On the Sets Inhabited by Numbers ${ }^{1}$

Andrzej Trybulec
University of Białystok

Abstract

Summary. The information that all members of a set enjoy a property expressed by an adjective can be processed in a systematic way. The purpose of the work is to find out how to do that. If it works, 'membered' will become a reserved word and the work with it will be automated. I have chosen membered rather than inhabited because of the compatibility with the Automath terminology. The phrase τ inhabits θ could be translated to τ is θ in Mizar.

MML Identifier: MEMBERED.

The articles [6], [8], [4], [5], [3], [7], [1], and [2] provide the notation and terminology for this paper.

In this paper x, X, F denote sets.
Let X be a set. We say that X is complex-membered if and only if:
(Def. 1) If $x \in X$, then x is complex.
We say that X is real-membered if and only if:
(Def. 2) If $x \in X$, then x is real.
We say that X is rational-membered if and only if:
(Def. 3) If $x \in X$, then x is rational.
We say that X is integer-membered if and only if:
(Def. 4) If $x \in X$, then x is integer.
We say that X is natural-membered if and only if:
(Def. 5) If $x \in X$, then x is natural.
One can check the following observations:

* every set which is natural-membered is also integer-membered,
* every set which is integer-membered is also rational-membered,

[^0]* every set which is rational-membered is also real-membered, and
* every set which is real-membered is also complex-membered.

Let us observe that there exists a set which is non empty and naturalmembered.

One can verify the following observations:

* every subset of \mathbb{C} is complex-membered,
* every subset of \mathbb{R} is real-membered,
* every subset of \mathbb{Q} is rational-membered,
* every subset of \mathbb{Z} is integer-membered, and
* every subset of \mathbb{N} is natural-membered.

One can verify the following observations:

* \mathbb{C} is complex-membered,
* \mathbb{R} is real-membered,
* \mathbb{Q} is rational-membered,
* \mathbb{Z} is integer-membered, and
* \mathbb{N} is natural-membered.

Next we state several propositions:
(1) If X is complex-membered, then $X \subseteq \mathbb{C}$.
(2) If X is real-membered, then $X \subseteq \mathbb{R}$.
(3) If X is rational-membered, then $X \subseteq \mathbb{Q}$.
(4) If X is integer-membered, then $X \subseteq \mathbb{Z}$.
(5) If X is natural-membered, then $X \subseteq \mathbb{N}$.

Let X be a complex-membered set. One can check that every element of X is complex.

Let X be a real-membered set. One can verify that every element of X is real.

Let X be a rational-membered set. Note that every element of X is rational.
Let X be an integer-membered set. One can verify that every element of X is integer.

Let X be a natural-membered set. Observe that every element of X is natural.

For simplicity, we follow the rules: c, c_{1}, c_{2}, c_{3} are complex numbers, r, r_{1}, r_{2}, r_{3} are real numbers, w, w_{1}, w_{2}, w_{3} are rational numbers, i, i_{1}, i_{2}, i_{3} are integer numbers, and n, n_{1}, n_{2}, n_{3} are natural numbers.

We now state a number of propositions:
(6) For every non empty complex-membered set X there exists c such that $c \in X$.
(7) For every non empty real-membered set X there exists r such that $r \in X$.
(8) For every non empty rational-membered set X there exists w such that $w \in X$.
(9) For every non empty integer-membered set X there exists i such that $i \in X$.
(10) For every non empty natural-membered set X there exists n such that $n \in X$.
(11) For every complex-membered set X such that for every c holds $c \in X$ holds $X=\mathbb{C}$.
(12) For every real-membered set X such that for every r holds $r \in X$ holds $X=\mathbb{R}$.
(13) For every rational-membered set X such that for every w holds $w \in X$ holds $X=\mathbb{Q}$.
(14) For every integer-membered set X such that for every i holds $i \in X$ holds $X=\mathbb{Z}$.
(15) For every natural-membered set X such that for every n holds $n \in X$ holds $X=\mathbb{N}$.
(16) For every complex-membered set Y such that $X \subseteq Y$ holds X is complexmembered.
(17) For every real-membered set Y such that $X \subseteq Y$ holds X is realmembered.
(18) For every rational-membered set Y such that $X \subseteq Y$ holds X is rationalmembered.
(19) For every integer-membered set Y such that $X \subseteq Y$ holds X is integermembered.
(20) For every natural-membered set Y such that $X \subseteq Y$ holds X is naturalmembered.
One can verify that \emptyset is natural-membered.
One can verify that every set which is empty is also natural-membered.
Let us consider c. One can verify that $\{c\}$ is complex-membered.
Let us consider r. One can verify that $\{r\}$ is real-membered.
Let us consider w. One can check that $\{w\}$ is rational-membered.
Let us consider i. One can verify that $\{i\}$ is integer-membered.
Let us consider n. Observe that $\{n\}$ is natural-membered.
Let us consider c_{1}, c_{2}. Note that $\left\{c_{1}, c_{2}\right\}$ is complex-membered.
Let us consider r_{1}, r_{2}. One can check that $\left\{r_{1}, r_{2}\right\}$ is real-membered.
Let us consider w_{1}, w_{2}. Observe that $\left\{w_{1}, w_{2}\right\}$ is rational-membered.
Let us consider i_{1}, i_{2}. One can verify that $\left\{i_{1}, i_{2}\right\}$ is integer-membered.
Let us consider n_{1}, n_{2}. Observe that $\left\{n_{1}, n_{2}\right\}$ is natural-membered.
Let us consider c_{1}, c_{2}, c_{3}. One can verify that $\left\{c_{1}, c_{2}, c_{3}\right\}$ is complex-membered.
Let us consider r_{1}, r_{2}, r_{3}. One can verify that $\left\{r_{1}, r_{2}, r_{3}\right\}$ is real-membered.

