FORMALIZED MATHEMATICS

Volume 11, Number 4, 2003
University of Bialystok
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Summary. The main goal of the work was to introduce the concept of the
segmentation of a simple closed curve into (arbitrary small) arcs. The existence
of it has been proved by Yatsuka Nakamura [21]. The concept of the gap of a
segmentation is also introduced. It is the smallest distance between disjoint seg-
ments in the segmentation. For this purpose, the relationship between segments
of an arc [24] and segments on a simple closed curve [21] has been shown.

MML Identifier: JORDAN_A.

The papers [30], [35], [10], [3], [2], [29], [1], [13], [8], [9], [7], [4], [34], [25], [33],
[22], [20], [28], [15], [26], [27], [18], [6], [12], [31], [19], [14], [16], [17], [23], [5],
[24], [21], [11], and [32] provide the notation and terminology for this paper.

1. PRELIMINARIES

The scheme AndScheme deals with a non empty set A and two unary pre-
dicates P, Q, and states that:
{a; a ranges over elements of A : Pla] A Qla]} = {ai;a; ranges
over elements of A : Pla1]} N {ag; az ranges over elements of A :
Qlaz]}
for all values of the parameters.
For simplicity, we follow the rules: C' is a simple closed curve, p, ¢ are points
of 5%, i, 7, k, n are natural numbers, and e is a real number.
The following proposition is true
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(1) For all finite non empty subsets A, B of R holds min(A U B) =
min(min A, min B).

Let T be a non empty topological space. One can check that there exists a
subset of T" which is compact and non empty.
Next we state several propositions:

(2) Let T be a non empty topological space, f be a continuous real map of
T, and A be a compact subset of T. Then f°A is compact.

(3) For every compact subset A of R and for every non empty subset B of
R such that B C A holds inf B € A.

(4) Let A, B be compact non empty subsets of £, f be a continuous real
map of [ £, %, and g be a real map of £F. Suppose that for every point
p of & there exists a subset G of R such that G = {f(p, q); ¢ ranges over
points of &f: ¢ € B} and g(p) = inf G. Then inf(f°} A, B]) = inf(g°A).

(5) Let A, B be compact non empty subsets of £F, f be a continuous real
map of [ &F, £F ], and g be a real map of £F. Suppose that for every point
q of EF there exists a subset G of R such that G = {f(p, q); p ranges over
points of & p € A} and g(¢) = inf G. Then inf(f°f A, B]) = inf(¢°B).

(6) If g € LowerArc(C) and ¢ # Wpin(C), then Epax(C) <¢ q.

(7) 1If g € UpperArc(C), then ¢ <¢ Emax(C).

2. THE EUCLIDEAN DISTANCE

Let us consider n. The functor EuclDist(n) yielding a real map of [ &F, EF 1
is defined as follows:

(Def. 1)  For all points p, g of £} holds (EuclDist(n))(p, ¢) = |p — ¢/

Let T be a non empty topological space and let f be a real map of T'. Let
us observe that f is continuous if and only if:

(Def. 2) For every point p of T' and for every neighbourhood N of f(p) there
exists a neighbourhood V of p such that f°V C N.

Let us consider n. Note that EuclDist(n) is continuous.

3. ON THE DISTANCE BETWEEN SUBSETS OF A EUCLIDEAN SPACE

The following proposition is true

(8) For all non empty compact subsets A, B of £} such that A misses B
holds distyin(A4, B) > 0.
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4. ON THE SEGMENTS

The following propositions are true:
(9) If p <¢ q and ¢ <¢ Enax(C) and p # ¢, then Segment(p,q,C) =
Segment(UpperArc(C'), Win(C), Emax(C), p, q).

(10) IfEpax(C) <¢ ¢, then Segment(Ey.x(C), ¢, C) = Segment(LowerArc(C),
Emax(o)a Wmin(C)a Emax(C)a Q)-

(11) IfEpnax(C) <¢ g, then Segment(q, Wiin (C), C') = Segment(LowerArc(C),
Emax(c)7 Wmin(c)7 q, Wmin (C))

(12) If p <¢ ¢q and Ep.(C) <¢ p, then Segment(p,q,C) =
Segment(LowerArc(C), Epax(C), Wmin(C), p, q).

(13) If p <¢ Emax(C) and Epa(C) <c¢ ¢, then Segment(p,q,C) =
RSegment(UpperArc(C), Win(C), Enax(C), p)ULSegment (LowerArc(C),
Emax(c)a Wmin(C)a Q)-

(14) TIf p <¢ Emax(C), then Segment(p, Wiin (C), C') = RSegment(UpperArc
(C)y, Whin(C), Emax(C), p) U LSegment(LowerArc(C), Emax(C), Win (C),
Whin(C)).

(15) RSegment(UpperArc(C), Wpin(C), Emax(C), p) = Segment(UpperArc
(C)v WmiH(C)v EmaX(C)7p7 EmaX(C))'

(16) LSegment(LowerArc(C), Emax(C), Wmin(C), p) = Segment(LowerArc(C'),
Emax(c); Wmin(c)y Emax(c) ’ p)'

(17) For every point p of €% such that p € C and p # Wpin(C) holds
Segment(p, Wiin(C), C) is an arc from p to Wpin (C).

(18) For all points p, ¢ of &2 such that p # ¢ and p <¢ ¢ holds
Segment(p, ¢, C) is an arc from p to gq.

