On the Kuratowski Limit Operators ${ }^{1}$

Adam Grabowski
University of Białystok

Abstract

Summary. In the paper we give formal descriptions of the two Kuratowski limit oprators: Li S and Ls S, where S is an arbitrary sequence of subsets of a fixed topological space. In the two last sections we prove basic properties of these lower and upper topological limits, which may be found e.g. in [19]. In the sections $2-4$, we present three operators which are associated in some sense with the above mentioned, that is $\lim \inf F, \lim \sup F$, and limes F, where F is a sequence of subsets of a fixed 1-sorted structure.

MML Identifier: KURATO_2.

The articles [30], [33], [2], [29], [9], [1], [22], [24], [35], [12], [34], [6], [4], [18], [8], [7], [16], [5], [13], [25], [31], [21], [10], [23], [14], [15], [20], [17], [27], [28], [26], [11], [3], and [32] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following four propositions:
(1) For all sets X, x and for every subset A of X such that $x \notin A$ and $x \in X$ holds $x \in A^{\mathrm{c}}$.
(2) For every function F and for every set i such that $i \in \operatorname{dom} F$ holds $\bigcap F \subseteq F(i)$.
(3) Let T be a non empty 1-sorted structure and S_{1}, S_{2} be sequences of subsets of the carrier of T. Then $S_{1}=S_{2}$ if and only if for every natural number n holds $S_{1}(n)=S_{2}(n)$.
(4) For all sets A, B, C, D such that A meets B and C meets D holds : $: A$, C : meets : B, D :

[^0]Let X be a 1 -sorted structure. Note that every sequence of subsets of the carrier of X is non empty.

Let T be a non empty 1-sorted structure. One can check that there exists a sequence of subsets of the carrier of T which is non-empty.

Let T be a non empty 1 -sorted structure.
(Def. 1) A sequence of subsets of the carrier of T is said to be a sequence of subsets of T.
In this article we present several logical schemes. The scheme LambdaSSeq deals with a non empty 1 -sorted structure \mathcal{A} and a unary functor \mathcal{F} yielding a subset of \mathcal{A}, and states that:

There exists a sequence f of subsets of \mathcal{A} such that for every natural number n holds $f(n)=\mathcal{F}(n)$
for all values of the parameters.
The scheme ExTopStrSeq deals with a non empty topological space \mathcal{A} and a unary functor \mathcal{F} yielding a subset of \mathcal{A}, and states that:

There exists a sequence S of subsets of the carrier of \mathcal{A} such that for every natural number n holds $S(n)=\mathcal{F}(n)$
for all values of the parameters.
We now state the proposition
(5) Let X be a non empty 1-sorted structure and F be a sequence of subsets of the carrier of X. Then $\operatorname{rng} F$ is a family of subsets of X.

Let X be a non empty 1 -sorted structure and let F be a sequence of subsets of the carrier of X. Then $\bigcup F$ is a subset of X. Then $\bigcap F$ is a subset of X.

