SCMPDS Is Not Standard

Artur Korniłowicz ${ }^{1}$
University of Białystok

Yasunari Shidama
Shinshu University
Nagano

Summary. The aim of the paper is to show that SCMPDS ([8]) does not belong to the class of standard computers ([16]).

MML Identifier: SCMPDS_9.

The terminology and notation used in this paper are introduced in the following papers: [14], [19], [11], [3], [2], [13], [6], [12], [17], [1], [5], [9], [18], [20], [7], [4], [10], [15], [8], and [16].

1. Preliminaries

In this paper r, s are real numbers.
We now state several propositions:
(1) $0 \leqslant r+|r|$.
(2) $0 \leqslant-r+|r|$.
(3) If $|r|=|s|$, then $r=s$ or $r=-s$.
(4) For all natural numbers i, j such that $i<j$ and $i \neq 0$ holds $\frac{i}{j}$ is not integer.
(5) $\{2 \cdot k ; k$ ranges over natural numbers: $k>1\}$ is infinite.
(6) For every function f and for all sets a, b, c such that $a \neq c$ holds $(f+\cdot(a \longmapsto b))(c)=f(c)$.
(7) For every function f and for all sets a, b, c, d such that $a \neq b$ holds $(f+\cdot[a \longmapsto c, b \longmapsto d])(a)=c$ and $(f+\cdot[a \longmapsto c, b \longmapsto d])(b)=d$.

[^0]
2. SCMPDS

For simplicity, we adopt the following rules: a, b are Int positions, i is an instruction of SCMPDS, l is an instruction-location of SCMPDS, and k, k_{1}, k_{2} are integers.

Let l_{1}, l_{2} be Int positions and let a, b be integers. Then $\left[l_{1} \longmapsto a, l_{2} \longmapsto b\right]$ is a finite partial state of SCMPDS.

One can verify that SCMPDS has non trivial instruction locations.
Let l be an instruction-location of SCMPDS. The functor locnum (l) yields a natural number and is defined by:
(Def. 1) $\quad \mathbf{i}_{\text {locnum }(l)}=l$.
Let l be an instruction-location of SCMPDS. Then locnum (l) is an element of \mathbb{N}.

We now state a number of propositions:
(8) $l=2 \cdot \operatorname{locnum}(l)+2$.
(9) For all instruction-locations l_{3}, l_{4} of SCMPDS such that $l_{3} \neq l_{4}$ holds $\operatorname{locnum}\left(l_{3}\right) \neq \operatorname{locnum}\left(l_{4}\right)$.
(10) For all instruction-locations l_{3}, l_{4} of SCMPDS such that $l_{3} \neq l_{4}$ holds $\operatorname{Next}\left(l_{3}\right) \neq \operatorname{Next}\left(l_{4}\right)$.
(11) Let N be a set with non empty elements, S be an IC-Ins-separated definite non empty non void AMI over N, i be an instruction of S, and l be an instruction-location of S. Then $\operatorname{JUMP}(i) \subseteq \operatorname{NIC}(i, l)$.
(12) If for every state s of SCMPDS such that $\mathbf{I C}_{s}=l$ and $s(l)=i$ holds $(\operatorname{Exec}(i, s))\left(\mathbf{I C}_{\mathrm{SCMPDS}}\right)=\operatorname{Next}\left(\mathbf{I C}_{s}\right)$, then $\operatorname{NIC}(i, l)=\{\operatorname{Next}(l)\}$.
(13) If for every instruction-location l of SCMPDS holds NIC $(i, l)=$ $\{\operatorname{Next}(l)\}$, then $\operatorname{JUMP}(i)$ is empty.
(14) $\mathrm{NIC}($ goto $k, l)=\{2 \cdot|k+\operatorname{locnum}(l)|+2\}$.
(15) $\operatorname{NIC}($ return $a, l)=\{2 \cdot k ; k$ ranges over natural numbers: $k>1\}$.
(16) $\operatorname{NIC}\left(\operatorname{saveIC}\left(a, k_{1}\right), l\right)=\{\operatorname{Next}(l)\}$.
(17) $\operatorname{NIC}\left(a:=k_{1}, l\right)=\{\operatorname{Next}(l)\}$.
(18) $\operatorname{NIC}\left(a_{k_{1}}:=k_{2}, l\right)=\{\operatorname{Next}(l)\}$.
(19) $\operatorname{NIC}\left(\left(a, k_{1}\right):=\left(b, k_{2}\right), l\right)=\{\operatorname{Next}(l)\}$.
(20) $\operatorname{NIC}\left(\operatorname{AddTo}\left(a, k_{1}, k_{2}\right), l\right)=\{\operatorname{Next}(l)\}$.
(21) $\operatorname{NIC}\left(\operatorname{AddTo}\left(a, k_{1}, b, k_{2}\right), l\right)=\{\operatorname{Next}(l)\}$.
(22) $\operatorname{NIC}\left(\operatorname{SubFrom}\left(a, k_{1}, b, k_{2}\right), l\right)=\{\operatorname{Next}(l)\}$.
(23) $\operatorname{NIC}\left(\operatorname{MultBy}\left(a, k_{1}, b, k_{2}\right), l\right)=\{\operatorname{Next}(l)\}$.
(24) $\left.\operatorname{NIC(Divide~}\left(a, k_{1}, b, k_{2}\right), l\right)=\{\operatorname{Next}(l)\}$.
(25) $\operatorname{NIC}\left(\left(a, k_{1}\right)<>\right.$ 0_goto $\left.k_{2}, l\right)=\left\{\operatorname{Next}(l),\left|2 \cdot\left(k_{2}+\operatorname{locnum}(l)\right)\right|+2\right\}$.
(26) $\operatorname{NIC}\left(\left(a, k_{1}\right)<=0\right.$ _goto $\left.k_{2}, l\right)=\left\{\operatorname{Next}(l),\left|2 \cdot\left(k_{2}+\operatorname{locnum}(l)\right)\right|+2\right\}$.

