On the Kuratowski Limit Operators¹

Adam Grabowski University of Białystok

Summary. In the paper we give formal descriptions of the two Kuratowski limit oprators: Li S and Ls S, where S is an arbitrary sequence of subsets of a fixed topological space. In the two last sections we prove basic properties of these lower and upper topological limits, which may be found e.g. in [19]. In the sections 2–4, we present three operators which are associated in some sense with the above mentioned, that is lim inf F, lim sup F, and limes F, where F is a sequence of subsets of a fixed 1-sorted structure.

MML Identifier: $KURATO_2$.

The articles [30], [33], [2], [29], [9], [1], [22], [24], [35], [12], [34], [6], [4], [18], [8], [7], [16], [5], [13], [25], [31], [21], [10], [23], [14], [15], [20], [17], [27], [28], [26], [11], [3], and [32] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following four propositions:

- (1) For all sets X, x and for every subset A of X such that $x \notin A$ and $x \in X$ holds $x \in A^{c}$.
- (2) For every function F and for every set i such that $i \in \text{dom } F$ holds $\bigcap F \subseteq F(i)$.
- (3) Let T be a non empty 1-sorted structure and S_1 , S_2 be sequences of subsets of the carrier of T. Then $S_1 = S_2$ if and only if for every natural number n holds $S_1(n) = S_2(n)$.
- (4) For all sets A, B, C, D such that A meets B and C meets D holds [A, C] meets [B, D].

C 2003 University of Białystok ISSN 1426-2630

¹This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-00102.

Let X be a 1-sorted structure. Note that every sequence of subsets of the carrier of X is non empty.

Let T be a non empty 1-sorted structure. One can check that there exists a sequence of subsets of the carrier of T which is non-empty.

Let T be a non empty 1-sorted structure.

(Def. 1) A sequence of subsets of the carrier of T is said to be a sequence of subsets of T.

In this article we present several logical schemes. The scheme LambdaSSeq deals with a non empty 1-sorted structure \mathcal{A} and a unary functor \mathcal{F} yielding a subset of \mathcal{A} , and states that:

There exists a sequence f of subsets of \mathcal{A} such that for every natural number n holds $f(n) = \mathcal{F}(n)$

for all values of the parameters.

The scheme ExTopStrSeq deals with a non empty topological space \mathcal{A} and a unary functor \mathcal{F} yielding a subset of \mathcal{A} , and states that:

There exists a sequence S of subsets of the carrier of \mathcal{A} such that for every natural number n holds $S(n) = \mathcal{F}(n)$

for all values of the parameters.

We now state the proposition

(5) Let X be a non empty 1-sorted structure and F be a sequence of subsets of the carrier of X. Then rng F is a family of subsets of X.

Let X be a non empty 1-sorted structure and let F be a sequence of subsets of the carrier of X. Then $\bigcup F$ is a subset of X. Then $\bigcap F$ is a subset of X.

2. Lower and Upper Limit of Sequences of Subsets

Let X be a non empty set, let S be a function from N into X, and let k be a natural number. The functor $S \uparrow k$ yields a function from N into X and is defined as follows:

(Def. 2) For every natural number n holds $(S \uparrow k)(n) = S(n+k)$.

Let X be a non empty 1-sorted structure and let F be a sequence of subsets of the carrier of X. The functor $\liminf F$ yields a subset of X and is defined as follows:

(Def. 3) There exists a sequence f of subsets of X such that $\liminf F = \bigcup f$ and for every natural number n holds $f(n) = \bigcap (F \uparrow n)$.

The functor $\limsup F$ yields a subset of X and is defined by:

(Def. 4) There exists a sequence f of subsets of X such that $\limsup F = \bigcap f$ and for every natural number n holds $f(n) = \bigcup (F \uparrow n)$.