2. Lower and Upper Limit of Sequences of Subsets

Let X be a non empty set, let S be a function from \mathbb{N} into X, and let k be a natural number. The functor $S \uparrow k$ yields a function from \mathbb{N} into X and is defined as follows:
(Def. 2) For every natural number n holds $(S \uparrow k)(n)=S(n+k)$.
Let X be a non empty 1 -sorted structure and let F be a sequence of subsets of the carrier of X. The functor liminf F yields a subset of X and is defined as follows:
(Def. 3) There exists a sequence f of subsets of X such that $\lim \inf F=\bigcup f$ and for every natural number n holds $f(n)=\bigcap(F \uparrow n)$.
The functor $\lim \sup F$ yields a subset of X and is defined by:
(Def. 4) There exists a sequence f of subsets of X such that $\lim \sup F=\bigcap f$ and for every natural number n holds $f(n)=\bigcup(F \uparrow n)$.
Next we state a number of propositions:
(6) Let X be a non empty 1-sorted structure, F be a sequence of subsets of the carrier of X, and x be a set. Then $x \in \bigcap F$ if and only if for every natural number z holds $x \in F(z)$.
(7) Let X be a non empty 1 -sorted structure, F be a sequence of subsets of the carrier of X, and x be a set. Then $x \in \liminf F$ if and only if there exists a natural number n such that for every natural number k holds $x \in F(n+k)$.
(8) Let X be a non empty 1-sorted structure, F be a sequence of subsets of the carrier of X, and x be a set. Then $x \in \lim \sup F$ if and only if for every natural number n there exists a natural number k such that $x \in F(n+k)$.
(9) For every non empty 1-sorted structure X and for every sequence F of subsets of the carrier of X holds $\lim \inf F \subseteq \lim \sup F$.
(10) For every non empty 1 -sorted structure X and for every sequence F of subsets of the carrier of X holds $\bigcap F \subseteq \lim \inf F$.
(11) For every non empty 1 -sorted structure X and for every sequence F of subsets of the carrier of X holds $\lim \sup F \subseteq \bigcup F$.
(12) For every non empty 1-sorted structure X and for every sequence F of subsets of the carrier of X holds $\lim \inf F=(\lim \sup \text { Complement } F)^{\mathrm{c}}$.
(13) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n)=$ $A(n) \cap B(n)$, then $\lim \inf C=\liminf A \cap \liminf B$.
(14) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n)=$ $A(n) \cup B(n)$, then $\lim \sup C=\lim \sup A \cup \lim \sup B$.
(15) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n)=$ $A(n) \cup B(n)$, then $\lim \inf A \cup \lim \inf B \subseteq \liminf C$.
(16) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n)=$ $A(n) \cap B(n)$, then $\lim \sup C \subseteq \lim \sup A \cap \lim \sup B$.
(17) Let X be a non empty 1-sorted structure, A be a sequence of subsets of the carrier of X, and B be a subset of X. If for every natural number n holds $A(n)=B$, then $\lim \sup A=B$.
(18) Let X be a non empty 1-sorted structure, A be a sequence of subsets of the carrier of X, and B be a subset of X. If for every natural number n holds $A(n)=B$, then $\liminf A=B$.
(19) Let X be a non empty 1-sorted structure, A, B be sequences of subsets of the carrier of X, and C be a subset of X. If for every natural number n holds $B(n)=C \doteq A(n)$, then $C \doteq \lim \inf A \subseteq \limsup B$.
(20) Let X be a non empty 1-sorted structure, A, B be sequences of subsets
of the carrier of X, and C be a subset of X. If for every natural number n holds $B(n)=C \doteq A(n)$, then $C \doteq \lim \sup A \subseteq \lim \sup B$.

3. Ascending and Descending Families of Subsets

Let T be a non empty 1 -sorted structure and let S be a sequence of subsets of T. We say that S is descending if and only if:
(Def. 5) For every natural number i holds $S(i+1) \subseteq S(i)$.
We say that S is ascending if and only if:
(Def. 6) For every natural number i holds $S(i) \subseteq S(i+1)$.
Next we state several propositions:
(21) Let f be a function. Suppose that for every natural number i holds $f(i+1) \subseteq f(i)$. Let i, j be natural numbers. If $i \leqslant j$, then $f(j) \subseteq f(i)$.
(22) Let T be a non empty 1 -sorted structure and C be a sequence of subsets of T. Suppose C is descending. Let i, m be natural numbers. If $i \geqslant m$, then $C(i) \subseteq C(m)$.
(23) Let T be a non empty 1 -sorted structure and C be a sequence of subsets of T. Suppose C is ascending. Let i, m be natural numbers. If $i \geqslant m$, then $C(m) \subseteq C(i)$.
(24) Let T be a non empty 1-sorted structure, F be a sequence of subsets of T, and x be a set. Suppose F is descending and there exists a natural number k such that for every natural number n such that $n>k$ holds $x \in F(n)$. Then $x \in \bigcap F$.
(25) Let T be a non empty 1 -sorted structure and F be a sequence of subsets of T. If F is descending, then $\lim \inf F=\bigcap F$.
(26) Let T be a non empty 1-sorted structure and F be a sequence of subsets of T. If F is ascending, then $\lim \sup F=\bigcup F$.

