# Calculation of Matrices of Field Elements. Part I 

Yatsuka Nakamura<br>Shinshu University<br>Nagano

Hiroshi Yamazaki<br>Shinshu University<br>Nagano

Summary. This article gives property of calculation of matrices.

MML Identifier: MATRIX_4.

The articles [8], [3], [10], [11], [4], [1], [5], [2], [13], [6], [7], [12], and [9] provide the notation and terminology for this paper.

In this paper $i$ denotes a natural number.
Let $K$ be a field and let $M_{1}, M_{2}$ be matrices over $K$. The functor $M_{1}-M_{2}$ yielding a matrix over $K$ is defined by:
(Def. 1) $\quad M_{1}-M_{2}=M_{1}+-M_{2}$.
One can prove the following propositions:
(1) For every field $K$ and for every matrix $M$ over $K$ such that len $M>0$ holds $--M=M$.
(2) For every field $K$ and for every matrix $M$ over $K$ such that len $M>0$ holds $M+-M=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{(\operatorname{len} M) \times(\text { width } M)}$.
(3) For every field $K$ and for every matrix $M$ over $K$ such that len $M>0$ holds $M-M=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{(\operatorname{len} M) \times(\text { width } M)}$.
(4) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. Suppose len $M_{1}=$ len $M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$ and $M_{1}+M_{3}=M_{2}+M_{3}$. Then $M_{1}=M_{2}$.
(5) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{2}>$ 0 holds $M_{1}--M_{2}=M_{1}+M_{2}$.
(6) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ and $M_{1}=M_{1}+M_{2}$ holds $M_{2}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)}$.
(7) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=\operatorname{width} M_{2}$ and len $M_{1}>0$ and $M_{1}-M_{2}=$ $\left(\begin{array}{ccc}0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{array}\right)_{K}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)} \quad$ holds $M_{1}=M_{2}$.
(8) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ and $M_{1}+M_{2}=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)} \quad$ holds $M_{2}=-M_{1}$.
(9) For all natural numbers $n, m$ and for every field $K$ such that $n>0$ holds $-\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}$.
(10) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ and $M_{2}-M_{1}=M_{2}$ holds $M_{1}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{\left(\operatorname{len} M_{1}\right) \times\left(\text { width } M_{1}\right)}$.
(11) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}=M_{1}-\left(M_{2}-\right.$ $M_{2}$ ).
(12) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $-\left(M_{1}+M_{2}\right)=$ $-M_{1}+-M_{2}$.
(13) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}-\left(M_{1}-M_{2}\right)=$ $M_{2}$.
(14) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. Suppose len $M_{1}=$ len $M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$ and $M_{1}-M_{3}=M_{2}-M_{3}$. Then $M_{1}=M_{2}$.
(15) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. Suppose len $M_{1}=$ len $M_{2}$ and len $M_{2}=$ len $M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$ and $M_{3}-M_{1}=M_{3}-M_{2}$. Then $M_{1}=M_{2}$.
(16) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and width $M_{2}=\operatorname{width} M_{3}$ and len $M_{1}>0$, then $M_{1}-M_{2}-M_{3}=M_{1}-M_{3}-M_{2}$.
(17) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and width $M_{2}=\operatorname{width} M_{3}$ and len $M_{1}>0$, then $M_{1}-M_{3}=M_{1}-M_{2}-\left(M_{3}-M_{2}\right)$.
(18) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and width $M_{2}=\operatorname{width} M_{3}$ and len $M_{1}>0$, then $M_{3}-M_{1}-\left(M_{3}-M_{2}\right)=M_{2}-M_{1}$.
(19) Let $K$ be a field and $M_{1}, M_{2}, M_{3}, M_{4}$ be matrices over $K$. Suppose len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and len $M_{3}=\operatorname{len} M_{4}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and width $M_{3}=$ width $M_{4}$ and len $M_{1}>0$ and $M_{1}-M_{2}=M_{3}-M_{4}$. Then $M_{1}-M_{3}=$ $M_{2}-M_{4}$.
(20) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}=M_{1}+\left(M_{2}-\right.$ $M_{2}$ ).
(21) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}=\left(M_{1}+M_{2}\right)-$ $M_{2}$.
(22) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}=\left(M_{1}-M_{2}\right)+$ $M_{2}$.