(19) C = Segment(Wpin(C), Wnin(C), C).

(20) For every point g of 2 such that ¢ € C holds Segment(g, Wiin(C), C)
is compact.

(21) For all points g1, g2 of 2 such that ¢ <¢ g2 holds Segment (g1, g2, C) is
compact.

5. THE CONCEPT OF A SEGMENTATION

Let us consider C. A finite sequence of elements of £% is said to be a seg-
mentation of C if it satisfies the conditions (Def. 3).

(Def. 3) Ity = Wpin(C) and it is one-to-one and 8 < lenit and rngit C C
and for every natural number ¢ such that 1 < ¢ and ¢ < lenit holds
it; <¢ iti+1 and for every natural number ¢ such that 1 < ¢ and
i+ 1 < lenit holds Segment(it;,it;11,C) N Segment(it;y1,itj+2,C) =
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{iti+1} and Segment(itienit,it1, C') N Segment(ity,ite, C) = {it1} and
Segment(itlen it—'1, 1blen it C) N Segment(itlen its itla C) = {itlen it} and
Segment (itien it—/1, itlenit, C') misses Segment(ity,its, C') and for all natu-
ral numbers ¢, j such that 1 < ¢ and i < 5 and j < lenit and ¢ and j
are not adjacent holds Segment(it;, it;+1, C') misses Segment(it;,it;11,C)
and for every natural number ¢ such that 1 < ¢ and ¢ + 1 < lenit holds
Segment (itienit, it1, C) misses Segment(it;, it;y1, C).

Let us consider C'. One can verify that every segmentation of C' is non trivial.

One can prove the following proposition

(22) For every segmentation S of C' and for every i such that 1 < ¢ and

i <lenS holds S; € C.

6. THE SEGMENTS OF A SEGMENTATION

Let us consider C, let ¢ be a natural number, and let S be a segmentation

of C. The functor Segm(S,4) yields a subset of £2 and is defined by:
~ | Segment(S;, Si11,C), if 1 <iandi<lenS,
(Def. 4) - Segm(S, 1) = { Segment(Sien 5, 51, C), otherwise.
The following proposition is true
(23) For every segmentation S of C' such that i € dom S holds Segm(S,i) C C.

Let us consider C, let S be a segmentation of C', and let us consider ¢. Note
that Segm(S,7) is non empty and compact.
We now state several propositions:
(24) For every segmentation S of C' and for every p such that p € C there
exists a natural number 7 such that ¢ € dom .S and p € Segm(S, 7).
(25) Let S be a segmentation of C' and given i, j. Suppose 1 < i and 7 < j and
j <len S and i and j are not adjacent. Then Segm(S, i) misses Segm(.S, j).
(26) For every segmentation S of C' and for every j such that 1 < j and
j <lenS —'"1 holds Segm(S,len S) misses Segm(S, 7).
(27) Let S be a segmentation of C' and given 4, j. Suppose 1 < i and 7 < j and
j <len S and i and j are adjacent. Then Segm(S,i)NSegm(S, j) = {Si+1}.
(28) Let S be a segmentation of C' and given ¢, j. Suppose 1 < i and i < j
and j < lenS and i and j are adjacent. Then Segm(.S,7) meets Segm(S, 7).
(29) For every segmentation S of C holds Segm (.S, len S)NSegm(S, 1) = {S1}.
(30) For every segmentation S of C' holds Segm(S,len S) meets Segm(S,1).
(31) For every segmentation S of C' holds Segm(S,len S) N Segm(S,len S —
1) = {Siens}-
(32) For every segmentation S of C holds Segm(S,lenS) meets
Segm(S,len S —'1).
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7. THE DIAMETER OF A SEGMENTATION

Let us consider n and let C' be a subset of £F. The functor OC yielding a
real number is defined by:

(Def. 5) There exists a subset W of £” such that W = C' and OC = OW.

Let us consider C' and let S be a segmentation of C'. The functor @S yielding
a real number is defined as follows:

(Def. 6) There exists a non empty finite subset S; of R such that S =
{@Segm(S,i) : i € dom S} and @S = max S;.
We now state three propositions:
(33) For every segmentation S of C' and for every i holds @) Segm(S,i) < @S.

(34) For every segmentation S of C' and for every real number e such that for
every i holds @ Segm(S,i) < e holds @S < e.

(35) For every real number e such that e > 0 there exists a segmentation S
of C such that 0S < e.

8. THE CONCEPT OF THE GAP OF A SEGMENTATION

Let us consider C' and let S be a segmentation of C. The functor Gap(S)
yields a real number and is defined by the condition (Def. 7).

(Def. 7) There exist non empty finite subsets S;, S2 of R such that S =
{distmin(Segm(S,7),Segm(S,7)) : 1 <i A i <j A j<lenS A i
and j are not adjacent} and Sz = {diStmin(Segm(S,len.S), Segm(S, k)) :
1<k AN k<lenS—'"1} and Gap(S) = min(min S7, min Ss).

Next we state two propositions:

(36) Let S be a segmentation of C. Then there exists a finite non empty
subset F' of R such that F' = {distmin(Segm(S, ), Segm(S,7)): 1 <i Ai <
j A j<lenS A Segm(S,i) misses Segm(S,j)} and Gap(S) = min F.
(37) For every segmentation S of C' holds Gap(S) > 0.
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