4. Constant and Convergent Sequences

Let T be a non empty 1-sorted structure and let S be a sequence of subsets of T. We say that S is convergent if and only if:
(Def. 7) $\lim \sup S=\liminf S$.
We now state the proposition
(27) Let T be a non empty 1-sorted structure and S be a sequence of subsets of T. If S is constant, then the value of S is a subset of T.
Let T be a non empty 1 -sorted structure and let S be a sequence of subsets of T. Let us observe that S is constant if and only if:
(Def. 8) There exists a subset A of T such that for every natural number n holds $S(n)=A$.
Let T be a non empty 1 -sorted structure. Observe that every sequence of subsets of T which is constant is also convergent, ascending, and descending.

Let T be a non empty 1 -sorted structure. Note that there exists a sequence of subsets of T which is constant and non empty.

Let T be a non empty 1 -sorted structure and let S be a convergent sequence of subsets of T. The functor limes S yields a subset of T and is defined as follows:
(Def. 9) $\operatorname{limes} S=\lim \sup S$ and limes $S=\liminf S$.
One can prove the following proposition
(28) Let X be a non empty 1 -sorted structure, F be a convergent sequence of subsets of X, and x be a set. Then $x \in \operatorname{limes} F$ if and only if there exists a natural number n such that for every natural number k holds $x \in F(n+k)$.

5. Topological Lemmas

In the sequel n denotes a natural number.
Let f be a finite sequence of elements of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. One can check that $\widetilde{\mathcal{L}}(f)$ is closed.

We now state several propositions:
(29) Let r be a real number, M be a non empty Reflexive metric structure, and x be an element of M. If $0<r$, then $x \in \operatorname{Ball}(x, r)$.
(30) For every point x of \mathcal{E}^{n} and for every real number r holds $\operatorname{Ball}(x, r)$ is an open subset of $\mathcal{E}_{\mathrm{T}}^{n}$.
(31) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{n}$ and for all points p^{\prime}, q^{\prime} of \mathcal{E}^{n} such that $p=p^{\prime}$ and $q=q^{\prime}$ holds $\rho\left(p^{\prime}, q^{\prime}\right)=|p-q|$.
(32) Let p be a point of $\mathcal{E}^{n}, x, p^{\prime}$ be points of $\mathcal{E}_{\mathrm{T}}^{n}$, and r be a real number. If $p=p^{\prime}$ and $x \in \operatorname{Ball}(p, r)$, then $\left|x-p^{\prime}\right|<r$.
(33) Let p be a point of $\mathcal{E}^{n}, x, p^{\prime}$ be points of $\mathcal{E}_{\mathrm{T}}^{n}$, and r be a real number. If $p=p^{\prime}$ and $\left|x-p^{\prime}\right|<r$, then $x \in \operatorname{Ball}(p, r)$.
(34) Let n be a natural number, r be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and X be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $r \in \bar{X}$. Then there exists a sequence s_{1} in $\mathcal{E}_{\mathrm{T}}^{n}$ such that $\operatorname{rng} s_{1} \subseteq X$ and s_{1} is convergent and $\lim s_{1}=r$.
Let M be a non empty metric space. Note that $M_{\text {top }}$ is first-countable.
Let n be a natural number. Note that $\mathcal{E}_{\mathrm{T}}^{n}$ is first-countable.
Next we state several propositions:
(35) Let p be a point of \mathcal{E}^{n}, q be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and r be a real number. If $p=q$ and $r>0$, then $\operatorname{Ball}(p, r)$ is a neighbourhood of q.
(36) Let A be a subset of $\mathcal{E}_{\mathrm{T}}^{n}, p$ be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and p^{\prime} be a point of \mathcal{E}^{n}. Suppose $p=p^{\prime}$. Then $p \in \bar{A}$ if and only if for every real number r such that $r>0$ holds $\operatorname{Ball}\left(p^{\prime}, r\right)$ meets A.
(37) Let x, y be points of $\mathcal{E}_{\mathrm{T}}^{n}$ and x^{\prime} be a point of \mathcal{E}^{n}. If $x^{\prime}=x$ and $x \neq y$, then there exists a real number r such that $y \notin \operatorname{Ball}\left(x^{\prime}, r\right)$.
(38) Let S be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Then S is non Bounded if and only if for every real number r such that $r>0$ there exist points x, y of \mathcal{E}^{n} such that $x \in S$ and $y \in S$ and $\rho(x, y)>r$.
(39) For all real numbers a, b and for all points x, y of \mathcal{E}^{n} such that $\operatorname{Ball}(x, a)$ meets $\operatorname{Ball}(y, b)$ holds $\rho(x, y)<a+b$.
(40) Let a, b, c be real numbers and x, y, z be points of \mathcal{E}^{n}. If $\operatorname{Ball}(x, a)$ meets $\operatorname{Ball}(z, c)$ and $\operatorname{Ball}(z, c)$ meets $\operatorname{Ball}(y, b)$, then $\rho(x, y)<a+b+2 \cdot c$.
(41) Let X, Y be non empty topological spaces, x be a point of X, y be a point of Y, and V be a subset of $: X, Y:$. Then V is a neighbourhood of $[:\{x\},\{y\}:$ if and only if V is a neighbourhood of $\langle x, y\rangle$.
Now we present two schemes. The scheme TSubsetEx deals with a non empty topological structure \mathcal{A} and a unary predicate \mathcal{P}, and states that:

