X, Y holds
0RVectorSpaceOfBoundedLinearOperators(X,Y ) = (the carrier of X) 7−→ 0Y .

Let X, Y be real normed spaces and let f be a set. Let us assume that
f ∈ BoundedLinearOperators(X, Y ). The functor modetrans(f, X, Y ) yields a
bounded linear operator from X into Y and is defined by:

(Def. 12) modetrans(f, X, Y ) = f.
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Let X, Y be real normed spaces and let u be a linear operator from X into
Y . The functor PreNorms(u) yielding a non empty subset of R is defined as
follows:

(Def. 13) PreNorms(u) = {‖u(t)‖; t ranges over vectors of X: ‖t‖ ¬ 1}.
We now state three propositions:

(32) Let X, Y be real normed spaces and g be a bounded linear operator
from X into Y . Then PreNorms(g) is non empty and upper bounded.

(33) Let X, Y be real normed spaces and g be a linear operator from X into
Y . Then g is bounded if and only if PreNorms(g) is upper bounded.

(34) Let X, Y be real normed spaces. Then there exists a func-
tion N1 from BoundedLinearOperators(X, Y ) into R such that for
every set f if f ∈ BoundedLinearOperators(X,Y ), then N1(f) =
sup PreNorms(modetrans(f,X, Y )).

Let X, Y be real normed spaces. The functor BoundedLinearOperatorsNorm
(X, Y ) yielding a function from BoundedLinearOperators(X,Y ) into R is

defined as follows:

(Def. 14) For every set x such that x ∈ BoundedLinearOperators(X, Y ) holds
(BoundedLinearOperatorsNorm(X,Y ))(x) = sup PreNorms(modetrans(x,

X, Y )).

The following two propositions are true:

(35) For all real normed spaces X, Y and for every bounded linear operator
f from X into Y holds modetrans(f, X, Y ) = f.

(36) For all real normed spaces X, Y and for every bounded linear opera-
tor f from X into Y holds (BoundedLinearOperatorsNorm(X, Y ))(f) =
sup PreNorms(f).

Let X, Y be real normed spaces.
The functor RNormSpaceOfBoundedLinearOperators(X,Y ) yielding a non

empty normed structure is defined as follows:

(Def. 15) RNormSpaceOfBoundedLinearOperators(X, Y ) =
〈BoundedLinearOperators(X, Y ), Zero (BoundedLinearOperators(X,Y ),
RVectorSpaceOfLinearOperators(X, Y )), Add (BoundedLinearOperators
(X, Y ), RVectorSpaceOfLinearOperators(X,Y )),
Mult (BoundedLinearOperators(X,Y ), RVectorSpaceOfLinearOperators
(X, Y )), BoundedLinearOperatorsNorm(X, Y )〉.

The following propositions are true:

(37) For all real normed spaces X, Y holds (the carrier of X) 7−→ 0Y =
0RNormSpaceOfBoundedLinearOperators(X,Y ).

(38) Let X, Y be real normed spaces, f be a point
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of RNormSpaceOfBoundedLinearOperators(X, Y ), and g be a bounded
linear operator from X into Y . If g = f, then for every vector t of X holds
‖g(t)‖ ¬ ‖f‖ · ‖t‖.

(39) For all real normed spaces X, Y and for every point f of
RNormSpaceOfBoundedLinearOperators(X,Y ) holds 0 ¬ ‖f‖.

(40) For all real normed spaces X, Y and for every point f

of RNormSpaceOfBoundedLinearOperators(X, Y ) such that f =
0RNormSpaceOfBoundedLinearOperators(X,Y ) holds 0 = ‖f‖.

Let X, Y be real normed spaces. Observe that every element of
RNormSpaceOfBoundedLinearOperators(X, Y ) is function-like and relation-
like.

Let X, Y be real normed spaces, let f be an element of
RNormSpaceOfBoundedLinearOperators(X, Y ), and let v be a vector of X.
Then f(v) is a vector of Y .

The following propositions are true:

(41) Let X, Y be real normed spaces and f , g, h be points of
RNormSpaceOfBoundedLinearOperators(X,Y ). Then h = f + g if and
only if for every vector x of X holds h(x) = f(x) + g(x).

(42) Let X, Y be real normed spaces, f , h be points
of RNormSpaceOfBoundedLinearOperators(X,Y ), and a be a real num-
ber. Then h = a · f if and only if for every vector x of X holds
h(x) = a · f(x).

(43) Let X be a real normed space, Y be a real normed space, f , g be points of
RNormSpaceOfBoundedLinearOperators(X,Y ), and a be a real number.
Then ‖f‖ = 0 iff f = 0RNormSpaceOfBoundedLinearOperators(X,Y ) and ‖a · f‖ =
|a| · ‖f‖ and ‖f + g‖ ¬ ‖f‖+ ‖g‖.

(44) For all real normed spaces X, Y holds
RNormSpaceOfBoundedLinearOperators(X,Y ) is real normed space-like.

(45) For all real normed spaces X, Y holds
RNormSpaceOfBoundedLinearOperators(X,Y ) is a real normed space.

Let X, Y be real normed spaces.
Note that RNormSpaceOfBoundedLinearOperators(X, Y ) is real normed

space-like, real linear space-like, Abelian, add-associative, right zeroed, and right
complementable.

One can prove the following proposition

(46) Let X, Y be real normed spaces and f , g, h be points of
RNormSpaceOfBoundedLinearOperators(X,Y ). Then h = f − g if and
only if for every vector x of X holds h(x) = f(x)− g(x).
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4. Real Banach Space of Bounded Linear Operators

Let X be a real normed space. We say that X is complete if and only if:

(Def. 16) For every sequence s1 of X such that s1 is Cauchy sequence by norm
holds s1 is convergent.

Let us note that there exists a real normed space which is complete.
A real Banach space is a complete real normed space.
We now state three propositions:

(47) Let X be a real normed space and s1 be a sequence of X. If s1 is conver-
gent, then ‖s1‖ is convergent and lim‖s1‖ = ‖lim s1‖.