Next we state a number of propositions:

400

- (6) Let X be a non empty 1-sorted structure, F be a sequence of subsets of the carrier of X, and x be a set. Then $x \in \bigcap F$ if and only if for every natural number z holds $x \in F(z)$.
- (7) Let X be a non empty 1-sorted structure, F be a sequence of subsets of the carrier of X, and x be a set. Then $x \in \liminf F$ if and only if there exists a natural number n such that for every natural number k holds $x \in F(n+k)$.
- (8) Let X be a non empty 1-sorted structure, F be a sequence of subsets of the carrier of X, and x be a set. Then $x \in \limsup F$ if and only if for every natural number n there exists a natural number k such that $x \in F(n+k)$.
- (9) For every non empty 1-sorted structure X and for every sequence F of subsets of the carrier of X holds $\liminf F \subseteq \limsup F$.
- (10) For every non empty 1-sorted structure X and for every sequence F of subsets of the carrier of X holds $\bigcap F \subseteq \liminf F$.
- (11) For every non empty 1-sorted structure X and for every sequence F of subsets of the carrier of X holds $\limsup F \subseteq \bigcup F$.
- (12) For every non empty 1-sorted structure X and for every sequence F of subsets of the carrier of X holds $\liminf F = (\limsup \operatorname{Complement} F)^c$.
- (13) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n) = A(n) \cap B(n)$, then $\liminf C = \liminf A \cap \liminf B$.
- (14) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n) = A(n) \cup B(n)$, then $\limsup C = \limsup A \cup \limsup B$.
- (15) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n) = A(n) \cup B(n)$, then $\liminf A \cup \liminf B \subseteq \liminf C$.
- (16) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n) = A(n) \cap B(n)$, then $\limsup C \subseteq \limsup A \cap \limsup B$.
- (17) Let X be a non empty 1-sorted structure, A be a sequence of subsets of the carrier of X, and B be a subset of X. If for every natural number n holds A(n) = B, then $\limsup A = B$.
- (18) Let X be a non empty 1-sorted structure, A be a sequence of subsets of the carrier of X, and B be a subset of X. If for every natural number n holds A(n) = B, then $\liminf A = B$.
- (19) Let X be a non empty 1-sorted structure, A, B be sequences of subsets of the carrier of X, and C be a subset of X. If for every natural number n holds $B(n) = C \dot{-} A(n)$, then $C \dot{-} \liminf A \subseteq \limsup B$.
- (20) Let X be a non empty 1-sorted structure, A, B be sequences of subsets

of the carrier of X, and C be a subset of X. If for every natural number n holds B(n) = C - A(n), then $C - \limsup A \subseteq \limsup B$.

3. Ascending and Descending Families of Subsets

Let T be a non empty 1-sorted structure and let S be a sequence of subsets of T. We say that S is descending if and only if:

(Def. 5) For every natural number *i* holds $S(i+1) \subseteq S(i)$.

We say that S is ascending if and only if:

- (Def. 6) For every natural number *i* holds $S(i) \subseteq S(i+1)$. Next we state several propositions:
 - (21) Let f be a function. Suppose that for every natural number i holds $f(i+1) \subseteq f(i)$. Let i, j be natural numbers. If $i \leq j$, then $f(j) \subseteq f(i)$.
 - (22) Let T be a non empty 1-sorted structure and C be a sequence of subsets of T. Suppose C is descending. Let i, m be natural numbers. If $i \ge m$, then $C(i) \subseteq C(m)$.
 - (23) Let T be a non empty 1-sorted structure and C be a sequence of subsets of T. Suppose C is ascending. Let i, m be natural numbers. If $i \ge m$, then $C(m) \subseteq C(i)$.
 - (24) Let T be a non empty 1-sorted structure, F be a sequence of subsets of T, and x be a set. Suppose F is descending and there exists a natural number k such that for every natural number n such that n > k holds $x \in F(n)$. Then $x \in \bigcap F$.
 - (25) Let T be a non empty 1-sorted structure and F be a sequence of subsets of T. If F is descending, then $\liminf F = \bigcap F$.
 - (26) Let T be a non empty 1-sorted structure and F be a sequence of subsets of T. If F is ascending, then $\limsup F = \bigcup F$.

4. Constant and Convergent Sequences

Let T be a non empty 1-sorted structure and let S be a sequence of subsets of T. We say that S is convergent if and only if:

(Def. 7) $\limsup S = \liminf S$.

