On the Upper and Lower Approximations of the Curve ${ }^{1}$

Robert Milewski
University of Białystok

MML Identifier: JORDAN19.

The papers [28], [32], [2], [15], [1], [5], [6], [4], [31], [16], [29], [17], [27], [13], [3], [25], [26], [10], [11], [8], [30], [14], [20], [18], [12], [23], [22], [24], [7], [9], [19], and [21] provide the terminology and notation for this paper.

In this paper n denotes a natural number.
Let C be a simple closed curve. The functor $\operatorname{Upper} \operatorname{Appr}(C)$ yields a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def. 1) For every natural number i holds (UpperAppr $(C))(i)=$ $\operatorname{UpperArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, i)))$.
The functor LowerAppr (C) yielding a sequence of subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 2) For every natural number i holds (LowerAppr $(C))(i)=$ LowerArc $(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, i)))$.
Let C be a simple closed curve. The functor $\operatorname{North} \operatorname{Arc}(C)$ yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def. 3) $\operatorname{NorthArc}(C)=\mathrm{Li} \operatorname{UpperAppr}(C)$.
The functor $\operatorname{South} \operatorname{Arc}(C)$ yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 4) $\operatorname{SouthArc}(C)=\mathrm{Li}$ LowerAppr (C).
We now state a number of propositions:
(1) For all natural numbers n, m such that $n \leqslant m$ and $n \neq 0$ holds $\frac{n+1}{n} \geqslant$ $\frac{m+1}{m}$.

[^0](2) Let E be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and m, j be natural numbers. Suppose $1 \leqslant m$ and $m \leqslant n$ and $1 \leqslant j$ and $j \leqslant$ width Gauge (E, n). Then $\mathcal{L}(\operatorname{Gauge}(E, n) \circ(\operatorname{Center} \operatorname{Gauge}(E, n)$, width $\operatorname{Gauge}(E, n))$, Gauge $(E, n) \circ$ $($ Center $\operatorname{Gauge}(E, n), j)) \subseteq \mathcal{L}(\operatorname{Gauge}(E, m) \circ(\operatorname{Center} \operatorname{Gauge}(E, m)$, width $\operatorname{Gauge}(E, m))$, $\operatorname{Gauge}(E, n) \circ(\operatorname{Center} \operatorname{Gauge}(E, n), j))$.
(3) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and i, j be natural numbers. Suppose $1 \leqslant i$ and $i \leqslant$ len Gauge (C, n) and $1 \leqslant j$ and $j \leqslant$ width $\operatorname{Gauge}(C, n)$ and Gauge $(C, n) \circ(i, j) \in \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i$, width Gauge $(C, n))$, Gauge $(C, n) \circ(i, j))$ meets $\widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))$.
(4) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and n be a natural number. Suppose $n>0$. Let i, j be natural numbers. Suppose $1 \leqslant i$ and $i \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant j$ and $j \leqslant$ width Gauge (C, n) and Gauge $(C, n) \circ(i, j) \in \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i$, width Gauge $(C, n))$, Gauge $(C, n) \circ(i, j))$ meets $\operatorname{UpperArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))$.
(5) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and j be a natural number. Suppose Gauge $(C, n+$
 $1 \leqslant j$ and $j \leqslant$ width Gauge $(C, n+1)$. Then $\mathcal{L}(\operatorname{Gauge}(C, 1) \circ$ (Center Gauge $(C, 1)$, width Gauge $(C, 1)$), Gauge $(C, n+1) \circ($ Center Gauge $(C, n+1), j))$ meets $\operatorname{UpperArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1)))$.
(6) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and k be a natural number. Suppose $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to Gauge (C, n). Then $\rho\left(f_{k}, f_{k+1}\right)=\frac{\mathrm{N} \text {-bound }(C)-\text { S-bound }(C)}{2^{n}}$ or $\rho\left(f_{k}, f_{k+1}\right)=$ $\frac{\text { E-bound }(C)-\text { W-bound }(C)}{2^{n}}$.
(7) Let M be a symmetric triangle metric structure, r be a real number, and p, q, x be elements of M. If $p \in \operatorname{Ball}(x, r)$ and $q \in \operatorname{Ball}(x, r)$, then $\rho(p, q)<2 \cdot r$.