(48) Let X, Y be real normed spaces. Suppose Y is complete. Let s1 be a se-
quence of RNormSpaceOfBoundedLinearOperators(X,Y ). If s1 is Cauchy
sequence by norm, then s1 is convergent.

(49) For every real normed space X and for every real Banach space Y holds
RNormSpaceOfBoundedLinearOperators(X, Y ) is a real Banach space.

Let X be a real normed space and let Y be a real Banach space. Observe
that RNormSpaceOfBoundedLinearOperators(X, Y ) is complete.
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Summary. We present a formalization of the factor theorem for univariate
polynomials, also called the (little) Bezout theorem: Let r belong to a commuta-
tive ring L and p(x) be a polynomial over L. Then x− r divides p(x) iff p(r) = 0.
We also prove some consequences of this theorem like that any non zero po-
lynomial of degree n over an algebraically closed integral domain has n (non
necessarily distinct) roots.

MML Identifier: UPROOTS.

The articles [28], [37], [26], [10], [2], [27], [36], [15], [20], [38], [7], [8], [3], [6], [35],
[32], [24], [23], [11], [21], [16], [19], [17], [18], [1], [12], [33], [29], [22], [9], [34], [4],
[25], [39], [13], [30], [14], [31], and [5] provide the notation and terminology for
this paper.

1. Preliminaries

One can prove the following propositions:

(1) For every natural number n holds n is non empty iff n = 1 or n > 1.

(2) Let f be a finite sequence of elements of N. Suppose that for every
natural number i such that i ∈ dom f holds f(i) 6= 0. Then

∑
f = len f

if and only if f = len f 7→ 1.

The scheme IndFinSeq0 deals with a finite sequenceA and a binary predicate
P, and states that:

For every natural number i such that 1 ¬ i and i ¬ lenA holds
P[i,A(i)]

1This work has been supported by NSERC Grant OGP9207.
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provided the parameters meet the following requirements:
• P[1,A(1)], and
• For every natural number i such that 1 ¬ i and i < lenA holds if
P[i,A(i)], then P[i + 1,A(i + 1)].

We now state the proposition

(3) Let L be an add-associative right zeroed right complementable non
empty loop structure and r be a finite sequence of elements of L. Suppose
len r ­ 2 and for every natural number k such that 2 < k and k ∈ dom r

holds r(k) = 0L. Then
∑

r = r1 + r2.

2. Canonical Ordering of a Finite Set

Let A be a finite set. The functor CFS(A) yielding a finite sequence of
elements of A is defined by the conditions (Def. 1).

(Def. 1)(i) len CFS(A) = card A, and
(ii) there exists a finite sequence f such that len f = card A and f(1) =
〈〈 choose(A), A\{choose(A)}〉〉 or card A = 0 and for every natural number
i such that 1 ¬ i and i < card A and for every set x such that f(i) = x

holds f(i + 1) = 〈〈 choose(x2), x2 \ {choose(x2)}〉〉 and for every natural
number i such that i ∈ dom CFS(A) holds (CFS(A))(i) = f(i)1.

The following four propositions are true:

(4) For every finite set A holds CFS(A) is one-to-one.

(5) For every finite set A holds rng CFS(A) = A.

(6) For every set a holds CFS({a}) = 〈a〉.
(7) For every finite set A holds (CFS(A))−1 is a function from A into

Seg card A.

3. More about Bags

Let X be a set, let S be a finite subset of X, and let n be a natural number.
The functor (S, n) -bag yields an element of Bags X and is defined by:

(Def. 2) (S, n) -bag = EmptyBag X+·(S 7−→ n).
We now state several propositions:

(8) Let X be a set, S be a finite subset of X, n be a natural number, and i

be a set. If i /∈ S, then ((S, n) -bag)(i) = 0.

(9) Let X be a set, S be a finite subset of X, n be a natural number, and i

be a set. If i ∈ S, then ((S, n) -bag)(i) = n.

(10) For every set X and for every finite subset S of X and for every natural
number n such that n 6= 0 holds support(S, n) -bag = S.
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(11) Let X be a set, S be a finite subset of X, and n be a natural number. If
S is empty or n = 0, then (S, n) -bag = EmptyBag X.

(12) Let X be a set, S, T be finite subsets of X, and n be a natural number.
If S misses T , then (S ∪ T, n) -bag = (S, n) -bag +(T, n) -bag .

Let A be a set and let b be a bag of A. The functor degree(b) yielding a
natural number is defined as follows:

(Def. 3) There exists a finite sequence f of elements of N such that degree(b) =∑
f and f = b · CFS(support b).

We now state several propositions:

(13) For every set A and for every bag b of A holds b = EmptyBag A iff
degree(b) = 0.

(14) Let A be a set, S be a finite subset of A, and b be a bag of A. Then
S = support b and degree(b) = card S if and only if b = (S, 1) -bag .

(15) Let A be a set, S be a finite subset of A, and b be a bag of A. Suppose
support b ⊆ S. Then there exists a finite sequence f of elements of N such
that f = b · CFS(S) and degree(b) =

∑
f.

(16) For every set A and for all bags b, b1, b2 of A such that b = b1 + b2 holds
degree(b) = degree(b1) + degree(b2).

(17) Let L be an associative commutative unital non empty groupoid, f , g

be finite sequences of elements of L, and p be a permutation of dom f. If
g = f · p, then

∏
g =

∏
f.

4. More on Polynomials

Let L be a non empty zero structure and let p be a polynomial of L. We say
that p is non-zero if and only if:

(Def. 4) p 6= 0. L.

One can prove the following proposition

(18) For every non empty zero structure L and for every polynomial p of L

holds p is non-zero iff len p > 0.

Let L be a non trivial non empty zero structure. Note that there exists a
polynomial of L which is non-zero.

Let L be a non degenerated non empty multiplicative loop with zero struc-
ture and let x be an element of L. Note that 〈x, 1L〉 is non-zero.

Next we state three propositions:

(19) For every non empty zero structure L and for every polynomial p of L

such that len p > 0 holds p(len p−′ 1) 6= 0L.

