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Summary. In the paper we give formal descriptions of the two Kuratowski
limit oprators: Li S and Ls S, where S is an arbitrary sequence of subsets of a
fixed topological space. In the two last sections we prove basic properties of
these lower and upper topological limits, which may be found e.g. in [19]. In the
sections 2–4, we present three operators which are associated in some sense with
the above mentioned, that is lim inf F , lim sup F , and limes F , where F is a
sequence of subsets of a fixed 1-sorted structure.

MML Identifier: KURATO 2.

The articles [30], [33], [2], [29], [9], [1], [22], [24], [35], [12], [34], [6], [4], [18], [8],

[7], [16], [5], [13], [25], [31], [21], [10], [23], [14], [15], [20], [17], [27], [28], [26],

[11], [3], and [32] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following four propositions:

(1) For all sets X, x and for every subset A of X such that x /∈ A and x ∈ X

holds x ∈ Ac.

(2) For every function F and for every set i such that i ∈ domF holds⋂
F ⊆ F (i).

(3) Let T be a non empty 1-sorted structure and S1, S2 be sequences of

subsets of the carrier of T . Then S1 = S2 if and only if for every natural

number n holds S1(n) = S2(n).

(4) For all sets A, B, C, D such that A meets B and C meets D holds [:A,

C :] meets [:B, D :].

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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Let X be a 1-sorted structure. Note that every sequence of subsets of the

carrier of X is non empty.

Let T be a non empty 1-sorted structure. One can check that there exists a

sequence of subsets of the carrier of T which is non-empty.

Let T be a non empty 1-sorted structure.

(Def. 1) A sequence of subsets of the carrier of T is said to be a sequence of

subsets of T .

In this article we present several logical schemes. The scheme LambdaSSeq

deals with a non empty 1-sorted structure A and a unary functor F yielding a

subset of A, and states that:

There exists a sequence f of subsets of A such that for every

natural number n holds f(n) = F(n)

for all values of the parameters.

The scheme ExTopStrSeq deals with a non empty topological space A and a

unary functor F yielding a subset of A, and states that:

There exists a sequence S of subsets of the carrier of A such that

for every natural number n holds S(n) = F(n)

for all values of the parameters.

We now state the proposition

(5) Let X be a non empty 1-sorted structure and F be a sequence of subsets

of the carrier of X. Then rngF is a family of subsets of X.

Let X be a non empty 1-sorted structure and let F be a sequence of subsets

of the carrier of X. Then
⋃

F is a subset of X. Then
⋂

F is a subset of X.

2. Lower and Upper Limit of Sequences of Subsets

Let X be a non empty set, let S be a function from N into X, and let k

be a natural number. The functor S ↑ k yields a function from N into X and is

defined as follows:

(Def. 2) For every natural number n holds (S ↑ k)(n) = S(n + k).

Let X be a non empty 1-sorted structure and let F be a sequence of subsets

of the carrier of X. The functor lim inf F yields a subset of X and is defined as

follows:

(Def. 3) There exists a sequence f of subsets of X such that lim inf F =
⋃

f and

for every natural number n holds f(n) =
⋂

(F ↑ n).

The functor lim supF yields a subset of X and is defined by:

(Def. 4) There exists a sequence f of subsets of X such that lim supF =
⋂

f and

for every natural number n holds f(n) =
⋃

(F ↑ n).

Next we state a number of propositions:
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(6) Let X be a non empty 1-sorted structure, F be a sequence of subsets of

the carrier of X, and x be a set. Then x ∈
⋂

F if and only if for every

natural number z holds x ∈ F (z).

(7) Let X be a non empty 1-sorted structure, F be a sequence of subsets of

the carrier of X, and x be a set. Then x ∈ lim inf F if and only if there

exists a natural number n such that for every natural number k holds

x ∈ F (n + k).

(8) Let X be a non empty 1-sorted structure, F be a sequence of subsets of

the carrier of X, and x be a set. Then x ∈ lim supF if and only if for every

natural number n there exists a natural number k such that x ∈ F (n+k).

(9) For every non empty 1-sorted structure X and for every sequence F of

subsets of the carrier of X holds lim inf F ⊆ lim supF.