We now state the proposition

(27) Let T be a non empty 1-sorted structure and S be a sequence of subsets of T. If S is constant, then the value of S is a subset of T.

Let T be a non empty 1-sorted structure and let S be a sequence of subsets of T. Let us observe that S is constant if and only if:

(Def. 8) There exists a subset A of T such that for every natural number n holds S(n) = A.

Let T be a non empty 1-sorted structure. Observe that every sequence of subsets of T which is constant is also convergent, ascending, and descending.

Let T be a non empty 1-sorted structure. Note that there exists a sequence of subsets of T which is constant and non empty.

Let T be a non empty 1-sorted structure and let S be a convergent sequence of subsets of T. The functor limes S yields a subset of T and is defined as follows:

(Def. 9) limes $S = \limsup S$ and limes $S = \liminf S$.

One can prove the following proposition

(28) Let X be a non empty 1-sorted structure, F be a convergent sequence of subsets of X, and x be a set. Then $x \in \text{limes } F$ if and only if there exists a natural number n such that for every natural number k holds $x \in F(n+k)$.

5. TOPOLOGICAL LEMMAS

In the sequel n denotes a natural number.

Let f be a finite sequence of elements of the carrier of $\mathcal{E}_{\mathrm{T}}^2$. One can check that $\widetilde{\mathcal{L}}(f)$ is closed.

We now state several propositions:

- (29) Let r be a real number, M be a non empty Reflexive metric structure, and x be an element of M. If 0 < r, then $x \in \text{Ball}(x, r)$.
- (30) For every point x of \mathcal{E}^n and for every real number r holds $\operatorname{Ball}(x,r)$ is an open subset of $\mathcal{E}^n_{\mathrm{T}}$.
- (31) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{n}$ and for all points p', q' of \mathcal{E}^{n} such that p = p' and q = q' holds $\rho(p', q') = |p q|$.
- (32) Let p be a point of \mathcal{E}^n , x, p' be points of $\mathcal{E}^n_{\mathrm{T}}$, and r be a real number. If p = p' and $x \in \mathrm{Ball}(p, r)$, then |x p'| < r.
- (33) Let p be a point of \mathcal{E}^n , x, p' be points of $\mathcal{E}^n_{\mathrm{T}}$, and r be a real number. If p = p' and |x p'| < r, then $x \in \mathrm{Ball}(p, r)$.
- (34) Let *n* be a natural number, *r* be a point of \mathcal{E}_{T}^{n} , and *X* be a subset of \mathcal{E}_{T}^{n} . Suppose $r \in \overline{X}$. Then there exists a sequence s_{1} in \mathcal{E}_{T}^{n} such that $\operatorname{rng} s_{1} \subseteq X$ and s_{1} is convergent and $\lim s_{1} = r$.

Let M be a non empty metric space. Note that M_{top} is first-countable. Let n be a natural number. Note that \mathcal{E}^n_{T} is first-countable. Next we state several propositions:

(35) Let p be a point of \mathcal{E}^n , q be a point of $\mathcal{E}^n_{\mathrm{T}}$, and r be a real number. If p = q and r > 0, then $\mathrm{Ball}(p, r)$ is a neighbourhood of q.

- (36) Let A be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$, p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and p' be a point of \mathcal{E}^{n} . Suppose p = p'. Then $p \in \overline{A}$ if and only if for every real number r such that r > 0 holds $\mathrm{Ball}(p', r)$ meets A.
- (37) Let x, y be points of $\mathcal{E}_{\mathrm{T}}^n$ and x' be a point of \mathcal{E}^n . If x' = x and $x \neq y$, then there exists a real number r such that $y \notin \mathrm{Ball}(x', r)$.
- (38) Let S be a subset of $\mathcal{E}^n_{\mathrm{T}}$. Then S is non Bounded if and only if for every real number r such that r > 0 there exist points x, y of \mathcal{E}^n such that $x \in S$ and $y \in S$ and $\rho(x, y) > r$.
- (39) For all real numbers a, b and for all points x, y of \mathcal{E}^n such that Ball(x, a) meets Ball(y, b) holds $\rho(x, y) < a + b$.
- (40) Let a, b, c be real numbers and x, y, z be points of \mathcal{E}^n . If Ball(x, a) meets Ball(z, c) and Ball(z, c) meets Ball(y, b), then $\rho(x, y) < a + b + 2 \cdot c$.
- (41) Let X, Y be non empty topological spaces, x be a point of X, y be a point of Y, and V be a subset of [X, Y]. Then V is a neighbourhood of $[\{x\}, \{y\}]$ if and only if V is a neighbourhood of $\langle x, y \rangle$.