(20) Let L be a non empty zero structure and p be an algebraic sequence of
L. If len p = 1, then p = 〈p(0)〉 and p(0) 6= 0L.
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(21) Let L be an add-associative right zeroed right complementable right
distributive non empty double loop structure and p be a polynomial of L.
Then p ∗ 0. L = 0. L.

Let us mention that there exists a well unital non empty double loop struc-
ture which is algebraic-closed, add-associative, right zeroed, right complemen-
table, Abelian, commutative, associative, distributive, integral domain-like, and
non degenerated.

We now state the proposition

(22) Let L be an add-associative right zeroed right complementable distri-
butive integral domain-like non empty double loop structure and p, q be
polynomials of L. If p ∗ q = 0. L, then p = 0. L or q = 0. L.

Let L be an add-associative right zeroed right complementable distri-
butive integral domain-like non empty double loop structure. Observe that
Polynom-Ring L is integral domain-like.

Let L be an integral domain and let p, q be non-zero polynomials of L. One
can check that p ∗ q is non-zero.

We now state a number of propositions:

(23) For every non degenerated commutative ring L and for all polynomials
p, q of L holds Roots p ∪ Roots q ⊆ Roots(p ∗ q).

(24) For every integral domain L and for all polynomials p, q of L holds
Roots(p ∗ q) = Roots p ∪ Roots q.

(25) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure, p be a polynomial of L, and p1 be
an element of Polynom-Ring L. If p = p1, then −p = −p1.

(26) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure, p, q be polynomials of L, and p1, q1

be elements of Polynom-Ring L. If p = p1 and q = q1, then p−q = p1−q1.

(27) Let L be an Abelian add-associative right zeroed right complementable
distributive non empty double loop structure and p, q, r be polynomials
of L. Then p ∗ q − p ∗ r = p ∗ (q − r).

(28) Let L be an add-associative right zeroed right complementable distri-
butive non empty double loop structure and p, q be polynomials of L. If
p− q = 0. L, then p = q.

(29) Let L be an Abelian add-associative right zeroed right complementable
distributive integral domain-like non empty double loop structure and p,
q, r be polynomials of L. If p 6= 0. L and p ∗ q = p ∗ r, then q = r.

(30) Let L be an integral domain, n be a natural number, and p be a poly-
nomial of L. If p 6= 0. L, then pn 6= 0. L.

(31) For every commutative ring L and for all natural numbers i, j and for
every polynomial p of L holds pi ∗ pj = pi+j .
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(32) For every non empty multiplicative loop with zero structure L holds
1. L = 〈1L〉.

(33) Let L be an add-associative right zeroed right complementable right
unital right distributive non empty double loop structure and p be a po-
lynomial of L. Then p ∗ 〈1L〉 = p.

(34) Let L be an add-associative right zeroed right complementable distri-
butive non empty double loop structure and p, q be polynomials of L. If
len p = 0 or len q = 0, then len(p ∗ q) = 0.

(35) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure and p, q be polynomials of L. If p∗ q
is non-zero, then p is non-zero and q is non-zero.

(36) Let L be an add-associative right zeroed right complementable distribu-
tive commutative associative left unital non empty double loop structure
and p, q be polynomials of L. If p(len p −′ 1) · q(len q −′ 1) 6= 0L, then
0 < len(p ∗ q).

(37) Let L be an add-associative right zeroed right complementable distri-
butive commutative associative left unital integral domain-like non empty
double loop structure and p, q be polynomials of L. If 1 < len p and
1 < len q, then len p < len(p ∗ q).

(38) Let L be an add-associative right zeroed right complementable left di-
stributive non empty double loop structure, a, b be elements of L, and p

be a polynomial of L. Then (〈a, b〉 ∗ p)(0) = a · p(0) and for every natural
number i holds (〈a, b〉 ∗ p)(i + 1) = a · p(i + 1) + b · p(i).

(39) Let L be an add-associative right zeroed right complementable distri-
butive well unital commutative associative non degenerated non empty
double loop structure, r be an element of L, and q be a non-zero polyno-
mial of L. Then len(〈r, 1L〉 ∗ q) = len q + 1.

(40) Let L be a non degenerated commutative ring, x be an element of L,
and i be a natural number. Then len(〈x, 1L〉i) = i + 1.

Let L be a non degenerated commutative ring, let x be an element of L, and
let n be a natural number. Note that 〈x, 1L〉n is non-zero.

Next we state two propositions:

(41) Let L be a non degenerated commutative ring, x be an element of L, q be
a non-zero polynomial of L, and i be a natural number. Then len(〈x, 1L〉i∗
q) = i + len q.

(42) Let L be an add-associative right zeroed right complementable distri-
butive well unital commutative associative non degenerated non empty
double loop structure, r be an element of L, and p, q be polynomials of L.
If p = 〈r, 1L〉 ∗ q and p(len p−′ 1) = 1L, then q(len q −′ 1) = 1L.
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5. Little Bezout Theorem

Let L be a non empty zero structure, let p be a polynomial of L, and let n

be a natural number. The functor poly shift(p, n) yields a polynomial of L and
is defined by:

(Def. 5) For every natural number i holds (poly shift(p, n))(i) = p(n + i).
We now state several propositions:

(43) For every non empty zero structure L and for every polynomial p of L

holds poly shift(p, 0) = p.

(44) Let L be a non empty zero structure, n be a natural number, and p be
a polynomial of L. If n ­ len p, then poly shift(p, n) = 0. L.

(45) Let L be a non degenerated non empty multiplicative loop with zero
structure, n be a natural number, and p be a polynomial of L. If n ¬ len p,

then len poly shift(p, n) + n = len p.

(46) Let L be a non degenerated commutative ring, x be an element of L,
n be a natural number, and p be a polynomial of L. If n < len p, then
eval(poly shift(p, n), x) = x · eval(poly shift(p, n + 1), x) + p(n).

(47) For every non degenerated commutative ring L and for every polynomial
p of L such that len p = 1 holds Roots p = ∅.