Let us consider w_{1}, w_{2}, w_{3}. Observe that $\left\{w_{1}, w_{2}, w_{3}\right\}$ is rational-membered.
Let us consider i_{1}, i_{2}, i_{3}. One can verify that $\left\{i_{1}, i_{2}, i_{3}\right\}$ is integer-membered.
Let us consider n_{1}, n_{2}, n_{3}. One can check that $\left\{n_{1}, n_{2}, n_{3}\right\}$ is naturalmembered.

Let X be a complex-membered set. Note that every subset of X is complexmembered.

Let X be a real-membered set. One can verify that every subset of X is real-membered.

Let X be a rational-membered set. One can check that every subset of X is rational-membered.

Let X be an integer-membered set. Observe that every subset of X is integermembered.

Let X be a natural-membered set. One can verify that every subset of X is natural-membered.

Let X, Y be complex-membered sets. Note that $X \cup Y$ is complex-membered.
Let X, Y be real-membered sets. Observe that $X \cup Y$ is real-membered.
Let X, Y be rational-membered sets. Note that $X \cup Y$ is rational-membered.
Let X, Y be integer-membered sets. Note that $X \cup Y$ is integer-membered.
Let X, Y be natural-membered sets. Observe that $X \cup Y$ is natural-membered.
Let X be a complex-membered set and let Y be a set. Note that $X \cap Y$ is complex-membered and $Y \cap X$ is complex-membered.

Let X be a real-membered set and let Y be a set. Note that $X \cap Y$ is real-membered and $Y \cap X$ is real-membered.

Let X be a rational-membered set and let Y be a set. Observe that $X \cap Y$ is rational-membered and $Y \cap X$ is rational-membered.

Let X be an integer-membered set and let Y be a set. Note that $X \cap Y$ is integer-membered and $Y \cap X$ is integer-membered.

Let X be a natural-membered set and let Y be a set. Observe that $X \cap Y$ is natural-membered and $Y \cap X$ is natural-membered.

Let X be a complex-membered set and let Y be a set. Note that $X \backslash Y$ is complex-membered.

Let X be a real-membered set and let Y be a set. Note that $X \backslash Y$ is realmembered.

Let X be a rational-membered set and let Y be a set. Observe that $X \backslash Y$ is rational-membered.

Let X be an integer-membered set and let Y be a set. Observe that $X \backslash Y$ is integer-membered.

Let X be a natural-membered set and let Y be a set. Observe that $X \backslash Y$ is natural-membered.

Let X, Y be complex-membered sets. Note that $X \doteq Y$ is complex-membered.
Let X, Y be real-membered sets. One can check that $X \dot{-} Y$ is real-membered.
Let X, Y be rational-membered sets. Note that $X \doteq Y$ is rational-membered.

Let X, Y be integer-membered sets. One can check that $X \doteq Y$ is integermembered.

Let X, Y be natural-membered sets. One can verify that $X \doteq Y$ is naturalmembered.