(8) Let A be a subset of $\mathcal{E}_{\mathrm{T}}^{n}, p$ be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and p^{\prime} be a point of \mathcal{E}^{n}. Suppose $p=p^{\prime}$. Let s be a real number. Suppose $s>0$. Then $p \in \bar{A}$ if and only if for every real number r such that $0<r$ and $r<s$ holds $\operatorname{Ball}\left(p^{\prime}, r\right)$ meets A.
(9) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds N -bound $(C)<\operatorname{N}$-bound $(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))$.
(10) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds E-bound $(C)<\operatorname{E-bound}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))$.
(11) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$
holds S-bound $(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))<$ S-bound (C).
(12) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds W-bound $(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))<\mathrm{W}$-bound (C).
(13) Let C be a simple closed curve and i, j, k be natural numbers. Suppose $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant k$ and $k \leqslant j$ and $j \leqslant$ width Gauge (C, n) and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, k)$, Gauge $(C, n) \circ$ $(i, j)) \cap \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))=\{\operatorname{Gauge}(C, n) \circ(i, k)\}$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ$ (i, k), Gauge $(C, n) \circ(i, j)) \cap \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))=\{\operatorname{Gauge}(C, n) \circ(i, j)\}$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, k), \operatorname{Gauge}(C, n) \circ(i, j))$ meets $\operatorname{Upper} \operatorname{Arc}(C)$.
(14) Let C be a simple closed curve and i, j, k be natural numbers. Suppose $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant k$ and $k \leqslant j$ and $j \leqslant$ width $\operatorname{Gauge}(C, n)$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, k)$, Gauge $(C, n) \circ$ $(i, j)) \cap \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))=\{\operatorname{Gauge}(C, n) \circ(i, k)\}$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ$ (i, k), Gauge $(C, n) \circ(i, j)) \cap \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))=\{\operatorname{Gauge}(C, n) \circ(i, j)\}$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, k)$, $\operatorname{Gauge}(C, n) \circ(i, j))$ meets LowerArc (C).
(15) Let C be a simple closed curve and i, j, k be natural numbers. Suppose that $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant$ j and $j \leqslant k$ and $k \leqslant$ width Gauge (C, n) and $n>0$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j)$, Gauge $(C, n) \circ(i, k)) \cap \operatorname{LowerArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))=$ $\{\operatorname{Gauge}(C, n) \circ(i, k)\}$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j), \operatorname{Gauge}(C, n) \circ(i, k)) \cap$ $\operatorname{Upper} \operatorname{Arc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))=\{\operatorname{Gauge}(C, n) \circ(i, j)\}$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ$ (i, j), $\operatorname{Gauge}(C, n) \circ(i, k))$ meets UpperArc (C).
(16) Let C be a simple closed curve and i, j, k be natural numbers. Suppose that $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant$ j and $j \leqslant k$ and $k \leqslant$ width $\operatorname{Gauge}(C, n)$ and $n>0$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j), \operatorname{Gauge}(C, n) \circ(i, k)) \cap \operatorname{LowerArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))=$ $\{\operatorname{Gauge}(C, n) \circ(i, k)\}$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j)$, Gauge $(C, n) \circ(i, k)) \cap$ $\operatorname{Upper} \operatorname{Arc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))=\{\operatorname{Gauge}(C, n) \circ(i, j)\}$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ$ (i, j), Gauge $(C, n) \circ(i, k))$ meets LowerArc (C).
(17) Let C be a simple closed curve and i, j, k be natural numbers. Suppose $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant \operatorname{width} \operatorname{Gauge}(C, n)$ and $\operatorname{Gauge}(C, n) \circ(i, k) \in \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))$ and Gauge $(C, n) \circ(i, j) \in \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ$ (i, j), Gauge $(C, n) \circ(i, k))$ meets UpperArc (C).
(18) Let C be a simple closed curve and i, j, k be natural numbers. Suppose $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant$ width $\operatorname{Gauge}(C, n)$ and $\operatorname{Gauge}(C, n) \circ(i, k) \in \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))$ and Gauge $(C, n) \circ(i, j) \in \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ$ (i, j), Gauge $(C, n) \circ(i, k))$ meets LowerArc (C).