Let L be a non degenerated commutative ring, let r be an element of L, and
let p be a polynomial of L. Let us assume that r is a root of p. The functor
poly quotient(p, r) yielding a polynomial of L is defined as follows:

(Def. 6)(i) len poly quotient(p, r) + 1 = len p and for every natural number i

holds (poly quotient(p, r))(i) = eval(poly shift(p, i + 1), r) if len p > 0,

(ii) poly quotient(p, r) = 0. L, otherwise.

Next we state several propositions:

(48) Let L be a non degenerated commutative ring, r be an element of
L, and p be a non-zero polynomial of L. If r is a root of p, then
len poly quotient(p, r) > 0.

(49) Let L be an add-associative right zeroed right complementable left di-
stributive well unital non empty double loop structure and x be an element
of L. Then Roots〈−x, 1L〉 = {x}.

(50) Let L be a non trivial commutative ring, x be an element of L, and p, q

be polynomials of L. If p = 〈−x, 1L〉 ∗ q, then x is a root of p.

(51) Let L be a non degenerated commutative ring, r be an element of L,
and p be a polynomial of L. If r is a root of p, then p = 〈−r, 1L〉 ∗
poly quotient(p, r).

(52) Let L be a non degenerated commutative ring, r be an element of L,
and p, q be polynomials of L. If p = 〈−r, 1L〉 ∗ q, then r is a root of p.



little bezout theorem (factor theorem) 55

6. Polynomials Defined by Roots

Let L be an integral domain and let p be a non-zero polynomial of L. One
can verify that Roots p is finite.

Let L be a non degenerated commutative ring, let x be an element of L,
and let p be a non-zero polynomial of L. The functor multiplicity(p, x) yields a
natural number and is defined by the condition (Def. 7).

(Def. 7) There exists a finite non empty subset F of N such that F = {k; k
ranges over natural numbers:

∨
q : polynomial of L p = 〈−x, 1L〉k ∗ q} and

multiplicity(p, x) = max F.

Next we state two propositions:

(53) Let L be a non degenerated commutative ring, p be a non-zero polyno-
mial of L, and x be an element of L. Then x is a root of p if and only if
multiplicity(p, x) ­ 1.

(54) For every non degenerated commutative ring L and for every element x

of L holds multiplicity(〈−x, 1L〉, x) = 1.

Let L be an integral domain and let p be a non-zero polynomial of L. The
functor BRoots(p) yields a bag of the carrier of L and is defined as follows:

(Def. 8) support BRoots(p) = Roots p and for every element x of L holds
(BRoots(p))(x) = multiplicity(p, x).

Next we state several propositions:

(55) For every integral domain L and for every element x of L holds
BRoots(〈−x, 1L〉) = ({x}, 1) -bag .

(56) Let L be an integral domain, x be an element of L, and p, q be non-
zero polynomials of L. Then multiplicity(p ∗ q, x) = multiplicity(p, x) +
multiplicity(q, x).

(57) For every integral domain L and for all non-zero polynomials p, q of L

holds BRoots(p ∗ q) = BRoots(p) + BRoots(q).
(58) For every integral domain L and for every non-zero polynomial p of L

such that len p = 1 holds degree(BRoots(p)) = 0.

(59) For every integral domain L and for every element x of L and for every
natural number n holds degree(BRoots(〈−x, 1L〉n)) = n.

(60) For every algebraic-closed integral domain L and for every non-zero po-
lynomial p of L holds degree(BRoots(p)) = len p−′ 1.

Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure, let c be an element of L, and let n be a natural
number. The functor fpoly mult root(c, n) yielding a finite sequence of elements
of Polynom-Ring L is defined as follows:

(Def. 9) len fpoly mult root(c, n) = n and for every natural number i such that
i ∈ dom fpoly mult root(c, n) holds (fpoly mult root(c, n))(i) = 〈−c, 1L〉.
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Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure and let b be a bag of the carrier of L. The func-
tor poly with roots(b) yields a polynomial of L and is defined by the condition
(Def. 10).

(Def. 10) There exists a finite sequence f of elements
of (the carrier of Polynom-Ring L)∗ and there exists a finite sequence s of
elements of L such that len f = card support b and s = CFS(support b)
and for every natural number i such that i ∈ dom f holds f(i) =
fpoly mult root(si, b(si)) and poly with roots(b) =

∏
Flat(f).

The following propositions are true:

(61) Let L be an Abelian add-associative right zeroed right complementable
commutative distributive right unital non empty double loop structure.
Then poly with roots(EmptyBag (the carrier of L)) = 〈1L〉.

(62) Let L be an add-associative right zeroed right complementable distri-
butive non empty double loop structure and c be an element of L. Then
poly with roots(({c}, 1) -bag) = 〈−c, 1L〉.

(63) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure, b be a bag of the carrier of L, f be
a finite sequence of elements of (the carrier of Polynom-Ring L)∗, and s

be a finite sequence of elements of L. Suppose len f = card support b and
s = CFS(support b) and for every natural number i such that i ∈ dom f

holds f(i) = fpoly mult root(si, b(si)). Then len Flat(f) = degree(b).

(64) Let L be an add-associative right zeroed right complementable distri-
butive non empty double loop structure, b be a bag of the carrier of L,
f be a finite sequence of elements of (the carrier of Polynom-Ring L)∗,
s be a finite sequence of elements of L, and c be an element of L such
that len f = card support b and s = CFS(support b) and for every natural
number i such that i ∈ dom f holds f(i) = fpoly mult root(si, b(si)). Then

(i) if c ∈ support b, then card(Flat(f)−1({〈−c, 1L〉})) = b(c), and
(ii) if c /∈ support b, then card(Flat(f)−1({〈−c, 1L〉})) = 0.

(65) For every commutative ring L and for all bags b1, b2 of the carrier of L

holds poly with roots(b1 +b2) = poly with roots(b1)∗poly with roots(b2).

(66) Let L be an algebraic-closed integral domain and p be a non-zero poly-
nomial of L. If p(len p−′ 1) = 1L, then p = poly with roots(BRoots(p)).

(67) Let L be a commutative ring, s be a non empty finite subset of L,
and f be a finite sequence of elements of Polynom-Ring L. Suppose
len f = card s and for every natural number i and for every element c

of L such that i ∈ dom f and c = (CFS(s))(i) holds f(i) = 〈−c, 1L〉. Then
poly with roots((s, 1) -bag) =

∏
f.