Let X, Y be complex-membered sets. Let us observe that $X \subseteq Y$ if and only if:
(Def. 6) If $c \in X$, then $c \in Y$.
Let X, Y be real-membered sets. Let us observe that $X \subseteq Y$ if and only if:
(Def. 7) If $r \in X$, then $r \in Y$.
Let X, Y be rational-membered sets. Let us observe that $X \subseteq Y$ if and only if:
(Def. 8) If $w \in X$, then $w \in Y$.
Let X, Y be integer-membered sets. Let us observe that $X \subseteq Y$ if and only if:
(Def. 9) If $i \in X$, then $i \in Y$.
Let X, Y be natural-membered sets. Let us observe that $X \subseteq Y$ if and only if:
(Def. 10) If $n \in X$, then $n \in Y$.
Let X, Y be complex-membered sets. Let us observe that $X=Y$ if and only if:
(Def. 11) $c \in X$ iff $c \in Y$.
Let X, Y be real-membered sets. Let us observe that $X=Y$ if and only if:
(Def. 12) $\quad r \in X$ iff $r \in Y$.
Let X, Y be rational-membered sets. Let us observe that $X=Y$ if and only if:
(Def. 13) $w \in X$ iff $w \in Y$.
Let X, Y be integer-membered sets. Let us observe that $X=Y$ if and only if:
(Def. 14) $\quad i \in X$ iff $i \in Y$.
Let X, Y be natural-membered sets. Let us observe that $X=Y$ if and only if:
(Def. 15) $n \in X$ iff $n \in Y$.
Let X, Y be complex-membered sets. Let us observe that X meets Y if and only if:
(Def. 16) There exists c such that $c \in X$ and $c \in Y$.
Let X, Y be real-membered sets. Let us observe that X meets Y if and only if:
(Def. 17) There exists r such that $r \in X$ and $r \in Y$.

Let X, Y be rational-membered sets. Let us observe that X meets Y if and only if:
(Def. 18) There exists w such that $w \in X$ and $w \in Y$.
Let X, Y be integer-membered sets. Let us observe that X meets Y if and only if:
(Def. 19) There exists i such that $i \in X$ and $i \in Y$.
Let X, Y be natural-membered sets. Let us observe that X meets Y if and only if:
(Def. 20) There exists n such that $n \in X$ and $n \in Y$.
One can prove the following propositions:
(21) If for every X such that $X \in F$ holds X is complex-membered, then $\bigcup F$ is complex-membered.
(22) If for every X such that $X \in F$ holds X is real-membered, then $\bigcup F$ is real-membered.
(23) If for every X such that $X \in F$ holds X is rational-membered, then $\bigcup F$ is rational-membered.
(24) If for every X such that $X \in F$ holds X is integer-membered, then $\bigcup F$ is integer-membered.
(25) If for every X such that $X \in F$ holds X is natural-membered, then $\bigcup F$ is natural-membered.
(26) For every X such that $X \in F$ and X is complex-membered holds $\bigcap F$ is complex-membered.
(27) For every X such that $X \in F$ and X is real-membered holds $\bigcap F$ is real-membered.
(28) For every X such that $X \in F$ and X is rational-membered holds $\bigcap F$ is rational-membered.
(29) For every X such that $X \in F$ and X is integer-membered holds $\bigcap F$ is integer-membered.
(30) For every X such that $X \in F$ and X is natural-membered holds $\bigcap F$ is natural-membered.
In this article we present several logical schemes. The scheme CM Separation concerns a unary predicate \mathcal{P}, and states that:

There exists a complex-membered set X such that for every c holds $c \in X$ iff $\mathcal{P}[c]$
for all values of the parameters.
The scheme $R M$ Separation concerns a unary predicate \mathcal{P}, and states that: There exists a real-membered set X such that for every r holds $r \in X$ iff $\mathcal{P}[r]$
for all values of the parameters.

The scheme WM Separation concerns a unary predicate \mathcal{P}, and states that: There exists a rational-membered set X such that for every w holds $w \in X$ iff $\mathcal{P}[w]$
for all values of the parameters.
The scheme IM Separation concerns a unary predicate \mathcal{P}, and states that:
There exists an integer-membered set X such that for every i holds $i \in X$ iff $\mathcal{P}[i]$
for all values of the parameters.
The scheme NM Separation concerns a unary predicate \mathcal{P}, and states that:
There exists a natural-membered set X such that for every n holds $n \in X$ iff $\mathcal{P}[n]$
for all values of the parameters.

Acknowledgments

I am grateful to Dr. Czeslaw Bylinski for the discussion, particularly for his advice to prove more trivial but useful theorems.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[3] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[4] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[5] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[7] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by the CALCULEMUS grant HPRN-CT-200000102.