(23) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and width $M_{2}=\operatorname{width} M_{3}$ and len $M_{1}>0$, then $M_{1}+M_{3}=M_{1}+M_{2}+\left(M_{3}-M_{2}\right)$.
(24) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and width $M_{2}=\operatorname{width} M_{3}$ and len $M_{1}>0$, then $\left(M_{1}+M_{2}\right)-M_{3}=\left(M_{1}-M_{3}\right)+M_{2}$.
(25) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and width $M_{2}=\operatorname{width} M_{3}$ and len $M_{1}>0$, then $\left(M_{1}-M_{2}\right)+M_{3}=\left(M_{3}-M_{2}\right)+M_{1}$.
(26) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=\operatorname{width} M_{2}$ and width $M_{2}=\operatorname{width} M_{3}$ and len $M_{1}>0$, then $M_{1}+M_{3}=\left(M_{1}+M_{2}\right)-\left(M_{2}-M_{3}\right)$.
(27) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$
and len $M_{1}>0$, then $M_{1}-M_{3}=\left(M_{1}+M_{2}\right)-\left(M_{3}+M_{2}\right)$.
(28) Let $K$ be a field and $M_{1}, M_{2}, M_{3}, M_{4}$ be matrices over $K$. Suppose len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and len $M_{3}=\operatorname{len} M_{4}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and width $M_{3}=$ width $M_{4}$ and len $M_{1}>0$ and $M_{1}+M_{2}=M_{3}+M_{4}$. Then $M_{1}-M_{3}=$ $M_{4}-M_{2}$.
(29) Let $K$ be a field and $M_{1}, M_{2}, M_{3}, M_{4}$ be matrices over $K$. Suppose len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and len $M_{3}=\operatorname{len} M_{4}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and width $M_{3}=$ width $M_{4}$ and len $M_{1}>0$ and $M_{1}-M_{3}=M_{4}-M_{2}$. Then $M_{1}+M_{2}=$ $M_{3}+M_{4}$.
(30) Let $K$ be a field and $M_{1}, M_{2}, M_{3}, M_{4}$ be matrices over $K$. Suppose len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and len $M_{3}=\operatorname{len} M_{4}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and width $M_{3}=$ width $M_{4}$ and len $M_{1}>0$ and $M_{1}+M_{2}=M_{3}-M_{4}$. Then $M_{1}+M_{4}=$ $M_{3}-M_{2}$.
(31) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=$ len $M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$, then $M_{1}-\left(M_{2}+M_{3}\right)=M_{1}-M_{2}-M_{3}$.
(32) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$, then $M_{1}-\left(M_{2}-M_{3}\right)=\left(M_{1}-M_{2}\right)+M_{3}$.
(33) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=$ len $M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$, then $M_{1}-\left(M_{2}-M_{3}\right)=M_{1}+\left(M_{3}-M_{2}\right)$.
(34) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=$ len $M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$, then $M_{1}-M_{3}=\left(M_{1}-M_{2}\right)+\left(M_{2}-M_{3}\right)$.
(35) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$ and $-M_{1}=-M_{2}$, then $M_{1}=M_{2}$.
(36) For every field $K$ and for every matrix $M$ over $K$ such that len $M>0$ and $-M=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\underset{(\operatorname{len} M) \times(\operatorname{width} M)}{K}}^{(\operatorname{len} M) \times(\operatorname{width} M)}$
holds $M=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{(\operatorname{len} M) \times(\operatorname{width} M)}$.
(37) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$
len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ and $M_{1}+-M_{2}=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{\left(\operatorname{len} M_{1}\right) \times\left(\operatorname{width} M_{1}\right)} \quad$ holds $M_{1}=M_{2}$.
(38) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}=M_{1}+M_{2}+$ $-M_{2}$.
(39) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}=M_{1}+\left(M_{2}+\right.$ $-M_{2}$ ).
(40) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}=-M_{2}+M_{1}+$ $M_{2}$.
(41) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $-\left(-M_{1}+M_{2}\right)=$ $M_{1}+-M_{2}$.
(42) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}+M_{2}=$ $-\left(-M_{1}+-M_{2}\right)$.
(43) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $-\left(M_{1}-M_{2}\right)=$ $M_{2}-M_{1}$.
(44) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $-M_{1}-M_{2}=$ $-M_{2}-M_{1}$.
(45) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}=-M_{2}-$ $\left(-M_{1}-M_{2}\right)$.