(10) For every non empty 1-sorted structure X and for every sequence F of

subsets of the carrier of X holds
⋂

F ⊆ lim inf F.

(11) For every non empty 1-sorted structure X and for every sequence F of

subsets of the carrier of X holds lim supF ⊆
⋃

F.

(12) For every non empty 1-sorted structure X and for every sequence F of

subsets of the carrier of X holds lim inf F = (lim supComplementF )c.

(13) Let X be a non empty 1-sorted structure and A, B, C be sequences of

subsets of the carrier of X. If for every natural number n holds C(n) =

A(n) ∩B(n), then lim inf C = lim inf A ∩ lim inf B.

(14) Let X be a non empty 1-sorted structure and A, B, C be sequences of

subsets of the carrier of X. If for every natural number n holds C(n) =

A(n) ∪B(n), then lim supC = lim supA ∪ lim supB.

(15) Let X be a non empty 1-sorted structure and A, B, C be sequences of

subsets of the carrier of X. If for every natural number n holds C(n) =

A(n) ∪B(n), then lim inf A ∪ lim inf B ⊆ lim inf C.

(16) Let X be a non empty 1-sorted structure and A, B, C be sequences of

subsets of the carrier of X. If for every natural number n holds C(n) =

A(n) ∩B(n), then lim supC ⊆ lim supA ∩ lim supB.

(17) Let X be a non empty 1-sorted structure, A be a sequence of subsets of

the carrier of X, and B be a subset of X. If for every natural number n

holds A(n) = B, then lim supA = B.

(18) Let X be a non empty 1-sorted structure, A be a sequence of subsets of

the carrier of X, and B be a subset of X. If for every natural number n

holds A(n) = B, then lim inf A = B.

(19) Let X be a non empty 1-sorted structure, A, B be sequences of subsets

of the carrier of X, and C be a subset of X. If for every natural number

n holds B(n) = C−. A(n), then C−. lim inf A ⊆ lim supB.

(20) Let X be a non empty 1-sorted structure, A, B be sequences of subsets
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of the carrier of X, and C be a subset of X. If for every natural number

n holds B(n) = C−. A(n), then C−. lim supA ⊆ lim supB.

3. Ascending and Descending Families of Subsets

Let T be a non empty 1-sorted structure and let S be a sequence of subsets

of T . We say that S is descending if and only if:

(Def. 5) For every natural number i holds S(i + 1) ⊆ S(i).

We say that S is ascending if and only if:

(Def. 6) For every natural number i holds S(i) ⊆ S(i + 1).

Next we state several propositions:

(21) Let f be a function. Suppose that for every natural number i holds

f(i + 1) ⊆ f(i). Let i, j be natural numbers. If i ¬ j, then f(j) ⊆ f(i).

(22) Let T be a non empty 1-sorted structure and C be a sequence of subsets

of T . Suppose C is descending. Let i, m be natural numbers. If i ­ m,

then C(i) ⊆ C(m).

(23) Let T be a non empty 1-sorted structure and C be a sequence of subsets

of T . Suppose C is ascending. Let i, m be natural numbers. If i ­ m, then

C(m) ⊆ C(i).

(24) Let T be a non empty 1-sorted structure, F be a sequence of subsets

of T , and x be a set. Suppose F is descending and there exists a natural

number k such that for every natural number n such that n > k holds

x ∈ F (n). Then x ∈
⋂

F.

(25) Let T be a non empty 1-sorted structure and F be a sequence of subsets

of T . If F is descending, then lim inf F =
⋂

F.

(26) Let T be a non empty 1-sorted structure and F be a sequence of subsets

of T . If F is ascending, then lim supF =
⋃

F.

4. Constant and Convergent Sequences

Let T be a non empty 1-sorted structure and let S be a sequence of subsets

of T . We say that S is convergent if and only if:

(Def. 7) lim supS = lim inf S.

We now state the proposition

(27) Let T be a non empty 1-sorted structure and S be a sequence of subsets

of T . If S is constant, then the value of S is a subset of T .

Let T be a non empty 1-sorted structure and let S be a sequence of subsets

of T . Let us observe that S is constant if and only if:
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(Def. 8) There exists a subset A of T such that for every natural number n holds

S(n) = A.

