On the Segmentation of a Simple Closed Curve ${ }^{1}$

Andrzej Trybulec
University of Białystok

Summary. The main goal of the work was to introduce the concept of the segmentation of a simple closed curve into (arbitrary small) arcs. The existence of it has been proved by Yatsuka Nakamura [21]. The concept of the gap of a segmentation is also introduced. It is the smallest distance between disjoint segments in the segmentation. For this purpose, the relationship between segments of an arc [24] and segments on a simple closed curve [21] has been shown.

MML Identifier: JORDAN_A.

The papers [30], [35], [10], [3], [2], [29], [1], [13], [8], [9], [7], [4], [34], [25], [33], [22], [20], [28], [15], [26], [27], [18], [6], [12], [31], [19], [14], [16], [17], [23], [5], [24], [21], [11], and [32] provide the notation and terminology for this paper.

1. Preliminaries

The scheme AndScheme deals with a non empty set \mathcal{A} and two unary predicates \mathcal{P}, \mathcal{Q}, and states that:
$\{a ; a$ ranges over elements of $\mathcal{A}: \mathcal{P}[a] \wedge \mathcal{Q}[a]\}=\left\{a_{1} ; a_{1}\right.$ ranges
over elements of $\left.\mathcal{A}: \mathcal{P}\left[a_{1}\right]\right\} \cap\left\{a_{2} ; a_{2}\right.$ ranges over elements of \mathcal{A} : $\left.\mathcal{Q}\left[a_{2}\right]\right\}$
for all values of the parameters.
For simplicity, we follow the rules: C is a simple closed curve, p, q are points of $\mathcal{E}_{\mathrm{T}}^{2}, i, j, k, n$ are natural numbers, and e is a real number.

The following proposition is true

[^0](1) For all finite non empty subsets A, B of \mathbb{R} holds $\min (A \cup B)=$ $\min (\min A, \min B)$.
Let T be a non empty topological space. One can check that there exists a subset of T which is compact and non empty.

Next we state several propositions:
(2) Let T be a non empty topological space, f be a continuous real map of T, and A be a compact subset of T. Then $f^{\circ} A$ is compact.
(3) For every compact subset A of \mathbb{R} and for every non empty subset B of \mathbb{R} such that $B \subseteq A$ holds $\inf B \in A$.
(4) Let A, B be compact non empty subsets of $\mathcal{E}_{\mathrm{T}}^{n}, f$ be a continuous real map of $: \mathcal{E}_{\mathrm{T}}^{n}, \mathcal{E}_{\mathrm{T}}^{n}$:, and g be a real map of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose that for every point p of $\mathcal{E}_{\mathrm{T}}^{n}$ there exists a subset G of \mathbb{R} such that $G=\{f(p, q) ; q$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{n}: q \in B\right\}$ and $g(p)=\inf G$. Then $\inf \left(f^{\circ}: A, B \vdots\right)=\inf \left(g^{\circ} A\right)$.
(5) Let A, B be compact non empty subsets of $\mathcal{E}_{\mathrm{T}}^{n}, f$ be a continuous real map of $: \mathcal{E}_{\mathrm{T}}^{n}, \mathcal{E}_{\mathrm{T}}^{n}:$, and g be a real map of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose that for every point q of $\mathcal{E}_{\mathrm{T}}^{n}$ there exists a subset G of \mathbb{R} such that $G=\{f(p, q) ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{n}: p \in A\right\}$ and $g(q)=\inf G$. Then $\inf \left(f^{\circ}: A, B:\right)=\inf \left(g^{\circ} B\right)$.
(6) If $q \in \operatorname{LowerArc}(C)$ and $q \neq \mathrm{W}_{\min }(C)$, then $\mathrm{E}_{\max }(C) \leqslant_{C} q$.
(7) If $q \in U \operatorname{UpperArc}(C)$, then $q \leqslant C \mathrm{E}_{\max }(C)$.

2. The Euclidean Distance

Let us consider n. The functor $\operatorname{EuclDist}(n)$ yielding a real map of $: \mathcal{E}_{\mathrm{T}}^{n}, \mathcal{E}_{\mathrm{T}}^{n}$: is defined as follows:
(Def. 1) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $(\operatorname{EuclDist}(n))(p, q)=|p-q|$.
Let T be a non empty topological space and let f be a real map of T. Let us observe that f is continuous if and only if:
(Def. 2) For every point p of T and for every neighbourhood N of $f(p)$ there exists a neighbourhood V of p such that $f^{\circ} V \subseteq N$.
Let us consider n. Note that $\operatorname{EuclDist}(n)$ is continuous.