(68) Let L be a non trivial commutative ring, s be a non empty finite subset
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of L, x be an element of L, and f be a finite sequence of elements of
L. Suppose len f = card s and for every natural number i and for every
element c of L such that i ∈ dom f and c = (CFS(s))(i) holds f(i) =
eval(〈−c, 1L〉, x). Then eval(poly with roots((s, 1) -bag), x) =

∏
f.
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1. Preliminaries

One can prove the following proposition

(1) For every natural number n holds n = 0 or n = 1 or n ­ 2.

The scheme Comp Ind NE concerns a unary predicate P, and states that:
For every non empty natural number k holds P[k]

provided the parameters satisfy the following condition:
• For every non empty natural number k such that for every non

empty natural number n such that n < k holds P[n] holds P[k].
Next we state the proposition

(2) For every finite sequence f such that 1 ¬ len f holds f¹ Seg 1 = 〈f(1)〉.
The following propositions are true:
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(3) Let f be a finite sequence of elements of CF and g be a finite sequence of
elements of R. Suppose len f = len g and for every natural number i such
that i ∈ dom f holds |fi| = g(i). Then |∏ f | = ∏

g.

(4) Let s be a non empty finite subset of CF, x be an element of CF,
and r be a finite sequence of elements of R. Suppose len r = card s

and for every natural number i and for every element c of CF such
that i ∈ dom r and c = (CFS(s))(i) holds r(i) = |x − c|. Then
| eval(poly with roots((s, 1) -bag), x)| = ∏

r.

(5) Let f be a finite sequence of elements of CF. Suppose that for every
natural number i such that i ∈ dom f holds f(i) is integer. Then

∑
f is

integer.

(6) For every real number r there exists an element z of C such that z = r

and z = r + 0i.

(7) For all elements x, y of CF and for all real numbers r1, r2 such that
r1 = x and r2 = y holds r1 · r2 = x · y and r1 + r2 = x + y.

(8) Let q be a real number. Suppose q is an integer and q > 0. Let r be an
element of CF. If |r| = 1 and r 6= 1 + 0iCF , then |(q + 0iCF)− r| > q − 1.

(9) Let p1 be a non empty finite sequence of elements of R and x be a
real number. Suppose x ­ 1 and for every natural number i such that
i ∈ dom p1 holds p1(i) > x. Then

∏
p1 > x.

(10) For every natural number n holds 1CF = powerCF
(1CF , n).

(11) Let n be a non empty natural number and i be a natural number. Then
cos(2·π·i

n ) = cos(2·π·(i mod n)
n ) and sin(2·π·i

n ) = sin(2·π·(i mod n)
n ).

(12) For every non empty natural number n and for every natural number i

holds cos(2·π·i
n ) + sin(2·π·i

n )iCF = cos(2·π·(i mod n)
n ) + sin(2·π·(i mod n)

n )iCF .

(13) Let n be a non empty natural number and i, j be natural num-
bers. Then (cos(2·π·i

n ) + sin(2·π·i
n )iCF) · (cos(2·π·j

n ) + sin(2·π·j
n )iCF) =

cos(2·π·((i+j) mod n)
n ) + sin(2·π·((i+j) mod n)

n )iCF .

(14) Let L be a unital associative non empty groupoid, x be an element of L,
and n, m be natural numbers. Then powerL(x, n ·m) = powerL(powerL(x,

n), m).

(15) For every natural number n and for every element x of CF such that x

is an integer holds powerCF
(x, n) is an integer.

(16) Let F be a finite sequence of elements of CF. Suppose that for every
natural number i such that i ∈ dom F holds F (i) is an integer. Then

∑
F

is an integer.

(17) For every real number a such that 0 ¬ a and a < 2 · π and cos a = 1
holds a = 0.

Let us note that there exists a field which is finite and there exists a skew
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field which is finite.

2. Multiplicative Group of a Skew Field

Let R be a skew field. The functor MultGroup(R) yields a strict group and
is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of MultGroup(R) = (the carrier of R) \ {0R}, and
(ii) the multiplication of MultGroup(R) = (the multiplication of R)¹[: the

carrier of MultGroup(R), the carrier of MultGroup(R) :].
Next we state three propositions:

(18) For every skew field R holds the carrier of R = (the carrier of
MultGroup(R)) ∪ {0R}.

(19) Let R be a skew field, a, b be elements of R, and c, d be elements of
MultGroup(R). If a = c and b = d, then c · d = a · b.

(20) For every skew field R holds 1R = 1MultGroup(R).

Let R be a finite skew field. Observe that MultGroup(R) is finite.
We now state three propositions:

(21) For every finite skew field R holds ord(MultGroup(R)) = card (the car-
rier of R)− 1.

(22) For every skew field R and for every set s such that s ∈ the carrier of
MultGroup(R) holds s ∈ the carrier of R.

(23) For every skew field R holds the carrier of MultGroup(R) ⊆ the carrier
of R.

3. Roots of Unity

Let n be a non empty natural number. The functor n -roots of 1 yielding a
subset of CF is defined by:

(Def. 2) n -roots of 1 = {x; x ranges over elements of CF: x is a complex root of
n, 1CF}.

We now state several propositions:

(24) Let n be a non empty natural number and x be an element of CF. Then
x ∈ n -roots of 1 if and only if x is a complex root of n, 1CF .

(25) For every non empty natural number n holds 1CF ∈ n -roots of 1 .

(26) For every non empty natural number n and for every element x of CF

such that x ∈ n -roots of 1 holds |x| = 1.

(27) Let n be a non empty natural number and x be an element of CF. Then
x ∈ n -roots of 1 if and only if there exists a natural number k such that
x = cos(2·π·k

n ) + sin(2·π·k
n )iCF .
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(28) For every non empty natural number n and for all elements x, y of C
such that x ∈ n -roots of 1 and y ∈ n -roots of 1 holds x·y ∈ n -roots of 1 .

(29) For every non empty natural number n holds n -roots of 1 =
{cos(2·π·k

n ) + sin(2·π·k
n )iCF ; k ranges over natural numbers: k < n}.

