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Summary. The aim of the paper is to show that SCMPDS ([8]) does not
belong to the class of standard computers ([16]).

MML Identifier: SCMPDS 9.

The terminology and notation used in this paper are introduced in the following

papers: [14], [19], [11], [3], [2], [13], [6], [12], [17], [1], [5], [9], [18], [20], [7], [4],

[10], [15], [8], and [16].

1. Preliminaries

In this paper r, s are real numbers.

We now state several propositions:

(1) 0 ¬ r + |r|.

(2) 0 ¬ −r + |r|.

(3) If |r| = |s|, then r = s or r = −s.

(4) For all natural numbers i, j such that i < j and i 6= 0 holds i
j
is not

integer.

(5) {2 · k; k ranges over natural numbers: k > 1} is infinite.

(6) For every function f and for all sets a, b, c such that a 6= c holds

(f+·(a7−→. b))(c) = f(c).

(7) For every function f and for all sets a, b, c, d such that a 6= b holds

(f+·[a 7−→ c, b 7−→ d])(a) = c and (f+·[a 7−→ c, b 7−→ d])(b) = d.

1This paper was written during the first author’s post-doctoral fellowship granted by Shin-

shu University, Japan.
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2. SCMPDS

For simplicity, we adopt the following rules: a, b are Int positions, i is an

instruction of SCMPDS, l is an instruction-location of SCMPDS, and k, k1, k2

are integers.

Let l1, l2 be Int positions and let a, b be integers. Then [l1 7−→ a, l2 7−→ b]

is a finite partial state of SCMPDS.

One can verify that SCMPDS has non trivial instruction locations.

Let l be an instruction-location of SCMPDS. The functor locnum(l) yields

a natural number and is defined by:

(Def. 1) ilocnum(l) = l.

Let l be an instruction-location of SCMPDS. Then locnum(l) is an element

of N.

We now state a number of propositions:

(8) l = 2 · locnum(l) + 2.

(9) For all instruction-locations l3, l4 of SCMPDS such that l3 6= l4 holds

locnum(l3) 6= locnum(l4).

(10) For all instruction-locations l3, l4 of SCMPDS such that l3 6= l4 holds

Next(l3) 6= Next(l4).

(11) Let N be a set with non empty elements, S be an IC-Ins-separated

definite non empty non void AMI over N , i be an instruction of S, and l

be an instruction-location of S. Then JUMP(i) ⊆ NIC(i, l).

(12) If for every state s of SCMPDS such that ICs = l and s(l) = i holds

(Exec(i, s))(ICSCMPDS) = Next(ICs), then NIC(i, l) = {Next(l)}.

(13) If for every instruction-location l of SCMPDS holds NIC(i, l) =

{Next(l)}, then JUMP(i) is empty.

(14) NIC(goto k, l) = {2 · |k + locnum(l)|+ 2}.

(15) NIC(return a, l) = {2 · k; k ranges over natural numbers: k > 1}.

(16) NIC(saveIC(a, k1), l) = {Next(l)}.

(17) NIC(a:=k1, l) = {Next(l)}.

(18) NIC(ak1
:=k2, l) = {Next(l)}.

(19) NIC((a, k1) := (b, k2), l) = {Next(l)}.

(20) NIC(AddTo(a, k1, k2), l) = {Next(l)}.

(21) NIC(AddTo(a, k1, b, k2), l) = {Next(l)}.

(22) NIC(SubFrom(a, k1, b, k2), l) = {Next(l)}.

(23) NIC(MultBy(a, k1, b, k2), l) = {Next(l)}.

(24) NIC(Divide(a, k1, b, k2), l) = {Next(l)}.

(25) NIC((a, k1) <> 0 goto k2, l) = {Next(l), |2 · (k2 + locnum(l))|+ 2}.

(26) NIC((a, k1) <= 0 goto k2, l) = {Next(l), |2 · (k2 + locnum(l))|+ 2}.
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(27) NIC((a, k1) >= 0 goto k2, l) = {Next(l), |2 · (k2 + locnum(l))|+ 2}.

Let us consider k. Observe that JUMP(goto k) is empty.

Next we state the proposition

(28) JUMP(return a) = {2 · k; k ranges over natural numbers: k > 1}.

Let us consider a. Note that JUMP(return a) is infinite.

Let us consider a, k1. One can verify that JUMP(saveIC(a, k1)) is empty.

Let us consider a, k1. Observe that JUMP(a:=k1) is empty.

Let us consider a, k1, k2. Note that JUMP(ak1
:=k2) is empty.

Let us consider a, b, k1, k2. One can check that JUMP((a, k1) := (b, k2)) is

empty.

Let us consider a, k1, k2. One can verify that JUMP(AddTo(a, k1, k2)) is

empty.

Let us consider a, b, k1, k2. One can verify the following observations:

∗ JUMP(AddTo(a, k1, b, k2)) is empty,

∗ JUMP(SubFrom(a, k1, b, k2)) is empty,

∗ JUMP(MultBy(a, k1, b, k2)) is empty, and

∗ JUMP(Divide(a, k1, b, k2)) is empty.

Let us consider a, k1, k2. One can verify the following observations:

∗ JUMP((a, k1) <> 0 goto k2) is empty,

∗ JUMP((a, k1) <= 0 goto k2) is empty, and

∗ JUMP((a, k1) >= 0 goto k2) is empty.

Next we state two propositions:

(29) SUCC(l) = the instruction locations of SCMPDS.

(30) Let N be a set with non empty elements, S be an IC-Ins-separated

definite non empty non void AMI overN , and l3, l4 be instruction-locations

of S. If SUCC(l3) = the instruction locations of S, then l3 ¬ l4.

Let us mention that SCMPDS is non InsLoc-antisymmetric.

One can verify that SCMPDS is non standard.
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