$$
\begin{equation*}
\operatorname{NIC}\left(\left(a, k_{1}\right)>=0 \text { _goto } k_{2}, l\right)=\left\{\operatorname{Next}(l),\left|2 \cdot\left(k_{2}+\operatorname{locnum}(l)\right)\right|+2\right\} . \tag{27}
\end{equation*}
$$

Let us consider k. Observe that JUMP (goto k) is empty.
Next we state the proposition
(28) $\operatorname{JUMP}($ return $a)=\{2 \cdot k ; k$ ranges over natural numbers: $k>1\}$.

Let us consider a. Note that JUMP(return a) is infinite.
Let us consider a, k_{1}. One can verify that $\operatorname{JUMP}\left(\operatorname{saveIC}\left(a, k_{1}\right)\right)$ is empty.
Let us consider a, k_{1}. Observe that $\operatorname{JUMP}\left(a:=k_{1}\right)$ is empty.
Let us consider a, k_{1}, k_{2}. Note that $\operatorname{JUMP}\left(a_{k_{1}}:=k_{2}\right)$ is empty.
Let us consider a, b, k_{1}, k_{2}. One can check that $\operatorname{JUMP}\left(\left(a, k_{1}\right):=\left(b, k_{2}\right)\right)$ is empty.

Let us consider a, k_{1}, k_{2}. One can verify that $\operatorname{JUMP}\left(\operatorname{AddTo}\left(a, k_{1}, k_{2}\right)\right)$ is empty.

Let us consider a, b, k_{1}, k_{2}. One can verify the following observations:

* $\operatorname{JUMP}\left(\operatorname{AddTo}\left(a, k_{1}, b, k_{2}\right)\right)$ is empty,
* JUMP($\left.\operatorname{SubFrom}\left(a, k_{1}, b, k_{2}\right)\right)$ is empty,
* $\operatorname{JUMP}\left(\operatorname{MultBy}\left(a, k_{1}, b, k_{2}\right)\right)$ is empty, and
* $\operatorname{JUMP}\left(\operatorname{Divide}\left(a, k_{1}, b, k_{2}\right)\right)$ is empty.

Let us consider a, k_{1}, k_{2}. One can verify the following observations:

* $\operatorname{JUMP}\left(\left(a, k_{1}\right)<>0 _\right.$goto $\left.k_{2}\right)$ is empty,
* $\operatorname{JUMP}\left(\left(a, k_{1}\right)<=0\right.$ _goto $\left.k_{2}\right)$ is empty, and
* $\operatorname{JUMP}\left(\left(a, k_{1}\right)>=0\right.$ _goto $\left.k_{2}\right)$ is empty.

Next we state two propositions:
(29) $\operatorname{SUCC}(l)=$ the instruction locations of SCMPDS.
(30) Let N be a set with non empty elements, S be an IC-Ins-separated definite non empty non void AMI over N, and l_{3}, l_{4} be instruction-locations of S. If $\operatorname{SUCC}\left(l_{3}\right)=$ the instruction locations of S, then $l_{3} \leqslant l_{4}$.
Let us mention that SCMPDS is non InsLoc-antisymmetric.
One can verify that SCMPDS is non standard.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions. Formalized Mathematics, 8(1):183-191, 1999.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[11] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[12] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[13] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[16] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruction locations. Formalized Mathematics, 9(2):291-301, 2001.
[17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received September 27, 2003

[^0]: ${ }^{1}$ This paper was written during the first author's post-doctoral fellowship granted by Shinshu University, Japan.