(30) For every non empty natural number n holds n -roots of 1 = n.

Let n be a non empty natural number. One can check that n -roots of 1 is
non empty and n -roots of 1 is finite.

Next we state several propositions:

(31) For all non empty natural numbers n, n1 such that n1 | n holds
n1 -roots of 1 ⊆ n -roots of 1 .

(32) Let R be a skew field, x be an element of MultGroup(R), and y be
an element of R. If y = x, then for every natural number k holds
powerMultGroup(R)(x, k) = powerR(y, k).

(33) For every non empty natural number n and for every element x of
MultGroup(CF) such that x ∈ n -roots of 1 holds x is not of order 0.

(34) Let n be a non empty natural number, k be a natural number, and x

be an element of MultGroup(CF). If x = cos(2·π·k
n ) + sin(2·π·k

n )iCF , then
ord(x) = n÷ (k gcd n).

(35) For every non empty natural number n holds n -roots of 1 ⊆ the carrier
of MultGroup(CF).

(36) For every non empty natural number n there exists an element x of
MultGroup(CF) such that ord(x) = n.

(37) For every non empty natural number n and for every element x of
MultGroup(CF) holds ord(x) | n iff x ∈ n -roots of 1 .

(38) For every non empty natural number n holds n -roots of 1 = {x; x ranges
over elements of MultGroup(CF): ord(x) | n}.

(39) Let n be a non empty natural number and x be a set. Then x ∈
n -roots of 1 if and only if there exists an element y of MultGroup(CF)
such that x = y and ord(y) | n.

Let n be a non empty natural number. The functor n -th roots of 1 yielding
a strict group is defined as follows:

(Def. 3) The carrier of n -th roots of 1 = n -roots of 1 and the multiplica-
tion of n -th roots of 1 = (the multiplication of CF)¹[:n -roots of 1,

n -roots of 1 :].

One can prove the following proposition

(40) For every non empty natural number n holds n -th roots of 1 is a sub-
group of MultGroup(CF).
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4. The Unital Polynomial xn − 1

Let n be a non empty natural number and let L be a left unital non empty
double loop structure. The functor unital poly(L, n) yields a polynomial of L

and is defined as follows:

(Def. 4) unital poly(L, n) = 0. L +· (0,−1L) +· (n, 1L).
Next we state four propositions:

(41) unital poly(CF, 1) = 〈−1CF , 1CF〉.
(42) Let L be a left unital non empty double loop structure and n be

a non empty natural number. Then (unital poly(L, n))(0) = −1L and
(unital poly(L, n))(n) = 1L.

(43) Let L be a left unital non empty double loop structure, n be a non
empty natural number, and i be a natural number. If i 6= 0 and i 6= n,

then (unital poly(L, n))(i) = 0L.

(44) Let L be a non degenerated left unital non empty double loop structure
and n be a non empty natural number. Then len unital poly(L, n) = n+1.

Let L be a non degenerated left unital non empty double loop structure
and let n be a non empty natural number. Observe that unital poly(L, n) is
non-zero.

The following propositions are true:

(45) For every non empty natural number n and for every element x of CF

holds eval(unital poly(CF, n), x) = powerCF
(x, n)− 1.

(46) For every non empty natural number n holds Roots unital poly(CF, n) =
n -roots of 1 .

(47) Let n be a natural number and z be an element of CF. Suppose z is
a real number. Then there exists a real number x such that x = z and
powerCF

(z, n) = xn.

(48) Let n be a non empty natural number and x be a real number. Then there
exists an element y of CF such that y = x and eval(unital poly(CF, n), y) =
xn − 1.

(49) For every non empty natural number n holds BRoots(unital poly(CF, n)) =
(n -roots of 1, 1) -bag .

(50) For every non empty natural number n holds unital poly(CF, n) =
poly with roots((n -roots of 1, 1) -bag).

Let i be an integer and let n be a natural number. Then in is an integer.
The following proposition is true

(51) For every non empty natural number n and for every element i of CF

such that i is an integer holds eval(unital poly(CF, n), i) is an integer.
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5. Cyclotomic Polynomials

Let d be a non empty natural number. The functor cyclotomic poly(d) yields
a polynomial of CF and is defined by:

(Def. 5) There exists a non empty finite subset s of CF such that s = {y; y ranges
over elements of MultGroup(CF): ord(y) = d} and cyclotomic poly(d) =
poly with roots((s, 1) -bag).

The following propositions are true:

(52) cyclotomic poly(1) = 〈−1CF , 1CF〉.
(53) Let n be a non empty natural number and f be a finite sequence of

elements of the carrier of Polynom-Ring(CF). Suppose len f = n and for
every non empty natural number i such that i ∈ dom f holds if i - n,

then f(i) = 〈1CF〉 and if i | n, then f(i) = cyclotomic poly(i). Then
unital poly(CF, n) =

∏
f.

(54) Let n be a non empty natural number. Then there exists a finite sequ-
ence f of elements of the carrier of Polynom-Ring(CF) and there exists a
polynomial p of CF such that

(i) p =
∏

f,

(ii) dom f = Seg n,

(iii) for every non empty natural number i such that i ∈ Seg n holds if
i - n or i = n, then f(i) = 〈1CF〉 and if i | n and i 6= n, then f(i) =
cyclotomic poly(i), and

(iv) unital poly(CF, n) = cyclotomic poly(n) ∗ p.

(55) For every non empty natural number d and for every natural number
i holds (cyclotomic poly(d))(0) = 1 or (cyclotomic poly(d))(0) = −1 but
(cyclotomic poly(d))(i) is integer.

(56) For every non empty natural number d and for every element z of CF

such that z is an integer holds eval(cyclotomic poly(d), z) is an integer.

