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Summary. The main goal of the work was to introduce the concept of the
segmentation of a simple closed curve into (arbitrary small) arcs. The existence

of it has been proved by Yatsuka Nakamura [21]. The concept of the gap of a

segmentation is also introduced. It is the smallest distance between disjoint seg-

ments in the segmentation. For this purpose, the relationship between segments

of an arc [24] and segments on a simple closed curve [21] has been shown.

MML Identifier: JORDAN A.

The papers [30], [35], [10], [3], [2], [29], [1], [13], [8], [9], [7], [4], [34], [25], [33],

[22], [20], [28], [15], [26], [27], [18], [6], [12], [31], [19], [14], [16], [17], [23], [5],

[24], [21], [11], and [32] provide the notation and terminology for this paper.

1. Preliminaries

The scheme AndScheme deals with a non empty set A and two unary pre-

dicates P, Q, and states that:

{a; a ranges over elements of A : P[a] ∧ Q[a]} = {a1; a1 ranges

over elements of A : P[a1]} ∩ {a2; a2 ranges over elements of A :

Q[a2]}

for all values of the parameters.

For simplicity, we follow the rules: C is a simple closed curve, p, q are points

of E2
T
, i, j, k, n are natural numbers, and e is a real number.

The following proposition is true
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(1) For all finite non empty subsets A, B of R holds min(A ∪ B) =

min(minA,minB).

Let T be a non empty topological space. One can check that there exists a

subset of T which is compact and non empty.

Next we state several propositions:

(2) Let T be a non empty topological space, f be a continuous real map of

T , and A be a compact subset of T . Then f◦A is compact.

(3) For every compact subset A of R and for every non empty subset B of

R such that B ⊆ A holds inf B ∈ A.

(4) Let A, B be compact non empty subsets of En
T
, f be a continuous real

map of [: En
T
, En
T

:], and g be a real map of En
T
. Suppose that for every point

p of En
T
there exists a subset G of R such that G = {f(p, q); q ranges over

points of En
T
: q ∈ B} and g(p) = inf G. Then inf(f◦[:A, B :]) = inf(g◦A).

(5) Let A, B be compact non empty subsets of En
T
, f be a continuous real

map of [: En
T
, En
T

:], and g be a real map of En
T
. Suppose that for every point

q of En
T
there exists a subset G of R such that G = {f(p, q); p ranges over

points of En
T
: p ∈ A} and g(q) = inf G. Then inf(f◦[:A, B :]) = inf(g◦B).

(6) If q ∈ LowerArc(C) and q 6=Wmin(C), then Emax(C) ¬C q.

(7) If q ∈ UpperArc(C), then q ¬C Emax(C).

2. The Euclidean Distance

Let us consider n. The functor EuclDist(n) yielding a real map of [: En
T
, En
T

:]

is defined as follows:

(Def. 1) For all points p, q of En
T
holds (EuclDist(n))(p, q) = |p− q|.

Let T be a non empty topological space and let f be a real map of T . Let

us observe that f is continuous if and only if:

(Def. 2) For every point p of T and for every neighbourhood N of f(p) there

exists a neighbourhood V of p such that f◦V ⊆ N.

Let us consider n. Note that EuclDist(n) is continuous.

3. On the Distance between Subsets of a Euclidean Space

The following proposition is true

(8) For all non empty compact subsets A, B of En
T
such that A misses B

holds distmin(A,B) > 0.
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4. On the Segments

The following propositions are true:

(9) If p ¬C q and q ¬C Emax(C) and p 6= q, then Segment(p, q, C) =

Segment(UpperArc(C),Wmin(C),Emax(C), p, q).

(10) If Emax(C) ¬C q, then Segment(Emax(C), q, C) = Segment(LowerArc(C),

Emax(C),Wmin(C),Emax(C), q).

(11) If Emax(C) ¬C q, then Segment(q,Wmin(C), C) = Segment(LowerArc(C),

Emax(C),Wmin(C), q,Wmin(C)).

(12) If p ¬C q and Emax(C) ¬C p, then Segment(p, q, C) =

Segment(LowerArc(C),Emax(C),Wmin(C), p, q).

(13) If p ¬C Emax(C) and Emax(C) ¬C q, then Segment(p, q, C) =

RSegment(UpperArc(C),Wmin(C),Emax(C), p)∪LSegment(LowerArc(C),

Emax(C),Wmin(C), q).

(14) If p ¬C Emax(C), then Segment(p,Wmin(C), C) = RSegment(UpperArc

(C),Wmin(C),Emax(C), p) ∪ LSegment(LowerArc(C),Emax(C),Wmin(C),

Wmin(C)).

(15) RSegment(UpperArc(C),Wmin(C),Emax(C), p) = Segment(UpperArc

(C),Wmin(C),Emax(C), p,Emax(C)).

(16) LSegment(LowerArc(C),Emax(C),Wmin(C), p) = Segment(LowerArc(C),

Emax(C),Wmin(C),Emax(C), p).

(17) For every point p of E2
T
such that p ∈ C and p 6= Wmin(C) holds

Segment(p,Wmin(C), C) is an arc from p to Wmin(C).

(18) For all points p, q of E2
T
such that p 6= q and p ¬C q holds

Segment(p, q, C) is an arc from p to q.

(19) C = Segment(Wmin(C),Wmin(C), C).