There exists a subset X of \mathcal{A} such that for every point x of \mathcal{A} holds $x \in X$ iff $\mathcal{P}[x]$
for all values of the parameters.
The scheme TSubsetUniq deals with a topological structure \mathcal{A} and a unary predicate \mathcal{P}, and states that:

Let A_{1}, A_{2} be subsets of \mathcal{A}. Suppose for every point x of \mathcal{A} holds $x \in A_{1}$ iff $\mathcal{P}[x]$ and for every point x of \mathcal{A} holds $x \in A_{2}$ iff $\mathcal{P}[x]$. Then $A_{1}=A_{2}$
for all values of the parameters.
Let T be a non empty topological structure, let S be a sequence of subsets of the carrier of T, and let i be a natural number. Then $S(i)$ is a subset of T.

One can prove the following two propositions:
(42) Let T be a non empty 1 -sorted structure, S be a sequence of subsets of the carrier of T, and R be a sequence of naturals. Then $S \cdot R$ is a sequence of subsets of T.
(43) $\mathrm{id}_{\mathbb{N}}$ is an increasing sequence of naturals.

Let us observe that $\mathrm{id}_{\mathbb{N}}$ is real-yielding.

6. SUBSEQUENCES

Let T be a non empty 1 -sorted structure and let S be a sequence of subsets of the carrier of T. A sequence of subsets of T is said to be a subsequence of S if:
(Def. 10) There exists an increasing sequence N_{1} of naturals such that it $=S \cdot N_{1}$. We now state several propositions:
(44) For every non empty 1 -sorted structure T holds every sequence S of subsets of the carrier of T is a subsequence of S.
(45) Let T be a non empty 1 -sorted structure, S be a sequence of subsets of T, and S_{1} be a subsequence of S. Then $\operatorname{rng} S_{1} \subseteq \operatorname{rng} S$.
(46) Let T be a non empty 1 -sorted structure, S_{1} be a sequence of subsets of the carrier of T, and S_{2} be a subsequence of S_{1}. Then every subsequence of S_{2} is a subsequence of S_{1}.
(47) Let T be a non empty 1 -sorted structure, F, G be sequences of subsets of the carrier of T, and A be a subset of T. Suppose G is a subsequence of F and for every natural number i holds $F(i)=A$. Then $G=F$.
(48) Let T be a non empty 1 -sorted structure, A be a constant sequence of subsets of T, and B be a subsequence of A. Then $A=B$.
(49) Let T be a non empty 1 -sorted structure, S be a sequence of subsets of the carrier of T, R be a subsequence of S, and n be a natural number. Then there exists a natural number m such that $m \geqslant n$ and $R(n)=S(m)$.
Let T be a non empty 1 -sorted structure and let X be a constant sequence of subsets of T. Note that every subsequence of X is constant.

The scheme SubSeqChoice deals with a non empty topological space \mathcal{A}, a sequence \mathcal{B} of subsets of the carrier of \mathcal{A}, and a unary predicate \mathcal{P}, and states that:

There exists a subsequence S_{1} of \mathcal{B} such that for every natural number n holds $\mathcal{P}\left[S_{1}(n)\right]$
provided the following condition is satisfied:

- For every natural number n there exists a natural number m such that $n \leqslant m$ and $\mathcal{P}[\mathcal{B}(m)]$.