(57) Let n, n1 be non empty natural numbers, f be a finite sequence of
elements of the carrier of Polynom-Ring(CF), and s be a finite subset of
CF. Suppose that

(i) s = {y; y ranges over elements of MultGroup(CF): ord(y) | n ∧ ord(y) -
n1 ∧ ord(y) 6= n},

(ii) dom f = Seg n, and
(iii) for every non empty natural number i such that i ∈ dom f holds if i - n

or i | n1 or i = n, then f(i) = 〈1CF〉 and if i | n and i - n1 and i 6= n, then
f(i) = cyclotomic poly(i).
Then

∏
f = poly with roots((s, 1) -bag).

(58) Let n, n1 be non empty natural numbers. Suppose n1 < n and n1 |
n. Then there exists a finite sequence f of elements of the carrier of
Polynom-Ring(CF) and there exists a polynomial p of CF such that
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(i) p =
∏

f,

(ii) dom f = Seg n,

(iii) for every non empty natural number i such that i ∈ Seg n holds if i - n
or i | n1 or i = n, then f(i) = 〈1CF〉 and if i | n and i - n1 and i 6= n, then
f(i) = cyclotomic poly(i), and

(iv) unital poly(CF, n) = unital poly(CF, n1) ∗ cyclotomic poly(n) ∗ p.

(59) Let i be an integer, c be an element of CF, f be a finite sequence of
elements of the carrier of Polynom-Ring(CF), and p be a polynomial of
CF. Suppose p =

∏
f and c = i and for every non empty natural number

i such that i ∈ dom f holds f(i) = 〈1CF〉 or f(i) = cyclotomic poly(i).
Then eval(p, c) is integer.

(60) Let n be a non empty natural number, j, k, q be integers, and q1 be
an element of CF. If q1 = q and j = eval(cyclotomic poly(n), q1) and
k = eval(unital poly(CF, n), q1), then j | k.

(61) Let n, n1 be non empty natural numbers and q be an integer. Sup-
pose n1 < n and n1 | n. Let q1 be an element of c1. Suppose q1 = q.

Let j, k, l be integers. If j = eval(cyclotomic poly(n), q1) and k =
eval(unital poly(CF, n), q1) and l = eval(unital poly(CF, n1), q1), then
j | k ÷ l, where c1 = the carrier of CF.

(62) Let n, q be non empty natural numbers and q1 be an element of CF. If
q1 = q, then for every integer j such that j = eval(cyclotomic poly(n), q1)
holds j | qn − 1.

(63) Let n, n1, q be non empty natural numbers. Suppose n1 < n and n1 | n.

Let q1 be an element of CF. If q1 = q, then for every integer j such that
j = eval(cyclotomic poly(n), q1) holds j | (qn − 1)÷ (qn1 − 1).

(64) Let n be a non empty natural number. Suppose 1 < n. Let q be a natural
number. Suppose 1 < q. Let q1 be an element of CF. If q1 = q, then for
every integer i such that i = eval(cyclotomic poly(n), q1) holds |i| > q−1.
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Summary. We present a formalization of Witt’s proof of the Wedderburn
theorem following Chapter 5 of Proofs from THE BOOK by Martin Aigner and
Günter M. Ziegler, 2nd ed., Springer 1999.

MML Identifier: WEDDWITT.

The notation and terminology used in this paper have been introduced in the
following articles: [23], [31], [20], [8], [12], [24], [3], [29], [14], [32], [6], [7], [4], [5],
[27], [16], [9], [15], [2], [28], [18], [10], [26], [13], [1], [17], [25], [30], [33], [19], [22],
[21], and [11].

1. Preliminaries

The following propositions are true:

(1) For every natural number a and for every real number q such that 1 < q

and qa = 1 holds a = 0.

(2) For all natural numbers a, k, r and for every real number x such that
1 < x and 0 < k holds xa·k+r = xa · xa·(k−′1)+r.

(3) For all natural numbers q, a, b such that 0 < a and 1 < q and qa −′ 1 |
qb −′ 1 holds a | b.

(4) For all natural numbers n, q such that 0 < q holds qn = qn.
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(5) Let f be a finite sequence of elements of N and i be a natural number. If
for every natural number j such that j ∈ dom f holds i | fj , then i |∑ f.

(6) Let X be a finite set, Y be a partition of X, and f be a finite sequence
of elements of Y . Suppose f is one-to-one and rng f = Y. Let c be a finite
sequence of elements of N. Suppose len c = len f and for every natural
number i such that i ∈ dom c holds c(i) = f(i) . Then card X =

∑
c.

2. Class Formula for Groups

Let us observe that there exists a group which is finite.
Let G be a finite group. Observe that Z(G) is finite.
Let G be a group and let a be an element of G. The functor Centralizer(a)

yields a strict subgroup of G and is defined by:

(Def. 1) The carrier of Centralizer(a) = {b; b ranges over elements of G: a · b =
b · a}.

Let G be a finite group and let a be an element of G. Observe that
Centralizer(a) is finite.

Next we state two propositions:

(7) For every group G and for every element a of G and for every set x such
that x ∈ Centralizer(a) holds x ∈ G.

(8) For every group G and for all elements a, x of G holds a · x = x · a iff x

is an element of Centralizer(a).

Let G be a group and let a be an element of G. One can verify that a• is
non empty.

Let G be a group and let a be an element of G. The functor a -con map
yields a function from the carrier of G into a• and is defined by:

(Def. 2) For every element x of G holds (a -con map)(x) = ax.

One can prove the following propositions:

(9) For every finite group G and for every element a of G and for every
element x of a• holds card((a -con map)−1({x})) = ord(Centralizer(a)).

(10) Let G be a group, a be an element of G, and x, y be elements of a•. If
x 6= y, then (a -con map)−1({x}) misses (a -con map)−1({y}).

(11) Let G be a group and a be an element of G. Then {(a -con map)−1({x}) :
x ranges over elements of a•} is a partition of the carrier of G.

(12) For every finite group G and for every element a of G holds

{(a -con map)−1({x}) : x ranges over elements of a•} = card a•.
(13) For every finite group G and for every element a of G holds ord(G) =

card a• · ord(Centralizer(a)).
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Let G be a group. The functor conjugate Classes(G) yielding a partition of
the carrier of G is defined by:

(Def. 3) conjugate Classes(G) = {S;S ranges over subsets of G:
∨

a : element of G S =
a•}.