(19) Let C be a simple closed curve and i, j, k be natural numbers. Suppose $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant j$
and $j \leqslant k$ and $k \leqslant$ width Gauge (C, n) and $n>0$ and Gauge $(C, n) \circ(i, k) \in \operatorname{LowerArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))$ and Gauge $(C, n) \circ(i, j) \in$ $\operatorname{UpperArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j)$, Gauge $(C, n) \circ(i, k))$ meets UpperArc (C).
(20) Let C be a simple closed curve and i, j, k be natural numbers. Suppose $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant$ width Gauge (C, n) and $n>0$ and $\operatorname{Gauge}(C, n) \circ(i, k) \in \operatorname{LowerArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))$ and Gauge $(C, n) \circ(i, j) \in$ $\operatorname{UpperArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j)$, Gauge $(C, n) \circ(i, k))$ meets LowerArc (C).
(21) Let C be a simple closed curve and i_{1}, i_{2}, j, k be natural numbers. Suppose that $1<i_{1}$ and $i_{1} \leqslant i_{2}$ and $i_{2}<$ len Gauge (C, n) and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant$ width Gauge (C, n) and $\left(\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left(i_{1}, k\right)$, Gauge $\left.\left.(C, n) \circ\left(i_{2}, k\right)\right)\right) \cap \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))=\left\{\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right\}$ and $\left(\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left(i_{1}, k\right)$, Gauge $\left.\left.(C, n) \circ\left(i_{2}, k\right)\right)\right) \cap \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))=\left\{\operatorname{Gauge}(C, n) \circ\left(i_{2}, k\right)\right\}$. Then $\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left(i_{1}, k\right)$, Gauge $\left.(C, n) \circ\left(i_{2}, k\right)\right)$ meets $\operatorname{UpperArc}(C)$.
(22) Let C be a simple closed curve and i_{1}, i_{2}, j, k be natural numbers. Suppose that $1<i_{1}$ and $i_{1} \leqslant i_{2}$ and $i_{2}<$ len $\operatorname{Gauge}(C, n)$ and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant$ width Gauge (C, n) and $\left(\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left(i_{1}, k\right)$, Gauge $\left.(C, n) \circ\left(i_{2}, k\right)\right) \cap \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))=\left\{\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right\}$ and $\left(\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left(i_{1}, k\right)$, Gauge $\left.\left.(C, n) \circ\left(i_{2}, k\right)\right)\right) \cap \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))=\left\{\operatorname{Gauge}(C, n) \circ\left(i_{2}, k\right)\right\}$. Then $\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left(i_{1}, k\right)$, Gauge $\left.(C, n) \circ\left(i_{2}, k\right)\right)$ meets LowerArc (C).
(23) Let C be a simple closed curve and i_{1}, i_{2}, j, k be natural numbers. Suppose that $1<i_{2}$ and $i_{2} \leqslant i_{1}$ and $i_{1}<$ len Gauge (C, n) and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant$ width Gauge (C, n) and $\left(\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left(i_{1}, k\right)$, Gauge $\left.(C, n) \circ\left(i_{2}, k\right)\right) \cap \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))=\left\{\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right\}$ and $\left(\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left(i_{1}, k\right)$, Gauge $\left.\left.(C, n) \circ\left(i_{2}, k\right)\right)\right) \cap \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))=\left\{\operatorname{Gauge}(C, n) \circ\left(i_{2}, k\right)\right\}$. Then $\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left.\left(i_{1}, k\right), \operatorname{Gauge}(C, n) \circ\left(i_{2}, k\right)\right)$ meets $\operatorname{UpperArc}(C)$.
(24) Let C be a simple closed curve and i_{1}, i_{2}, j, k be natural numbers. Suppose that $1<i_{2}$ and $i_{2} \leqslant i_{1}$ and $i_{1}<$ len Gauge (C, n) and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant$ width Gauge (C, n) and $\left(\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right), \operatorname{Gauge}(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ\right.$
$\left.\left.\left(i_{1}, k\right), \operatorname{Gauge}(C, n) \circ\left(i_{2}, k\right)\right)\right) \cap \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))=\left\{\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right\}$ and $\left(\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left(i_{1}, k\right)$, Gauge $\left.\left.(C, n) \circ\left(i_{2}, k\right)\right)\right) \cap \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))=\left\{\operatorname{Gauge}(C, n) \circ\left(i_{2}, k\right)\right\}$. Then $\mathcal{L}\left(\operatorname{Gauge}(C, n) \circ\left(i_{1}, j\right)\right.$, Gauge $\left.(C, n) \circ\left(i_{1}, k\right)\right) \cup \mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $\left(i_{1}, k\right)$, Gauge $\left.(C, n) \circ\left(i_{2}, k\right)\right)$ meets LowerArc (C).