(20) For every point q of E2
T
such that q ∈ C holds Segment(q,Wmin(C), C)

is compact.

(21) For all points q1, q2 of E
2
T
such that q1 ¬C q2 holds Segment(q1, q2, C) is

compact.

5. The Concept of a Segmentation

Let us consider C. A finite sequence of elements of E2
T
is said to be a seg-

mentation of C if it satisfies the conditions (Def. 3).

(Def. 3) It1 = Wmin(C) and it is one-to-one and 8 ¬ len it and rng it ⊆ C

and for every natural number i such that 1 ¬ i and i < len it holds

iti ¬C iti+1 and for every natural number i such that 1 ¬ i and

i + 1 < len it holds Segment(iti, iti+1, C) ∩ Segment(iti+1, iti+2, C) =
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{iti+1} and Segment(itlen it, it1, C) ∩ Segment(it1, it2, C) = {it1} and

Segment(itlen it−′1, itlen it, C) ∩ Segment(itlen it, it1, C) = {itlen it} and

Segment(itlen it−′1, itlen it, C) misses Segment(it1, it2, C) and for all natu-

ral numbers i, j such that 1 ¬ i and i < j and j < len it and i and j

are not adjacent holds Segment(iti, iti+1, C) misses Segment(itj , itj+1, C)

and for every natural number i such that 1 < i and i + 1 < len it holds

Segment(itlen it, it1, C) misses Segment(iti, iti+1, C).

Let us consider C. One can verify that every segmentation of C is non trivial.

One can prove the following proposition

(22) For every segmentation S of C and for every i such that 1 ¬ i and

i ¬ lenS holds Si ∈ C.

6. The Segments of a Segmentation

Let us consider C, let i be a natural number, and let S be a segmentation

of C. The functor Segm(S, i) yields a subset of E2
T
and is defined by:

(Def. 4) Segm(S, i) =

{

Segment(Si, Si+1, C), if 1 ¬ i and i < lenS,

Segment(SlenS , S1, C), otherwise.

The following proposition is true

(23) For every segmentation S of C such that i ∈ domS holds Segm(S, i) ⊆ C.

Let us consider C, let S be a segmentation of C, and let us consider i. Note

that Segm(S, i) is non empty and compact.

We now state several propositions:

(24) For every segmentation S of C and for every p such that p ∈ C there

exists a natural number i such that i ∈ domS and p ∈ Segm(S, i).

(25) Let S be a segmentation of C and given i, j. Suppose 1 ¬ i and i < j and

j < lenS and i and j are not adjacent. Then Segm(S, i) misses Segm(S, j).

(26) For every segmentation S of C and for every j such that 1 < j and

j < lenS −′ 1 holds Segm(S, lenS) misses Segm(S, j).

(27) Let S be a segmentation of C and given i, j. Suppose 1 ¬ i and i < j and

j < lenS and i and j are adjacent. Then Segm(S, i)∩Segm(S, j) = {Si+1}.

(28) Let S be a segmentation of C and given i, j. Suppose 1 ¬ i and i < j

and j < lenS and i and j are adjacent. Then Segm(S, i) meets Segm(S, j).

(29) For every segmentation S of C holds Segm(S, lenS)∩Segm(S, 1) = {S1}.

(30) For every segmentation S of C holds Segm(S, lenS) meets Segm(S, 1).

(31) For every segmentation S of C holds Segm(S, lenS) ∩ Segm(S, lenS −′

1) = {SlenS}.

(32) For every segmentation S of C holds Segm(S, lenS) meets

Segm(S, lenS −′ 1).
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7. The Diameter of a Segmentation

Let us consider n and let C be a subset of En
T
. The functor ØC yielding a

real number is defined by:

(Def. 5) There exists a subset W of En such that W = C and ØC = ØW.

Let us consider C and let S be a segmentation of C. The functor ØS yielding

a real number is defined as follows:

(Def. 6) There exists a non empty finite subset S1 of R such that S1 =

{ØSegm(S, i) : i ∈ domS} and ØS = maxS1.

We now state three propositions:

(33) For every segmentation S of C and for every i holds ØSegm(S, i) ¬ ØS.

(34) For every segmentation S of C and for every real number e such that for

every i holds ØSegm(S, i) < e holds ØS < e.

(35) For every real number e such that e > 0 there exists a segmentation S

of C such that ØS < e.

8. The Concept of the Gap of a Segmentation

Let us consider C and let S be a segmentation of C. The functor Gap(S)

yields a real number and is defined by the condition (Def. 7).

(Def. 7) There exist non empty finite subsets S1, S2 of R such that S1 =

{distmin(Segm(S, i),Segm(S, j)) : 1 ¬ i ∧ i < j ∧ j < lenS ∧ i

and j are not adjacent} and S2 = {distmin(Segm(S, lenS),Segm(S, k)) :

1 < k ∧ k < lenS −′ 1} and Gap(S) = min(minS1,minS2).

Next we state two propositions:

(36) Let S be a segmentation of C. Then there exists a finite non empty

subset F of R such that F = {distmin(Segm(S, i),Segm(S, j)) : 1 ¬ i ∧ i <

j ∧ j ¬ lenS ∧ Segm(S, i) misses Segm(S, j)} and Gap(S) = minF.

(37) For every segmentation S of C holds Gap(S) > 0.
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