7. The Lower Topological Limit

Let T be a non empty topological space and let S be a sequence of subsets of the carrier of T. The functor Li S yielding a subset of T is defined by the condition (Def. 11).
(Def. 11) Let p be a point of T. Then $p \in \operatorname{Li} S$ if and only if for every neighbourhood G of p there exists a natural number k such that for every natural number m such that $m>k$ holds $S(m)$ meets G.
The following propositions are true:
(50) Let S be a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}, p$ be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and p^{\prime} be a point of \mathcal{E}^{n}. Suppose $p=p^{\prime}$. Then $p \in \operatorname{Li} S$ if and only if for every real number r such that $r>0$ there exists a natural number k
such that for every natural number m such that $m>k$ holds $S(m)$ meets $\operatorname{Ball}\left(p^{\prime}, r\right)$.
(51) For every non empty topological space T and for every sequence S of subsets of the carrier of T holds $\overline{\operatorname{Li} S}=\mathrm{Li} S$.
(52) For every non empty topological space T and for every sequence S of subsets of the carrier of T holds Li S is closed.
(53) Let T be a non empty topological space and R, S be sequences of subsets of the carrier of T. If R is a subsequence of S, then $\mathrm{Li} S \subseteq \operatorname{Li} R$.
(54) Let T be a non empty topological space and A, B be sequences of subsets of the carrier of T. If for every natural number i holds $A(i) \subseteq B(i)$, then $\mathrm{Li} A \subseteq \mathrm{Li} B$.
(55) Let T be a non empty topological space and A, B, C be sequences of subsets of the carrier of T. If for every natural number i holds $C(i)=$ $A(i) \cup B(i)$, then $\mathrm{Li} A \cup \mathrm{Li} B \subseteq \mathrm{Li} C$.
(56) Let T be a non empty topological space and A, B, C be sequences of subsets of the carrier of T. If for every natural number i holds $C(i)=$ $A(i) \cap B(i)$, then $\mathrm{Li} C \subseteq \operatorname{Li} A \cap \operatorname{Li} B$.
(57) Let T be a non empty topological space and F, G be sequences of subsets of the carrier of T. If for every natural number i holds $G(i)=\overline{F(i)}$, then $\mathrm{Li} G=\operatorname{Li} F$.
(58) Let S be a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$. Given a sequence s in $\mathcal{E}_{\mathrm{T}}^{n}$ such that s is convergent and for every natural number x holds $s(x) \in S(x)$ and $p=\lim s$. Then $p \in \operatorname{Li} S$.
(59) Let T be a non empty topological space, P be a subset of T, and s be a sequence of subsets of the carrier of T. If for every natural number i holds $s(i) \subseteq P$, then Li $s \subseteq \bar{P}$.
(60) Let T be a non empty topological space, F be a sequence of subsets of the carrier of T, and A be a subset of T. If for every natural number i holds $F(i)=A$, then $\operatorname{Li} F=\bar{A}$.
(61) Let T be a non empty topological space, F be a sequence of subsets of the carrier of T, and A be a closed subset of T. If for every natural number i holds $F(i)=A$, then $\operatorname{Li} F=A$.
(62) Let S be a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose P is Bounded and for every natural number i holds $S(i) \subseteq P$. Then Li S is Bounded.
(63) Let S be a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is Bounded and for every natural number i holds $S(i) \subseteq P$ and for every natural number i holds $S(i)$ is compact. Then Li S is compact.
(64) Let A, B be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and C be a sequence of subsets of the carrier of $: \mathcal{E}_{\mathrm{T}}^{n}, \mathcal{E}_{\mathrm{T}}^{n}$]. If for every natural number i holds

$$
C(i)=[: A(i), B(i):], \text { then }[\operatorname{Li} A, \operatorname{Li} B:]=\operatorname{Li} C .
$$

(65) For every sequence S of subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\lim \inf S \subseteq \operatorname{Li} S$.
(66) For every simple closed curve C and for every natural number i holds $\operatorname{Fr}\left((\operatorname{UBD} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, i)))^{\mathrm{c}}\right)=\widetilde{\mathcal{L}}(\operatorname{Cage}(C, i))$.