3. On the Distance between Subsets of a Euclidean Space

The following proposition is true
(8) For all non empty compact subsets A, B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that A misses B holds dist $\min (A, B)>0$.

4. On the Segments

The following propositions are true:
(9) If $p \leqslant_{C} q$ and $q \leqslant_{C} \mathrm{E}_{\max }(C)$ and $p \neq q$, then $\operatorname{Segment}(p, q, C)=$ Segment $\left(\operatorname{UpperArc}(C), \mathrm{W}_{\text {min }}(C), \mathrm{E}_{\max }(C), p, q\right)$.
(10) If $\mathrm{E}_{\text {max }}(C) \leqslant_{C} q$, then $\operatorname{Segment}\left(\mathrm{E}_{\max }(C), q, C\right)=\operatorname{Segment}(\operatorname{LowerArc}(C)$, $\left.\mathrm{E}_{\text {max }}(C), \mathrm{W}_{\text {min }}(C), \mathrm{E}_{\text {max }}(C), q\right)$.
(11) If $\mathrm{E}_{\max }(C) \leqslant_{C} q$, then $\operatorname{Segment}\left(q, \mathrm{~W}_{\min }(C), C\right)=\operatorname{Segment}(\operatorname{LowerArc}(C)$, $\left.\mathrm{E}_{\text {max }}(C), \mathrm{W}_{\text {min }}(C), q, \mathrm{~W}_{\text {min }}(C)\right)$.
(12) If $p \leqslant_{C} \quad q$ and $\mathrm{E}_{\text {max }}(C) \leqslant_{C} \quad p$, then $\operatorname{Segment}(p, q, C)=$ Segment $\left(\operatorname{LowerArc}(C), \mathrm{E}_{\text {max }}(C), \mathrm{W}_{\text {min }}(C), p, q\right)$.
(13) If $p \leqslant_{C} \mathrm{E}_{\max }(C)$ and $\mathrm{E}_{\max }(C) \leqslant_{C} q$, then $\operatorname{Segment}(p, q, C)=$ RSegment $\left(\operatorname{UpperArc}(C), \mathrm{W}_{\text {min }}(C), \mathrm{E}_{\max }(C), p\right) \cup L S e g m e n t(\operatorname{LowerArc}(C)$, $\left.\mathrm{E}_{\max }(C), \mathrm{W}_{\text {min }}(C), q\right)$.
(14) If $p \leqslant_{C} \mathrm{E}_{\max }(C)$, then $\operatorname{Segment}\left(p, \mathrm{~W}_{\min }(C), C\right)=\mathrm{RSegment}(U \mathrm{UpperArc}$ $\left.(C), \mathrm{W}_{\text {min }}(C), \mathrm{E}_{\text {max }}(C), p\right) \cup \operatorname{LSegment}\left(\operatorname{LowerArc}(C), \mathrm{E}_{\max }(C), \mathrm{W}_{\text {min }}(C)\right.$, $\mathrm{W}_{\text {min }}(C)$).
(15) $\operatorname{RSegment}\left(\operatorname{UpperArc}(C), \mathrm{W}_{\text {min }}(C), \mathrm{E}_{\text {max }}(C), p\right)=\operatorname{Segment}(\mathrm{UpperArc}$ $\left.(C), \mathrm{W}_{\text {min }}(C), \mathrm{E}_{\max }(C), p, \mathrm{E}_{\max }(C)\right)$.
(16) LSegment $\left(\operatorname{LowerArc}(C), \mathrm{E}_{\text {max }}(C), \mathrm{W}_{\text {min }}(C), p\right)=\operatorname{Segment}(\operatorname{LowerArc}(C)$, $\left.\mathrm{E}_{\text {max }}(C), \mathrm{W}_{\text {min }}(C), \mathrm{E}_{\text {max }}(C), p\right)$.
(17) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in C$ and $p \neq \mathrm{W}_{\min }(C)$ holds $\operatorname{Segment}\left(p, \mathrm{~W}_{\text {min }}(C), C\right)$ is an arc from p to $\mathrm{W}_{\text {min }}(C)$.
(18) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \neq q$ and $p \leqslant_{C} q$ holds $\operatorname{Segment}(p, q, C)$ is an arc from p to q.
(19) $C=\operatorname{Segment}\left(\mathrm{W}_{\min }(C), \mathrm{W}_{\min }(C), C\right)$.
(20) For every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in C$ holds $\operatorname{Segment}\left(q, \mathrm{~W}_{\min }(C), C\right)$ is compact.
(21) For all points q_{1}, q_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q_{1} \leqslant_{C} q_{2}$ holds $\operatorname{Segment}\left(q_{1}, q_{2}, C\right)$ is compact.