(46) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=$ len $M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$, then $-M_{1}-M_{2}-M_{3}=-M_{1}-M_{3}-M_{2}$.
(47) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$, then $-M_{1}-M_{2}-M_{3}=-M_{2}-M_{3}-M_{1}$.
(48) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$, then $-M_{1}-M_{2}-M_{3}=-M_{3}-M_{2}-M_{1}$.
(49) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. If len $M_{1}=\operatorname{len} M_{2}$ and len $M_{2}=$ len $M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$, then $M_{3}-M_{1}-\left(M_{3}-M_{2}\right)=-\left(M_{1}-M_{2}\right)$.
(50) For every field $K$ and for every matrix $M$ over $K$ such that len $M>0$
holds $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{(\operatorname{len} M) \times(\text { width } M)}-M=-M$.
(51) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}+M_{2}=$ $M_{1}--M_{2}$.
(52) For every field $K$ and for all matrices $M_{1}, M_{2}$ over $K$ such that len $M_{1}=$ len $M_{2}$ and width $M_{1}=$ width $M_{2}$ and len $M_{1}>0$ holds $M_{1}=M_{1}-\left(M_{2}+\right.$ $-M_{2}$ ).
(53) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. Suppose len $M_{1}=$ len $M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$ and $M_{1}-M_{3}=M_{2}+-M_{3}$. Then $M_{1}=M_{2}$.
(54) Let $K$ be a field and $M_{1}, M_{2}, M_{3}$ be matrices over $K$. Suppose len $M_{1}=$ len $M_{2}$ and len $M_{2}=\operatorname{len} M_{3}$ and width $M_{1}=$ width $M_{2}$ and width $M_{2}=$ width $M_{3}$ and len $M_{1}>0$ and $M_{3}-M_{1}=M_{3}+-M_{2}$. Then $M_{1}=M_{2}$.
(55) Let $K$ be a field and $A, B$ be matrices over $K$. If len $A=\operatorname{len} B$ and width $A=$ width $B$, then the indices of $A=$ the indices of $B$.
(56) Let $K$ be a field and $x, y, z$ be finite sequences of elements of the carrier of $K$. If len $x=\operatorname{len} y$ and len $y=\operatorname{len} z$, then $(x+y) \bullet z=x \bullet z+y \bullet z$.
(57) Let $K$ be a field and $x, y, z$ be finite sequences of elements of the carrier of $K$. If len $x=\operatorname{len} y$ and len $y=\operatorname{len} z$, then $z \bullet(x+y)=z \bullet x+z \bullet y$.
(58) Let $D$ be a non empty set and $M$ be a matrix over $D$. Suppose len $M>0$. Let $n$ be a natural number. Then $M$ is a matrix over $D$ of dimension $n \times$ width $M$ if and only if $n=\operatorname{len} M$.
(59) Let $K$ be a field, $j$ be a natural number, and $A, B$ be matrices over $K$. Suppose len $A=\operatorname{len} B$ and width $A=$ width $B$ and there exists a natural number $j$ such that $\langle i, j\rangle \in$ the indices of $A$. Then $\operatorname{Line}(A+B, i)=$ $\operatorname{Line}(A, i)+\operatorname{Line}(B, i)$.
(60) Let $K$ be a field, $j$ be a natural number, and $A, B$ be matrices over $K$. Suppose len $A=\operatorname{len} B$ and width $A=\operatorname{width} B$ and there exists a natural number $i$ such that $\langle i, j\rangle \in$ the indices of $A$. Then $(A+B)_{\square, j}=$ $A_{\square, j}+B_{\square, j}$.
(61) Let $V_{1}$ be a field and $P_{1}, P_{2}$ be finite sequences of elements of the carrier of $V_{1}$. If len $P_{1}=\operatorname{len} P_{2}$, then $\sum\left(P_{1}+P_{2}\right)=\sum P_{1}+\sum P_{2}$.
(62) Let $K$ be a field and $A, B, C$ be matrices over $K$. If len $B=\operatorname{len} C$ and width $B=$ width $C$ and width $A=\operatorname{len} B$ and len $A>0$ and len $B>0$, then $A \cdot(B+C)=A \cdot B+A \cdot C$.
(63) Let $K$ be a field and $A, B, C$ be matrices over $K$. If len $B=\operatorname{len} C$ and
width $B=$ width $C$ and len $A=$ width $B$ and len $B>0$ and len $A>0$, then $(B+C) \cdot A=B \cdot A+C \cdot A$.
(64) Let $K$ be a field, $n, m, k$ be natural numbers, $M_{1}$ be a matrix over $K$ of dimension $n \times m$, and $M_{2}$ be a matrix over $K$ of dimension $m \times k$. Suppose width $M_{1}=\operatorname{len} M_{2}$ and $0<\operatorname{len} M_{1}$ and $0<\operatorname{len} M_{2}$. Then $M_{1} \cdot M_{2}$ is a matrix over $K$ of dimension $n \times k$.

## References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[12] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[13] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Received August 8, 2003