8. The Upper Topological Limit

Let T be a non empty topological space and let S be a sequence of subsets of the carrier of T. The functor Ls S yields a subset of T and is defined as follows:
(Def. 12) For every set x holds $x \in \operatorname{Ls} S$ iff there exists a subsequence A of S such that $x \in \operatorname{Li} A$.
One can prove the following propositions:
(67) Let N be a natural number, F be a sequence of $\mathcal{E}_{\mathrm{T}}^{N}, x$ be a point of $\mathcal{E}_{\mathrm{T}}^{N}$, and x^{\prime} be a point of \mathcal{E}^{N}. Suppose $x=x^{\prime}$. Then x is a cluster point of F if and only if for every real number r and for every natural number n such that $r>0$ there exists a natural number m such that $n \leqslant m$ and $F(m) \in \operatorname{Ball}\left(x^{\prime}, r\right)$.
(68) For every non empty topological space T and for every sequence A of subsets of the carrier of T holds $\mathrm{Li} A \subseteq \operatorname{Ls} A$.
(69) Let A, B, C be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose for every natural number i holds $A(i) \subseteq B(i)$ and C is a subsequence of A. Then there exists a subsequence D of B such that for every natural number i holds $C(i) \subseteq D(i)$.
(70) Let A, B, C be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose for every natural number i holds $A(i) \subseteq B(i)$ and C is a subsequence of B. Then there exists a subsequence D of A such that for every natural number i holds $D(i) \subseteq C(i)$.
(71) Let A, B be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If for every natural number i holds $A(i) \subseteq B(i)$, then $\mathrm{Ls} A \subseteq \mathrm{Ls} B$.
(72) Let A, B, C be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If for every natural number i holds $C(i)=A(i) \cup B(i)$, then Ls $A \cup \mathrm{Ls} B \subseteq \mathrm{Ls} C$.
(73) Let A, B, C be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If for every natural number i holds $C(i)=A(i) \cap B(i)$, then Ls $C \subseteq \mathrm{Ls} A \cap \mathrm{Ls} B$.
(74) Let A, B be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and C, C_{1} be sequences of subsets of the carrier of $\left[\mathcal{E}_{\mathrm{T}}^{2}, \mathcal{E}_{\mathrm{T}}^{2}\right]$. Suppose for every natural number i holds $C(i)=\left[: A(i), B(i):\right.$ and C_{1} is a subsequence of C. Then there exist sequences A_{1}, B_{1} of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ such that A_{1} is a subsequence of A and B_{1} is a subsequence of B and for every natural number i holds $C_{1}(i)=\left[A_{1}(i), B_{1}(i):\right]$.
(75) Let A, B be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and C be a sequence of subsets of the carrier of $\left.: \mathcal{E}_{\mathrm{T}}^{2}, \mathcal{E}_{\mathrm{T}}^{2}:\right]$. If for every natural number i holds $C(i)=[: A(i), B(i):]$, then Ls $C \subseteq[: \operatorname{Ls} A$, Ls $B:]$.
(76) Let T be a non empty topological space, F be a sequence of subsets of the carrier of T, and A be a subset of T. If for every natural number i holds $F(i)=A$, then $\mathrm{Li} F=\operatorname{Ls} F$.
(77) Let F be a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and A be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. If for every natural number i holds $F(i)=A$, then $\operatorname{Ls} F=\bar{A}$.
(78) Let F, G be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If for every natural number i holds $G(i)=\overline{F(i)}$, then Ls $G=\operatorname{Ls} F$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[11] Czesław Byliński and Mariusz Żynel. Cages - the external approximation of Jordan’s curve. Formalized Mathematics, 9(1):19-24, 2001.
[12] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[14] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[15] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[16] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[17] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[19] Kazimierz Kuratowski. Topology, volume I. PWN - Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
[20] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[21] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[22] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[23] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
[24] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[25] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[26] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$. Formalized Mathematics, 5(1):93-96, 1996.
[27] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.
[28] Bartłomiej Skorulski. The sequential closure operator in sequential and Frechet spaces. Formalized Mathematics, 8(1):47-54, 1999.
[29] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[30] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[31] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[32] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213-225, 1997.
[33] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[35] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received August 12, 2003

[^0]: ${ }^{1}$ This work has been partially supported by the CALCULEMUS grant HPRN-CT-200000102.