Now we present two schemes. The scheme TSubsetEx deals with a non empty topological structure \mathcal{A} and a unary predicate \mathcal{P} , and states that:

There exists a subset X of A such that for every point x of A holds $x \in X$ iff $\mathcal{P}[x]$

for all values of the parameters.

The scheme TSubsetUniq deals with a topological structure \mathcal{A} and a unary predicate \mathcal{P} , and states that:

Let A_1 , A_2 be subsets of \mathcal{A} . Suppose for every point x of \mathcal{A} holds $x \in A_1$ iff $\mathcal{P}[x]$ and for every point x of \mathcal{A} holds $x \in A_2$ iff $\mathcal{P}[x]$. Then $A_1 = A_2$

for all values of the parameters.

Let T be a non empty topological structure, let S be a sequence of subsets of the carrier of T, and let i be a natural number. Then S(i) is a subset of T.

One can prove the following two propositions:

(42) Let T be a non empty 1-sorted structure, S be a sequence of subsets of the carrier of T, and R be a sequence of naturals. Then $S \cdot R$ is a sequence of subsets of T.

(43) $\operatorname{id}_{\mathbb{N}}$ is an increasing sequence of naturals.

Let us observe that $id_{\mathbb{N}}$ is real-yielding.

6. Subsequences

Let T be a non empty 1-sorted structure and let S be a sequence of subsets of the carrier of T. A sequence of subsets of T is said to be a subsequence of Sif:

404

- (Def. 10) There exists an increasing sequence N_1 of naturals such that it = $S \cdot N_1$. We now state several propositions:
 - (44) For every non empty 1-sorted structure T holds every sequence S of subsets of the carrier of T is a subsequence of S.
 - (45) Let T be a non empty 1-sorted structure, S be a sequence of subsets of T, and S_1 be a subsequence of S. Then $\operatorname{rng} S_1 \subseteq \operatorname{rng} S$.
 - (46) Let T be a non empty 1-sorted structure, S_1 be a sequence of subsets of the carrier of T, and S_2 be a subsequence of S_1 . Then every subsequence of S_2 is a subsequence of S_1 .
 - (47) Let T be a non empty 1-sorted structure, F, G be sequences of subsets of the carrier of T, and A be a subset of T. Suppose G is a subsequence of F and for every natural number i holds F(i) = A. Then G = F.
 - (48) Let T be a non empty 1-sorted structure, A be a constant sequence of subsets of T, and B be a subsequence of A. Then A = B.
 - (49) Let T be a non empty 1-sorted structure, S be a sequence of subsets of the carrier of T, R be a subsequence of S, and n be a natural number. Then there exists a natural number m such that $m \ge n$ and R(n) = S(m).

Let T be a non empty 1-sorted structure and let X be a constant sequence of subsets of T. Note that every subsequence of X is constant.

The scheme SubSeqChoice deals with a non empty topological space \mathcal{A} , a sequence \mathcal{B} of subsets of the carrier of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

There exists a subsequence S_1 of \mathcal{B} such that for every natural number n holds $\mathcal{P}[S_1(n)]$

provided the following condition is satisfied:

• For every natural number n there exists a natural number m such that $n \leq m$ and $\mathcal{P}[\mathcal{B}(m)]$.

7. The Lower Topological Limit

Let T be a non empty topological space and let S be a sequence of subsets of the carrier of T. The functor Li S yielding a subset of T is defined by the condition (Def. 11).