5. The Concept of a Segmentation

Let us consider C. A finite sequence of elements of $\mathcal{E}_{\text {T }}^{2}$ is said to be a segmentation of C if it satisfies the conditions (Def. 3).
(Def. 3) $\mathrm{It}_{1}=\mathrm{W}_{\min }(C)$ and it is one-to-one and $8 \leqslant$ lenit and rng it $\subseteq C$ and for every natural number i such that $1 \leqslant i$ and $i<$ lenit holds $\mathrm{it}_{i} \leqslant_{C} \mathrm{it}_{i+1}$ and for every natural number i such that $1 \leqslant i$ and $i+1<$ len it holds $\operatorname{Segment}\left(\mathrm{it}_{i}\right.$, it $\left._{i+1}, C\right) \cap \operatorname{Segment}\left(\mathrm{it}_{i+1}, \mathrm{it}_{i+2}, C\right)=$
 $\left.\operatorname{Segment}\left(\mathrm{it}_{\text {len it-1}}, \mathrm{it}_{\text {len it }}, C\right) \cap \operatorname{Segment} \mathrm{it}_{\text {len it }}, \mathrm{it}_{1}, C\right)=\left\{\mathrm{it}_{\text {lenit }}\right\}$ and Segment (it len it-' $\left.^{\prime}, \mathrm{it}_{\text {len } i t}, C\right)$ misses $\operatorname{Segment}\left(\mathrm{it}_{1}, \mathrm{it}_{2}, C\right)$ and for all natural numbers i, j such that $1 \leqslant i$ and $i<j$ and $j<$ lenit and i and j are not adjacent holds Segment(it $\left.{ }_{i}, \mathrm{it}_{i+1}, C\right)$ misses $\operatorname{Segment}^{\left(\mathrm{it}_{j}, \mathrm{it}_{j+1}, C\right)}$ and for every natural number i such that $1<i$ and $i+1<$ len it holds Segment $\left(\mathrm{it}_{\text {len it }}, \mathrm{it}_{1}, C\right)$ misses Segment $\left(\mathrm{it}_{i}, \mathrm{it}_{i+1}, C\right)$.
Let us consider C. One can verify that every segmentation of C is non trivial. One can prove the following proposition
(22) For every segmentation S of C and for every i such that $1 \leqslant i$ and $i \leqslant \operatorname{len} S$ holds $S_{i} \in C$.

6. The Segments of a Segmentation

Let us consider C, let i be a natural number, and let S be a segmentation of C. The functor $\operatorname{Segm}(S, i)$ yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def. 4) $\quad \operatorname{Segm}(S, i)=\left\{\begin{array}{l}\operatorname{Segment}\left(S_{i}, S_{i+1}, C\right), \text { if } 1 \leqslant i \text { and } i<\operatorname{len} S, \\ \operatorname{Segment}\left(S_{\text {len } S}, S_{1}, C\right), \text { otherwise } .\end{array}\right.$
The following proposition is true
(23) For every segmentation S of C such that $i \in \operatorname{dom} S$ holds $\operatorname{Segm}(S, i) \subseteq C$.

Let us consider C, let S be a segmentation of C, and let us consider i. Note that $\operatorname{Segm}(S, i)$ is non empty and compact.