The following two propositions are true:

(14) For every group G and for every set x holds x ∈ conjugate Classes(G)
iff there exists an element a of G such that a• = x.

(15) Let G be a finite group and f be a finite sequence of ele-
ments of conjugate Classes(G). Suppose f is one-to-one and rng f =
conjugate Classes(G). Let c be a finite sequence of elements of N. Sup-
pose len c = len f and for every natural number i such that i ∈ dom c

holds c(i) = f(i) . Then ord(G) =
∑

c.

3. Centers and Centralizers of Skew Fields

We now state the proposition

(16) Let F be a finite field, V be a vector space over F , and n, q be na-
tural numbers. Suppose V is finite dimensional and n = dim(V ) and
q = the carrier of F . Then the carrier of V = qn.

Let R be a skew field. The functor Z(R) yielding a strict field is defined by
the conditions (Def. 4).

(Def. 4)(i) The carrier of Z(R) = {x; x ranges over elements of R:∧
s : element of R x · s = s · x},

(ii) the addition of Z(R) = (the addition of R)¹[: the carrier of Z(R), the
carrier of Z(R) :],

(iii) the multiplication of Z(R) = (the multiplication of R)¹[: the carrier of
Z(R), the carrier of Z(R) :],

(iv) the zero of Z(R) = the zero of R, and
(v) the unity of Z(R) = the unity of R.

The following proposition is true

(17) For every skew field R holds the carrier of Z(R) ⊆ the carrier of R.

Let R be a finite skew field. Note that Z(R) is finite.
We now state several propositions:

(18) Let R be a skew field and y be an element of R. Then y ∈ Z(R) if and
only if for every element s of R holds y · s = s · y.

(19) For every skew field R holds 0R ∈ Z(R).
(20) For every skew field R holds 1R ∈ Z(R).
(21) For every finite skew field R holds 1 < card (the carrier of Z(R)).
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(22) For every finite skew field R holds card (the carrier of Z(R)) = card (the
carrier of R) iff R is commutative.

(23) For every skew field R holds the carrier of Z(R) = (the carrier of
Z(MultGroup(R))) ∪ {0R}.

Let R be a skew field and let s be an element of R. The functor centralizer(s)
yields a strict skew field and is defined by the conditions (Def. 5).

(Def. 5)(i) The carrier of centralizer(s) = {x; x ranges over elements of R: x ·s =
s · x},

(ii) the addition of centralizer(s) = (the addition of R)¹[: the carrier of
centralizer(s), the carrier of centralizer(s) :],

(iii) the multiplication of centralizer(s) = (the multiplication of R)¹[: the
carrier of centralizer(s), the carrier of centralizer(s) :],

(iv) the zero of centralizer(s) = the zero of R, and
(v) the unity of centralizer(s) = the unity of R.

Next we state several propositions:

(24) For every skew field R and for every element s of R holds the carrier of
centralizer(s) ⊆ the carrier of R.

(25) For every skew field R and for all elements s, a of R holds a ∈ the carrier
of centralizer(s) iff a · s = s · a.

(26) For every skew field R and for every element s of R holds the carrier of
Z(R) ⊆ the carrier of centralizer(s).

(27) Let R be a skew field and s, a, b be elements of R. Suppose a ∈ the
carrier of Z(R) and b ∈ the carrier of centralizer(s). Then a · b ∈ the
carrier of centralizer(s).

(28) For every skew field R and for every element s of R holds 0R is an element
of centralizer(s) and 1R is an element of centralizer(s).

Let R be a finite skew field and let s be an element of R. Observe that
centralizer(s) is finite.

Next we state three propositions:

(29) For every finite skew field R and for every element s of R holds 1 <

card (the carrier of centralizer(s)).

(30) Let R be a skew field, s be an element of R, and t be an element of
MultGroup(R). If t = s, then the carrier of centralizer(s) = (the carrier
of Centralizer(t)) ∪ {0R}.

(31) Let R be a finite skew field, s be an element of R, and t be an element
of MultGroup(R). If t = s, then ord(Centralizer(t)) = card (the carrier of
centralizer(s))− 1.
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4. Vector Spaces over Centers of Skew Fields

Let R be a skew field. The functor VectSp over Z(R) yielding a strict vector
space over Z(R) is defined by the conditions (Def. 6).

(Def. 6)(i) The loop structure of VectSp over Z(R) = the loop structure of R,
and

(ii) the left multiplication of VectSp over Z(R) = (the multiplication of
R)¹[: the carrier of Z(R), the carrier of R :].

We now state two propositions:

(32) For every finite skew field R holds card (the carrier of R) = (card (the
carrier of Z(R)))dim(VectSp over Z(R)).

(33) For every finite skew field R holds 0 < dim(VectSp over Z(R)).

Let R be a skew field and let s be an element of R. The functor
VectSp over Z(s) yields a strict vector space over Z(R) and is defined by the
conditions (Def. 7).

(Def. 7)(i) The loop structure of VectSp over Z(s) = the loop structure of
centralizer(s), and

(ii) the left multiplication of VectSp over Z(s) = (the multiplication of
R)¹[: the carrier of Z(R), the carrier of centralizer(s) :].

The following propositions are true:

(34) For every finite skew field R and for every element s of R holds card (the
carrier of centralizer(s)) = (card (the carrier of Z(R)))dim(VectSp over Z(s)).

(35) For every finite skew field R and for every element s of R holds 0 <

dim(VectSp over Z(s)).
(36) Let R be a finite skew field and r be an element of R. Suppose r is an

element of MultGroup(R).
Then (card (the carrier of Z(R)))dim(VectSp over Z(r))− 1 | (card (the carrier
of Z(R)))dim(VectSp over Z(R)) − 1.

(37) For every finite skew field R and for every element s of R such
that s is an element of MultGroup(R) holds dim(VectSp over Z(s)) |
dim(VectSp over Z(R)).

(38) For every finite skew field R holds
card (the carrier of Z(MultGroup(R))) = card (the carrier of Z(R))− 1.

5. Witt’s Proof of Wedderburn’s Theorem

One can prove the following proposition

(39) Every finite skew field is commutative.
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