(25) Let C be a simple closed curve and i_{1}, i_{2}, j, k be natural numbers. Suppose that $1<i_{1}$ and $i_{1}<$ len Gauge $(C, n+1)$ and $1<i_{2}$ and $i_{2}<$ len Gauge $(C, n+1)$ and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant$ width Gauge $(C, n+1)$ and Gauge $(C, n+1) \circ\left(i_{1}, k\right) \in \operatorname{LowerArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1)))$ and Gauge $(C, n+$ 1) $\circ\left(i_{2}, j\right) \in \operatorname{UpperArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1))$. Then $\mathcal{L}(\operatorname{Gauge}(C, n+1) \circ$ $\left(i_{2}, j\right)$, Gauge $\left.(C, n+1) \circ\left(i_{2}, k\right)\right) \cup \mathcal{L}\left(\operatorname{Gauge}(C, n+1) \circ\left(i_{2}, k\right)\right.$, Gauge $(C, n+$ 1) $\left.\circ\left(i_{1}, k\right)\right)$ meets LowerArc (C).
(26) Let C be a simple closed curve and i_{1}, i_{2}, j, k be natural numbers. Suppose that $1<i_{1}$ and $i_{1}<$ len Gauge $(C, n+1)$ and $1<i_{2}$ and $i_{2}<$ len Gauge $(C, n+1)$ and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant$ width Gauge $(C, n+1)$ and Gauge $(C, n+1) \circ\left(i_{1}, k\right) \in \underset{\sim}{\operatorname{L}}$ LowerArc $(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1)))$ and Gauge $(C, n+$ 1) $\circ\left(i_{2}, j\right) \in \operatorname{UpperArc}(\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1)))$. Then $\mathcal{L}(\operatorname{Gauge}(C, n+1) \circ$ $\left(i_{2}, j\right)$, Gauge $\left.(C, n+1) \circ\left(i_{2}, k\right)\right) \cup \mathcal{L}\left(\operatorname{Gauge}(C, n+1) \circ\left(i_{2}, k\right)\right.$, Gauge $(C, n+$ 1) $\left.\circ\left(i_{1}, k\right)\right)$ meets $\operatorname{UpperArc}(C)$.
(27) For every simple closed curve C and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that W-bound $(C)<p_{1}$ and $p_{1}<\operatorname{E}$-bound (C) holds $p \notin \operatorname{NorthArc}(C)$ or $p \notin \operatorname{SouthArc}(C)$.
(28) For every simple closed curve C and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p_{1}=\frac{\mathrm{W} \text {-bound }(C)+\mathrm{E} \text {-bound }(C)}{2}$ holds $p \notin \operatorname{NorthArc}(C)$ or $p \notin \operatorname{South} \operatorname{Arc}(C)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25-27, 1999.
[8] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[9] Czesław Byliński and Mariusz Żynel. Cages - the external approximation of Jordan's curve. Formalized Mathematics, 9(1):19-24, 2001.
[10] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[12] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[13] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[14] Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003.
[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[16] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[17] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[18] Artur Korniłowicz. Properties of left and right components. Formalized Mathematics, 8(1):163-168, 1999.
[19] Artur Korniłowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges and cages. Part I. Formalized Mathematics, 9(3):501-509, 2001.
[20] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[21] Robert Milewski. Upper and lower sequence of a cage. Formalized Mathematics, 9(4):787790, 2001.
[22] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[23] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[24] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[25] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[26] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[27] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[28] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[29] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317-322, 1996.
[30] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized Mathematics, 6(4):541-548, 1997.
[31] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received September 27, 2003

[^0]: ${ }^{1}$ This work has been partially supported by the CALCULEMUS grant HPRN-CT-200000102.