Let T be a non empty 1-sorted structure. Observe that every sequence of

subsets of T which is constant is also convergent, ascending, and descending.

Let T be a non empty 1-sorted structure. Note that there exists a sequence

of subsets of T which is constant and non empty.

Let T be a non empty 1-sorted structure and let S be a convergent sequence

of subsets of T . The functor limes S yields a subset of T and is defined as follows:

(Def. 9) limes S = lim supS and limes S = lim inf S.

One can prove the following proposition

(28) Let X be a non empty 1-sorted structure, F be a convergent sequence

of subsets of X, and x be a set. Then x ∈ limes F if and only if there

exists a natural number n such that for every natural number k holds

x ∈ F (n + k).

5. Topological Lemmas

In the sequel n denotes a natural number.

Let f be a finite sequence of elements of the carrier of E2

T. One can check

that L̃(f) is closed.

We now state several propositions:

(29) Let r be a real number, M be a non empty Reflexive metric structure,

and x be an element of M . If 0 < r, then x ∈ Ball(x, r).

(30) For every point x of En and for every real number r holds Ball(x, r) is

an open subset of En

T.

(31) For all points p, q of En

T and for all points p′, q′ of En such that p = p′

and q = q′ holds ρ(p′, q′) = |p− q|.

(32) Let p be a point of En, x, p′ be points of En

T, and r be a real number. If

p = p′ and x ∈ Ball(p, r), then |x− p′| < r.

(33) Let p be a point of En, x, p′ be points of En

T, and r be a real number. If

p = p′ and |x− p′| < r, then x ∈ Ball(p, r).

(34) Let n be a natural number, r be a point of En

T, and X be a subset of En

T.

Suppose r ∈ X. Then there exists a sequence s1 in E
n

T such that rng s1 ⊆ X

and s1 is convergent and lim s1 = r.

Let M be a non empty metric space. Note that Mtop is first-countable.

Let n be a natural number. Note that En

T is first-countable.

Next we state several propositions:

(35) Let p be a point of En, q be a point of En

T, and r be a real number. If

p = q and r > 0, then Ball(p, r) is a neighbourhood of q.
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(36) Let A be a subset of En

T, p be a point of E
n

T, and p′ be a point of En.

Suppose p = p′. Then p ∈ A if and only if for every real number r such

that r > 0 holds Ball(p′, r) meets A.

(37) Let x, y be points of En

T and x′ be a point of En. If x′ = x and x 6= y,

then there exists a real number r such that y /∈ Ball(x′, r).

(38) Let S be a subset of En

T. Then S is non Bounded if and only if for every

real number r such that r > 0 there exist points x, y of En such that x ∈ S

and y ∈ S and ρ(x, y) > r.

(39) For all real numbers a, b and for all points x, y of En such that Ball(x, a)

meets Ball(y, b) holds ρ(x, y) < a + b.

(40) Let a, b, c be real numbers and x, y, z be points of En. If Ball(x, a) meets

Ball(z, c) and Ball(z, c) meets Ball(y, b), then ρ(x, y) < a + b + 2 · c.

(41) Let X, Y be non empty topological spaces, x be a point of X, y be a

point of Y , and V be a subset of [:X, Y :]. Then V is a neighbourhood of

[: {x}, {y} :] if and only if V is a neighbourhood of 〈〈x, y〉〉.

Now we present two schemes. The scheme TSubsetEx deals with a non empty

topological structure A and a unary predicate P, and states that:

There exists a subset X of A such that for every point x of A

holds x ∈ X iff P[x]

for all values of the parameters.

The scheme TSubsetUniq deals with a topological structure A and a unary

predicate P, and states that:

Let A1, A2 be subsets of A. Suppose for every point x of A holds

x ∈ A1 iff P[x] and for every point x of A holds x ∈ A2 iff P[x].

Then A1 = A2

for all values of the parameters.

Let T be a non empty topological structure, let S be a sequence of subsets

of the carrier of T , and let i be a natural number. Then S(i) is a subset of T .

One can prove the following two propositions:

(42) Let T be a non empty 1-sorted structure, S be a sequence of subsets of

the carrier of T , and R be a sequence of naturals. Then S ·R is a sequence

of subsets of T .

(43) idN is an increasing sequence of naturals.

Let us observe that idN is real-yielding.