(Def. 11) Let p be a point of T. Then $p \in \text{Li } S$ if and only if for every neighbourhood G of p there exists a natural number k such that for every natural number m such that m > k holds S(m) meets G.

The following propositions are true:

(50) Let S be a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and p' be a point of \mathcal{E}^{n} . Suppose p = p'. Then $p \in \mathrm{Li} S$ if and only if for every real number r such that r > 0 there exists a natural number k

such that for every natural number m such that m > k holds S(m) meets Ball(p', r).

- (51) For every non empty topological space T and for every sequence S of subsets of the carrier of T holds $\overline{\text{Li } S} = \text{Li } S$.
- (52) For every non empty topological space T and for every sequence S of subsets of the carrier of T holds Li S is closed.
- (53) Let T be a non empty topological space and R, S be sequences of subsets of the carrier of T. If R is a subsequence of S, then Li $S \subseteq$ Li R.
- (54) Let T be a non empty topological space and A, B be sequences of subsets of the carrier of T. If for every natural number i holds $A(i) \subseteq B(i)$, then Li $A \subseteq$ Li B.
- (55) Let T be a non empty topological space and A, B, C be sequences of subsets of the carrier of T. If for every natural number i holds $C(i) = A(i) \cup B(i)$, then Li $A \cup$ Li $B \subseteq$ Li C.
- (56) Let T be a non empty topological space and A, B, C be sequences of subsets of the carrier of T. If for every natural number i holds $C(i) = A(i) \cap B(i)$, then Li $C \subseteq$ Li $A \cap$ Li B.
- (57) Let T be a non empty topological space and F, G be sequences of subsets of the carrier of T. If for every natural number i holds $G(i) = \overline{F(i)}$, then Li G = Li F.
- (58) Let S be a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$. Given a sequence s in $\mathcal{E}_{\mathrm{T}}^{n}$ such that s is convergent and for every natural number x holds $s(x) \in S(x)$ and $p = \lim s$. Then $p \in \mathrm{Li} S$.
- (59) Let T be a non empty topological space, P be a subset of T, and s be a sequence of subsets of the carrier of T. If for every natural number i holds $s(i) \subseteq P$, then Li $s \subseteq \overline{P}$.
- (60) Let T be a non empty topological space, F be a sequence of subsets of the carrier of T, and A be a subset of T. If for every natural number i holds F(i) = A, then Li $F = \overline{A}$.
- (61) Let T be a non empty topological space, F be a sequence of subsets of the carrier of T, and A be a closed subset of T. If for every natural number i holds F(i) = A, then Li F = A.
- (62) Let S be a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose P is Bounded and for every natural number i holds $S(i) \subseteq P$. Then Li S is Bounded.
- (63) Let S be a sequence of subsets of the carrier of \mathcal{E}_{T}^{2} and P be a subset of \mathcal{E}_{T}^{2} . Suppose P is Bounded and for every natural number i holds $S(i) \subseteq P$ and for every natural number i holds S(i) is compact. Then Li S is compact.
- (64) Let A, B be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and C be a sequence of subsets of the carrier of $[\mathcal{E}_{\mathrm{T}}^{n}, \mathcal{E}_{\mathrm{T}}^{n}]$. If for every natural number i holds

C(i) = [A(i), B(i)], then [Li A, Li B] = Li C.

- (65) For every sequence S of subsets of $\mathcal{E}^2_{\mathsf{T}}$ holds $\liminf S \subseteq \operatorname{Li} S$.
- (66) For every simple closed curve C and for every natural number i holds $\operatorname{Fr}((\operatorname{UBD} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, i)))^c) = \widetilde{\mathcal{L}}(\operatorname{Cage}(C, i)).$

8. The Upper Topological Limit

Let T be a non empty topological space and let S be a sequence of subsets of the carrier of T. The functor Ls S yields a subset of T and is defined as follows:

(Def. 12) For every set x holds $x \in Ls S$ iff there exists a subsequence A of S such that $x \in Li A$.