We now state several propositions:
(24) For every segmentation S of C and for every p such that $p \in C$ there exists a natural number i such that $i \in \operatorname{dom} S$ and $p \in \operatorname{Segm}(S, i)$.
(25) Let S be a segmentation of C and given i, j. Suppose $1 \leqslant i$ and $i<j$ and $j<\operatorname{len} S$ and i and j are not adjacent. Then $\operatorname{Segm}(S, i)$ misses $\operatorname{Segm}(S, j)$.
(26) For every segmentation S of C and for every j such that $1<j$ and $j<\operatorname{len} S-{ }^{\prime} 1$ holds $\operatorname{Segm}(S$, len $S)$ misses $\operatorname{Segm}(S, j)$.
(27) Let S be a segmentation of C and given i, j. Suppose $1 \leqslant i$ and $i<j$ and $j<\operatorname{len} S$ and i and j are adjacent. Then $\operatorname{Segm}(S, i) \cap \operatorname{Segm}(S, j)=\left\{S_{i+1}\right\}$.
(28) Let S be a segmentation of C and given i, j. Suppose $1 \leqslant i$ and $i<j$ and $j<\operatorname{len} S$ and i and j are adjacent. Then $\operatorname{Segm}(S, i)$ meets $\operatorname{Segm}(S, j)$.
(29) For every segmentation S of C holds $\operatorname{Segm}(S$, len $S) \cap \operatorname{Segm}(S, 1)=\left\{S_{1}\right\}$.
(30) For every segmentation S of C holds $\operatorname{Segm}(S$, len $S)$ meets $\operatorname{Segm}(S, 1)$.
(31) For every segmentation S of C holds $\operatorname{Segm}(S$, len $S) \cap \operatorname{Segm}\left(S\right.$, len $S-^{\prime}$ 1) $=\left\{S_{\operatorname{len} S}\right\}$.
(32) For every segmentation S of C holds $\operatorname{Segm}(S$, len S) meets $\operatorname{Segm}\left(S, \operatorname{len} S-^{\prime} 1\right)$.

7. The Diameter of a Segmentation

Let us consider n and let C be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor $\varnothing C$ yielding a real number is defined by:
(Def. 5) There exists a subset W of \mathcal{E}^{n} such that $W=C$ and $\varnothing C=\varnothing W$.
Let us consider C and let S be a segmentation of C. The functor $\varnothing S$ yielding a real number is defined as follows:
(Def. 6) There exists a non empty finite subset S_{1} of \mathbb{R} such that $S_{1}=$ $\{\emptyset \operatorname{Segm}(S, i): i \in \operatorname{dom} S\}$ and $\emptyset S=\max S_{1}$.
We now state three propositions:
(33) For every segmentation S of C and for every i holds $\emptyset \operatorname{Segm}(S, i) \leqslant \emptyset S$.
(34) For every segmentation S of C and for every real number e such that for every i holds $\emptyset \operatorname{Segm}(S, i)<e$ holds $\emptyset S<e$.
(35) For every real number e such that $e>0$ there exists a segmentation S of C such that $\emptyset S<e$.

8. The Concept of the Gap of a Segmentation

Let us consider C and let S be a segmentation of C. The functor $\operatorname{Gap}(S)$ yields a real number and is defined by the condition (Def. 7).
(Def. 7) There exist non empty finite subsets S_{1}, S_{2} of \mathbb{R} such that $S_{1}=$ $\left\{\operatorname{dist}_{\min }(\operatorname{Segm}(S, i), \operatorname{Segm}(S, j)): 1 \leqslant i \wedge i<j \wedge j<\operatorname{len} S \wedge i\right.$ and j are not adjacent $\}$ and $S_{2}=\left\{\operatorname{dist}_{\min }(\operatorname{Segm}(S, \operatorname{len} S), \operatorname{Segm}(S, k))\right.$: $\left.1<k \wedge k<\operatorname{len} S-^{\prime} 1\right\}$ and $\operatorname{Gap}(S)=\min \left(\min S_{1}, \min S_{2}\right)$.
Next we state two propositions:
(36) Let S be a segmentation of C. Then there exists a finite non empty subset F of \mathbb{R} such that $F=\left\{\operatorname{dist}_{\text {min }}(\operatorname{Segm}(S, i), \operatorname{Segm}(S, j)): 1 \leqslant i \wedge i<\right.$ $j \wedge j \leqslant \operatorname{len} S \wedge \operatorname{Segm}(S, i)$ misses $\operatorname{Segm}(S, j)\}$ and $\operatorname{Gap}(S)=\min F$.
(37) For every segmentation S of C holds $\operatorname{Gap}(S)>0$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathematics, 5(3):353-359, 1996.
[6] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55$65,1990$.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[12] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[15] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[16] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[17] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[18] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991:
[19] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[20] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[21] Yatsuka Nakamura. On the dividing function of the simple closed curve into segments. Formalized Mathematics, 7(1):135-138, 1998.
[22] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.
[23] Yatsuka Nakamura and Andrzej Trybulec. Adjacency concept for pairs of natural numbers. Formalized Mathematics, 6(1):1-3, 1997.
[24] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[25] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[26] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
[27] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[28] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[29] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[30] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[31] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[32] Andrzej Trybulec. On the minimal distance between sets in Euclidean space. Formalized Mathematics, 10(3):153-158, 2002.
[33] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[34] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[35] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by the CALCULEMUS grant HPRN-CT-200000102 and TYPES grant IST-1999-29001.