6. Subsequences

Let T be a non empty 1-sorted structure and let S be a sequence of subsets

of the carrier of T . A sequence of subsets of T is said to be a subsequence of S

if:
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(Def. 10) There exists an increasing sequence N1 of naturals such that it = S ·N1.

We now state several propositions:

(44) For every non empty 1-sorted structure T holds every sequence S of

subsets of the carrier of T is a subsequence of S.

(45) Let T be a non empty 1-sorted structure, S be a sequence of subsets of

T , and S1 be a subsequence of S. Then rngS1 ⊆ rngS.

(46) Let T be a non empty 1-sorted structure, S1 be a sequence of subsets of

the carrier of T , and S2 be a subsequence of S1. Then every subsequence

of S2 is a subsequence of S1.

(47) Let T be a non empty 1-sorted structure, F , G be sequences of subsets

of the carrier of T , and A be a subset of T . Suppose G is a subsequence

of F and for every natural number i holds F (i) = A. Then G = F.

(48) Let T be a non empty 1-sorted structure, A be a constant sequence of

subsets of T , and B be a subsequence of A. Then A = B.

(49) Let T be a non empty 1-sorted structure, S be a sequence of subsets of

the carrier of T , R be a subsequence of S, and n be a natural number.

Then there exists a natural numberm such that m ­ n and R(n) = S(m).

Let T be a non empty 1-sorted structure and let X be a constant sequence

of subsets of T . Note that every subsequence of X is constant.

The scheme SubSeqChoice deals with a non empty topological space A, a

sequence B of subsets of the carrier of A, and a unary predicate P, and states

that:

There exists a subsequence S1 of B such that for every natural

number n holds P[S1(n)]

provided the following condition is satisfied:

• For every natural number n there exists a natural number m such

that n ¬ m and P[B(m)].

7. The Lower Topological Limit

Let T be a non empty topological space and let S be a sequence of subsets

of the carrier of T . The functor Li S yielding a subset of T is defined by the

condition (Def. 11).

(Def. 11) Let p be a point of T . Then p ∈ Li S if and only if for every neighbour-

hood G of p there exists a natural number k such that for every natural

number m such that m > k holds S(m) meets G.

The following propositions are true:

(50) Let S be a sequence of subsets of the carrier of En

T, p be a point of E
n

T,

and p′ be a point of En. Suppose p = p′. Then p ∈ Li S if and only if

for every real number r such that r > 0 there exists a natural number k
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such that for every natural number m such that m > k holds S(m) meets

Ball(p′, r).

(51) For every non empty topological space T and for every sequence S of

subsets of the carrier of T holds Li S = Li S.

(52) For every non empty topological space T and for every sequence S of

subsets of the carrier of T holds Li S is closed.

(53) Let T be a non empty topological space and R, S be sequences of subsets

of the carrier of T . If R is a subsequence of S, then Li S ⊆ Li R.

(54) Let T be a non empty topological space and A, B be sequences of subsets

of the carrier of T . If for every natural number i holds A(i) ⊆ B(i), then

Li A ⊆ Li B.

(55) Let T be a non empty topological space and A, B, C be sequences of

subsets of the carrier of T . If for every natural number i holds C(i) =

A(i) ∪B(i), then Li A ∪ Li B ⊆ Li C.

(56) Let T be a non empty topological space and A, B, C be sequences of

subsets of the carrier of T . If for every natural number i holds C(i) =

A(i) ∩B(i), then Li C ⊆ Li A ∩ Li B.

(57) Let T be a non empty topological space and F , G be sequences of subsets

of the carrier of T . If for every natural number i holds G(i) = F (i), then

Li G = Li F.

(58) Let S be a sequence of subsets of the carrier of En

T and p be a point of En

T.

Given a sequence s in En

T such that s is convergent and for every natural

number x holds s(x) ∈ S(x) and p = lim s. Then p ∈ Li S.

(59) Let T be a non empty topological space, P be a subset of T , and s be a

sequence of subsets of the carrier of T . If for every natural number i holds

s(i) ⊆ P, then Li s ⊆ P.

(60) Let T be a non empty topological space, F be a sequence of subsets of

the carrier of T , and A be a subset of T . If for every natural number i

holds F (i) = A, then Li F = A.