One can prove the following propositions:

- (67) Let N be a natural number, F be a sequence of $\mathcal{E}_{\mathrm{T}}^{N}$, x be a point of $\mathcal{E}_{\mathrm{T}}^{N}$, and x' be a point of \mathcal{E}^{N} . Suppose x = x'. Then x is a cluster point of F if and only if for every real number r and for every natural number n such that r > 0 there exists a natural number m such that $n \leq m$ and $F(m) \in \mathrm{Ball}(x', r)$.
- (68) For every non empty topological space T and for every sequence A of subsets of the carrier of T holds Li $A \subseteq$ Ls A.
- (69) Let A, B, C be sequences of subsets of the carrier of \mathcal{E}_{T}^{2} . Suppose for every natural number i holds $A(i) \subseteq B(i)$ and C is a subsequence of A. Then there exists a subsequence D of B such that for every natural number i holds $C(i) \subseteq D(i)$.
- (70) Let A, B, C be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$. Suppose for every natural number i holds $A(i) \subseteq B(i)$ and C is a subsequence of B. Then there exists a subsequence D of A such that for every natural number i holds $D(i) \subseteq C(i)$.
- (71) Let A, B be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$. If for every natural number i holds $A(i) \subseteq B(i)$, then Ls $A \subseteq$ Ls B.
- (72) Let A, B, C be sequences of subsets of the carrier of \mathcal{E}_{T}^{2} . If for every natural number i holds $C(i) = A(i) \cup B(i)$, then Ls $A \cup Ls B \subseteq Ls C$.
- (73) Let A, B, C be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$. If for every natural number *i* holds $C(i) = A(i) \cap B(i)$, then Ls $C \subseteq$ Ls $A \cap$ Ls B.
- (74) Let A, B be sequences of subsets of the carrier of \mathcal{E}_{T}^{2} and C, C_{1} be sequences of subsets of the carrier of $[\mathcal{E}_{T}^{2}, \mathcal{E}_{T}^{2}]$. Suppose for every natural number *i* holds C(i) = [A(i), B(i)] and C_{1} is a subsequence of C. Then there exist sequences A_{1}, B_{1} of subsets of the carrier of \mathcal{E}_{T}^{2} such that A_{1} is a subsequence of A and B_{1} is a subsequence of B and for every natural number *i* holds $C_{1}(i) = [A_{1}(i), B_{1}(i)]$.

- (75) Let A, B be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and C be a sequence of subsets of the carrier of $[\mathcal{E}_{\mathrm{T}}^2, \mathcal{E}_{\mathrm{T}}^2]$. If for every natural number i holds C(i) = [A(i), B(i)], then Ls $C \subseteq [\text{Ls } A, \text{Ls } B]$.
- (76) Let T be a non empty topological space, F be a sequence of subsets of the carrier of T, and A be a subset of T. If for every natural number i holds F(i) = A, then Li F = Ls F.
- (77) Let F be a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and A be a subset of $\mathcal{E}_{\mathrm{T}}^2$. If for every natural number i holds F(i) = A, then Ls $F = \overline{A}$.
- (78) Let F, G be sequences of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^2$. If for every natural number i holds $G(i) = \overline{F(i)}$, then Ls $G = \mathrm{Ls} F$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547-
- 552, 1991.
 [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427–440, 1997.
- [11] Czesław Byliński and Mariusz Żynel. Cages the external approximation of Jordan's curve. Formalized Mathematics, 9(1):19-24, 2001.
- [12] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [14] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [15] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [16] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [17] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [19] Kazimierz Kuratowski. Topology, volume I. PWN Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
- [20] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. *Formalized Mathematics*, 8(1):1–13, 1999.
- [21] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [22] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [23] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
- [24] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.

408

- [25] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [26] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in \mathcal{E}_{T}^{N} . Formalized Mathematics, 5(1):93–96, 1996.
- [27] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.
- [28] Bartłomiej Skorulski. The sequential closure operator in sequential and Frechet spaces. Formalized Mathematics, 8(1):47–54, 1999.
- [29] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [30] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [31] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
- [32] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213-225, [33] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [35] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received August 12, 2003