(61) Let T be a non empty topological space, F be a sequence of subsets of

the carrier of T , and A be a closed subset of T . If for every natural number

i holds F (i) = A, then Li F = A.

(62) Let S be a sequence of subsets of the carrier of En

T and P be a subset of

En

T. Suppose P is Bounded and for every natural number i holds S(i) ⊆ P.

Then Li S is Bounded.

(63) Let S be a sequence of subsets of the carrier of E2

T and P be a subset of E2

T.

Suppose P is Bounded and for every natural number i holds S(i) ⊆ P and

for every natural number i holds S(i) is compact. Then Li S is compact.

(64) Let A, B be sequences of subsets of the carrier of En

T and C be a sequence

of subsets of the carrier of [: En

T, E
n

T :]. If for every natural number i holds
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C(i) = [:A(i), B(i) :], then [:Li A, Li B :] = Li C.

(65) For every sequence S of subsets of E2

T holds lim inf S ⊆ Li S.

(66) For every simple closed curve C and for every natural number i holds

Fr((UBD L̃(Cage(C, i)))c) = L̃(Cage(C, i)).

8. The Upper Topological Limit

Let T be a non empty topological space and let S be a sequence of subsets of

the carrier of T . The functor Ls S yields a subset of T and is defined as follows:

(Def. 12) For every set x holds x ∈ Ls S iff there exists a subsequence A of S such

that x ∈ Li A.

One can prove the following propositions:

(67) Let N be a natural number, F be a sequence of EN

T , x be a point of

EN

T , and x′ be a point of EN . Suppose x = x′. Then x is a cluster point

of F if and only if for every real number r and for every natural number

n such that r > 0 there exists a natural number m such that n ¬ m and

F (m) ∈ Ball(x′, r).

(68) For every non empty topological space T and for every sequence A of

subsets of the carrier of T holds Li A ⊆ Ls A.

(69) Let A, B, C be sequences of subsets of the carrier of E2

T. Suppose for

every natural number i holds A(i) ⊆ B(i) and C is a subsequence of A.

Then there exists a subsequenceD of B such that for every natural number

i holds C(i) ⊆ D(i).

(70) Let A, B, C be sequences of subsets of the carrier of E2

T. Suppose for

every natural number i holds A(i) ⊆ B(i) and C is a subsequence of B.

Then there exists a subsequenceD of A such that for every natural number

i holds D(i) ⊆ C(i).

(71) Let A, B be sequences of subsets of the carrier of E2

T. If for every natural

number i holds A(i) ⊆ B(i), then Ls A ⊆ Ls B.

(72) Let A, B, C be sequences of subsets of the carrier of E2

T. If for every

natural number i holds C(i) = A(i) ∪B(i), then Ls A ∪ Ls B ⊆ Ls C.

(73) Let A, B, C be sequences of subsets of the carrier of E2

T. If for every

natural number i holds C(i) = A(i) ∩B(i), then Ls C ⊆ Ls A ∩ Ls B.

(74) Let A, B be sequences of subsets of the carrier of E2

T and C, C1 be

sequences of subsets of the carrier of [: E2

T, E
2

T :]. Suppose for every natural

number i holds C(i) = [:A(i), B(i) :] and C1 is a subsequence of C. Then

there exist sequences A1, B1 of subsets of the carrier of E
2

T such that A1

is a subsequence of A and B1 is a subsequence of B and for every natural

number i holds C1(i) = [:A1(i), B1(i) :].
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(75) Let A, B be sequences of subsets of the carrier of E2

T and C be a sequence

of subsets of the carrier of [: E2

T, E
2

T :]. If for every natural number i holds

C(i) = [:A(i), B(i) :], then Ls C ⊆ [:Ls A, Ls B :].

(76) Let T be a non empty topological space, F be a sequence of subsets of

the carrier of T , and A be a subset of T . If for every natural number i

holds F (i) = A, then Li F = Ls F.

(77) Let F be a sequence of subsets of the carrier of E2

T and A be a subset of

E2

T. If for every natural number i holds F (i) = A, then Ls F = A.

(78) Let F , G be sequences of subsets of the carrier of E2

T. If for every natural

number i holds G(i) = F (i), then Ls G = Ls F.
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